Hoare Logic

Andreas Podelski

May 16, 2017

Hoare logic

- introduced by Hoare in 1969 builds on first-order logic

Hoare logic

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification $=$ pre- and postcondition pair

Hoare logic

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification $=$ pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program

Hoare logic

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification $=$ pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here:
invariants are given as part of correctness specification

Hoare logic

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification $=$ pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here:
invariants are given as part of correctness specification
- correctness proof possible only if invariants are adequate for pre- and postcondition pair

Programs

- (program) expression

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

where f maps into domain of values

Programs

- (program) expression

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

where f maps into domain of values

- Boolean expression

$$
b::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

where f maps into Boolean domain

Programs

- (program) expression

$$
e::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

where f maps into domain of values

- Boolean expression

$$
b::=x \mid f\left(e_{1}, \ldots, e_{n}\right)
$$

where f maps into Boolean domain

- command
$C::=\operatorname{skip}|x:=e| C_{1} ; C_{2} \mid$ if b then C_{1} else $C_{2} \mid$ while b do C

Semantics of Expression e

- state $s=$ function from program variables to value,

$$
s: \text { Var } \rightarrow \text { Val }
$$

Semantics of Expression e

- state $s=$ function from program variables to value,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- program expression e in state s evaluates to value

$$
\llbracket e \rrbracket(s) \in \mathbf{V a l}
$$

Semantics of Expression e

- state $s=$ function from program variables to value,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- program expression e in state s evaluates to value

$$
\llbracket e \rrbracket(s) \in \mathbf{V a l}
$$

- semantics of program expressions e $=$ function from set of states to set of values

$\llbracket e \rrbracket:$ States \rightarrow Val

Semantics of Expression e

- state $s=$ function from program variables to value,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- program expression e in state s evaluates to value

$$
\llbracket e \rrbracket(s) \in \mathbf{V a l}
$$

- semantics of program expressions e $=$ function from set of states to set of values

$$
\llbracket e \rrbracket: \text { States } \rightarrow \text { Val }
$$

- interpretation of function symbol f in expression $f\left(e_{1}, \ldots, e_{n}\right)$ depends on logical first-order model (" + " interpreted over model of unbounded integers or in model for modulo arithmetic?)

Semantics of Boolean Expression b

- state $s=$ function from program variables to values,

$$
s: \text { Var } \rightarrow \text { Val }
$$

Semantics of Boolean Expression b

- state $s=$ function from program variables to values,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- Boolean expression b in state s evaluates to Boolean truth value

$$
\| b \rrbracket(s) \in\{\mathbf{T}, \mathbf{F}\}
$$

Semantics of Boolean Expression b

- state $s=$ function from program variables to values,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- Boolean expression b in state s evaluates to Boolean truth value

$$
\| b \rrbracket(s) \in\{\mathbf{T}, \mathbf{F}\}
$$

- semantics of Boolean expression b
$=$ function from set of states to set of Boolean truth values
$\rrbracket b \rrbracket:$ States $\rightarrow\{\mathbf{T}, \mathbf{F}\}$

Semantics of Boolean Expression b

- state $s=$ function from program variables to values,

$$
s: \text { Var } \rightarrow \text { Val }
$$

- Boolean expression b in state s evaluates to Boolean truth value

$$
\|b\|(s) \in\{\mathbf{T}, \mathbf{F}\}
$$

- semantics of Boolean expression b
$=$ function from set of states to set of Boolean truth values

$$
\llbracket b \rrbracket: \text { States } \rightarrow\{\mathbf{T}, \mathbf{F}\}
$$

- evaluation of Boolean expression b depends on logical first-order model (" $x \leq x+1$ " true in model of unbounded integers but false in model for modulo arithmetic)

Semantics of Commands C (1)

- semantics of command C
$=$ functions from set of states to set of states
$\| C \rrbracket:$ States \rightarrow States, $\quad s \mapsto s^{\prime}$

Semantics of Commands C (1)

- semantics of command C
$=$ functions from set of states to set of states

$$
\llbracket C \rrbracket: \text { States } \rightarrow \text { States, } \quad s \mapsto s^{\prime}
$$

- execution of command C starting in state s ends in state s^{\prime}

$$
(C, s) \rightsquigarrow s^{\prime}
$$

Semantics of Commands C (1)

- semantics of command C
$=$ functions from set of states to set of states

$$
\llbracket C \rrbracket: \text { States } \rightarrow \text { States, } \quad s \mapsto s^{\prime}
$$

- execution of command C starting in state s ends in state s^{\prime}

$$
(C, s) \rightsquigarrow s^{\prime}
$$

- execution of update statement
$=$ update of function $s: \mathbf{V a r} \rightarrow \mathbf{V a l}$

$$
\begin{aligned}
& (x:=e, s) \rightsquigarrow s^{\prime} \text { where } s^{\prime}(x)=\rrbracket e \rrbracket(s) \text { and } \\
& s^{\prime}(y)=s(y) \text { for } x \not \equiv y
\end{aligned}
$$

Semantics of Commands C (1)

- semantics of command C
$=$ functions from set of states to set of states

$$
\llbracket C \rrbracket: \text { States } \rightarrow \text { States, } \quad s \mapsto s^{\prime}
$$

- execution of command C starting in state s ends in state s^{\prime}

$$
(C, s) \rightsquigarrow s^{\prime}
$$

- execution of update statement
$=$ update of function $s: \mathbf{V a r} \rightarrow \mathbf{V a l}$

$$
\begin{aligned}
& (x:=e, s) \rightsquigarrow s^{\prime} \text { where } s^{\prime}(x)=\llbracket e \rrbracket(s) \text { and } \\
& s^{\prime}(y)=s(y) \text { for } x \not \equiv y
\end{aligned}
$$

- execution of update depends on logical first-order model

Semantics of Commands C (2)

- execution of sequence of commands $C \equiv C_{1} ; C_{2}$ $=$ execution of first command C_{1} followed by execution of second command C_{2}

$$
(C, s) \rightsquigarrow s^{\prime \prime} \text { if }\left(C_{1}, s\right) \rightsquigarrow s^{\prime} \text { and }\left(C_{2}, s^{\prime}\right) \rightsquigarrow s^{\prime \prime}
$$

Semantics of Commands C (2)

- execution of sequence of commands $C \equiv C_{1} ; C_{2}$ $=$ execution of first command C_{1} followed by execution of second command C_{2}

$$
(C, s) \rightsquigarrow s^{\prime \prime} \text { if }\left(C_{1}, s\right) \rightsquigarrow s^{\prime} \text { and }\left(C_{2}, s^{\prime}\right) \rightsquigarrow s^{\prime \prime}
$$

- execution of command skip does not change state

$$
(\text { skip }, s) \rightsquigarrow s
$$

("empty sequence of commands")

Semantics of Commands C (3)

- execution of conditional command $C \equiv$ if b then C_{1} else C_{2} $=$ execution of then-command C_{1} if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{T} \text { and }\left(C_{1}, s\right) \rightsquigarrow s^{\prime}
$$

Semantics of Commands C (3)

- execution of conditional command $C \equiv$ if b then C_{1} else C_{2} $=$ execution of then-command C_{1} if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{T} \text { and }\left(C_{1}, s\right) \rightsquigarrow s^{\prime}
$$

- execution of conditional command $C \equiv$ if b then C_{1} else C_{2} $=$ execution of then-command C_{2} if expression b evaluates to false

$$
(C, s) \rightsquigarrow s^{\prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{F} \text { and }\left(C_{2}, s\right) \rightsquigarrow s^{\prime}
$$

Semantics of Commands C (3)

- execution of conditional command $C \equiv$ if b then C_{1} else C_{2} $=$ execution of then-command C_{1} if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime} \text { if }\|b\|(s)=\mathbf{T} \text { and }\left(C_{1}, s\right) \rightsquigarrow s^{\prime}
$$

- execution of conditional command $C \equiv$ if b then C_{1} else C_{2} $=$ execution of then-command C_{2} if expression b evaluates to false

$$
(C, s) \rightsquigarrow s^{\prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{F} \text { and }\left(C_{2}, s\right) \rightsquigarrow s^{\prime}
$$

- execution of conditional depends on logical first-order model

Semantics of Commands C (4)

- execution of while command $C \equiv$ while b do C_{0} $=$ execution of body C_{0} followed by execution of while command C if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime \prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{T} \text { and }\left(C_{0}, s\right) \rightsquigarrow s^{\prime} \text { and }\left(C, s^{\prime}\right) \rightsquigarrow s^{\prime \prime}
$$

Semantics of Commands C (4)

- execution of while command $C \equiv$ while b do C_{0} $=$ execution of body C_{0} followed by execution of while command C if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime \prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{T} \text { and }\left(C_{0}, s\right) \rightsquigarrow s^{\prime} \text { and }\left(C, s^{\prime}\right) \rightsquigarrow s^{\prime \prime}
$$

- execution of while command $C \equiv$ while b do C_{0} $=$ execution of skip if expression b evaluates to false

$$
(C, s) \rightsquigarrow s \text { if } \llbracket b \rrbracket(s)=\mathbf{F}
$$

Semantics of Commands C (4)

- execution of while command $C \equiv$ while b do C_{0} $=$ execution of body C_{0} followed by execution of while command C if expression b evaluates to true

$$
(C, s) \rightsquigarrow s^{\prime \prime} \text { if } \llbracket b \rrbracket(s)=\mathbf{T} \text { and }\left(C_{0}, s\right) \rightsquigarrow s^{\prime} \text { and }\left(C, s^{\prime}\right) \rightsquigarrow s^{\prime \prime}
$$

- execution of while command $C \equiv$ while b do C_{0} $=$ execution of skip if expression b evaluates to false

$$
(C, s) \rightsquigarrow s \text { if } \llbracket b \rrbracket(s)=\mathbf{F}
$$

- execution of while loop depends on logical first-order model

Hoare Triple $\{\phi\} \subset\{\psi\}$

- $\{\phi\} \subset\{\psi\}$ valid in given logical first-order model if

Hoare Triple $\{\phi\} \subset\{\psi\}$

- $\{\phi\} \subset\{\psi\}$ valid in given logical first-order model if for all states s
if $\llbracket \phi \rrbracket(s)=\mathbf{T}$ and

Hoare Triple $\{\phi\} \subset\{\psi\}$

- $\{\phi\} \subset\{\psi\}$ valid in given logical first-order model if for all states s
if $\llbracket \phi \rrbracket(s)=\mathbf{T}$ and
if $(C, s) \rightsquigarrow s^{\prime}$ then

Hoare Triple $\{\phi\} \subset\{\psi\}$

- $\{\phi\} \subset\{\psi\}$ valid in given logical first-order model if for all states s
if $\llbracket \phi \rrbracket(s)=\mathbf{T}$ and
if $(C, s) \rightsquigarrow s^{\prime}$ then
$\rrbracket \psi \rrbracket\left(s^{\prime}\right)=\mathbf{T}$
- $\{\phi\} \subset\{\psi\}$ valid if valid in every logical first-order model
- 「 $\models\{\phi\} \subset\{\psi\}$ if $\{\phi\} \subset\{\psi\}$ valid in every logical first-order model of set of assertions Γ

Variables in Hoare Triple $\{\phi\} \subset\{\psi\}$

- program variables: occur in commands in program C

Variables in Hoare Triple $\{\phi\} \subset\{\psi\}$

- program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C

Variables in Hoare Triple $\{\phi\} \subset\{\psi\}$

- program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C
- needed, e.g., for specification of in-place sort program
if $x \leq y$ then skip else $z:=y ; y:=x ; x:=z$

Variables in Hoare Triple $\{\phi\} \subset\{\psi\}$

- program variables: occur in commands in program C may occur (free) in ϕ and ψ
- auxiliary variables: occur (free) in ϕ and/or ψ but do not occur in commands in program C
- needed, e.g., for specification of in-place sort program

$$
\text { if } x \leq y \text { then skip else } z:=y ; y:=x ; x:=z
$$

- take precondition $\phi \equiv x=x_{0} \wedge y=y_{0} \wedge x_{0}>y_{0}$ and postcondition $\psi \equiv x=y_{0} \wedge y=x_{0}$

