Andreas Podelski

May 16, 2017

 introduced by Hoare in 1969 builds on first-order logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

 standard presentation of Hoare logic: proof uses invariant for every loop in program

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here:

invariants are given as part of correctness specification

- introduced by Hoare in 1969 builds on first-order logic
- correctness specification = pre- and postcondition pair
- standard presentation of Hoare logic: proof uses invariant for every loop in program
- here:

invariants are given as part of correctness specification

 correctness proof possible only if invariants are adequate for pre- and postcondition pair

Programs

(program) expression

$$e ::= x | f(e_1, ..., e_n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where f maps into domain of values

Programs

(program) expression

$$e ::= x | f(e_1, ..., e_n)$$

where f maps into domain of values

Boolean expression

$$b ::= x \mid f(e_1,\ldots,e_n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where f maps into Boolean domain

Programs

(program) expression

$$e ::= x | f(e_1, ..., e_n)$$

where f maps into domain of values

Boolean expression

$$b ::= x \mid f(e_1,\ldots,e_n)$$

where f maps into Boolean domain

command

 $C ::= \text{skip} \mid x \coloneqq e \mid C_1 ; C_2 \mid \text{if } b \text{ then } C_1 \text{ else } C_2 \mid \text{while } b \text{ do } C$

• state s = function from program variables to value,

 $s: \mathbf{Var} \to \mathbf{Val}$

• state s = function from program variables to value,

 $s: \mathsf{Var} \to \mathsf{Val}$

program expression e in state s evaluates to value

 $\llbracket e \rrbracket(s) \in \mathsf{Val}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• state s = function from program variables to value,

 $s: \mathsf{Var} \to \mathsf{Val}$

program expression e in state s evaluates to value

 $\llbracket e \rrbracket(s) \in \mathsf{Val}$

semantics of program expressions e
= function from set of states to set of values

 $\llbracket e \rrbracket$: States \rightarrow Val

• state s = function from program variables to value,

 $s: \mathsf{Var} \to \mathsf{Val}$

program expression e in state s evaluates to value

 $\llbracket e \rrbracket(s) \in \mathsf{Val}$

► semantics of program expressions *e*

= function from set of states to set of values

 $\llbracket e \rrbracket$: States \rightarrow Val

interpretation of function symbol f in expression f(e₁,..., e_n) depends on logical first-order model
("+" interpreted over model of unbounded integers or in model for modulo arithmetic?)

• state s = function from program variables to values,

 $s: \mathbf{Var} \to \mathbf{Val}$

• state s = function from program variables to values,

 $s: \mathsf{Var} \to \mathsf{Val}$

 Boolean expression b in state s evaluates to Boolean truth value

 $\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$

• state s = function from program variables to values,

 $s: \mathsf{Var} \to \mathsf{Val}$

 Boolean expression b in state s evaluates to Boolean truth value

 $\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$

- semantics of Boolean expression b
 - = function from set of states to set of Boolean truth values

 $[\![b]\!]: \mathbf{States} \to \{\mathbf{T}, \mathbf{F}\}$

• state s = function from program variables to values,

 $s: \mathsf{Var} \to \mathsf{Val}$

 Boolean expression b in state s evaluates to Boolean truth value

 $\llbracket b \rrbracket (s) \in \{\mathsf{T},\mathsf{F}\}$

semantics of Boolean expression b

= function from set of states to set of Boolean truth values

```
\llbracket b \rrbracket: States \rightarrow {T, F}
```

▶ evaluation of Boolean expression b depends on logical first-order model
("x ≤ x + 1" true in model of unbounded integers but false in model for modulo arithmetic)

semantics of command C

= functions from set of states to set of states

 $\llbracket C \rrbracket$: States \rightarrow States, $s \mapsto s'$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

semantics of command C

= functions from set of states to set of states

```
\llbracket C \rrbracket: States \rightarrow States, s \mapsto s'
```

execution of command C starting in state s ends in state s'

 $(C,s) \rightsquigarrow s'$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

semantics of command C

= functions from set of states to set of states

```
\llbracket C \rrbracket: States \rightarrow States, s \mapsto s'
```

execution of command C starting in state s ends in state s'

$$(C, s) \rightsquigarrow s'$$

► execution of update statement = update of function s : Var → Val

$$(x \coloneqq e, s) \rightsquigarrow s'$$
 where $s'(x) = [e](s)$ and
 $s'(y) = s(y)$ for $x \not\equiv y$

semantics of command C

= functions from set of states to set of states

```
\llbracket C \rrbracket: States \rightarrow States, s \mapsto s'
```

execution of command C starting in state s ends in state s'

$$(C,s) \rightsquigarrow s'$$

execution of update statement
= update of function s : Var → Val

$$(x \coloneqq e, s) \rightsquigarrow s'$$
 where $s'(x) = [e](s)$ and
 $s'(y) = s(y)$ for $x \not\equiv y$

execution of update depends on logical first-order model

execution of sequence of commands C = C₁; C₂
= execution of first command C₁ followed by execution of second command C₂

$$(C,s) \rightsquigarrow s''$$
 if $(C_1,s) \rightsquigarrow s'$ and $(C_2,s') \rightsquigarrow s''$

execution of sequence of commands C = C₁; C₂
execution of first command C₁ followed by execution of second command C₂

$$(C,s) \rightsquigarrow s''$$
 if $(C_1,s) \rightsquigarrow s'$ and $(C_2,s') \rightsquigarrow s''$

execution of command skip does not change state

$$(\mathsf{skip}, s) \rightsquigarrow s$$

("empty sequence of commands")

execution of conditional command C = if b then C₁ else C₂
execution of then-command C₁ if expression b evaluates to true

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathsf{T}$ and $(C_1,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \mathbf{then} \ C_1 \mathbf{else} \ C_2$ = execution of then-command C_1 if expression b evaluates to true

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathsf{T}$ and $(C_1,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \mathbf{then} \ C_1 \mathbf{else} \ C_2$ = execution of then-command C_2 if expression b evaluates to false

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$ and $(C_2,s) \rightsquigarrow s'$

execution of conditional command C = if b then C₁ else C₂
execution of then-command C₁ if expression b evaluates to true

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathsf{T}$ and $(C_1,s) \rightsquigarrow s'$

• execution of conditional command $C \equiv \mathbf{if} \ b \mathbf{then} \ C_1 \mathbf{else} \ C_2$ = execution of then-command C_2 if expression b evaluates to false

$$(C,s) \rightsquigarrow s'$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$ and $(C_2,s) \rightsquigarrow s'$

execution of conditional depends on logical first-order model

execution of while command C = while b do C₀
= execution of body C₀ followed by execution of while command C if expression b evaluates to true

$$(C,s) \rightsquigarrow s''$$
 if $[\![b]\!](s) = \mathbf{T}$ and $(C_0,s) \rightsquigarrow s'$ and $(C,s') \rightsquigarrow s'$

execution of while command C = while b do C₀
= execution of body C₀ followed by execution of while command C if expression b evaluates to true

$$(C,s) \rightsquigarrow s''$$
 if $\llbracket b \rrbracket (s) = \mathbf{T}$ and $(C_0,s) \rightsquigarrow s'$ and $(C,s') \rightsquigarrow s''$

• execution of while command $C \equiv$ while *b* do C_0 = execution of skip if expression *b* evaluates to false

$$(C,s) \rightsquigarrow s$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$

execution of while command C = while b do C₀
= execution of body C₀ followed by execution of while command C if expression b evaluates to true

$$(C,s) \rightsquigarrow s''$$
 if $[\![b]\!](s) = \mathbf{T}$ and $(C_0,s) \rightsquigarrow s'$ and $(C,s') \rightsquigarrow s''$

• execution of while command $C \equiv$ while *b* do C_0 = execution of skip if expression *b* evaluates to false

$$(C,s) \rightsquigarrow s$$
 if $\llbracket b \rrbracket (s) = \mathbf{F}$

execution of while loop depends on logical first-order model

Hoare Triple $\{\phi\} \ {\it C} \ \{\psi\}$

▶ $\{\phi\} \ C \ \{\psi\}$ valid in given logical first-order model if

Hoare Triple $\{\phi\} \in \{\psi\}$

 {φ} C {ψ} valid in given logical first-order model if for all states s if [[φ][(s) = T and

Hoare Triple $\{\phi\} \in \{\psi\}$

 {φ} C {ψ} valid in given logical first-order model if for all states s
if ||φ||(s) = T and
if (C, s) → s' then

Hoare Triple $\{\phi\} \in \{\psi\}$

- {φ} C {ψ} valid in given logical first-order model if for all states s
 if [|φ](s) = T and
 if (C, s) → s' then
 ||ψ](s') = T
- $\{\phi\} \in \{\psi\}$ valid if valid in every logical first-order model
- Γ ⊨ {φ} C {ψ} if {φ} C {ψ} valid in every logical first-order model of set of assertions Γ

▶ program variables: occur in commands in program C

 program variables: occur in commands in program C may occur (*free*) in φ and ψ

 auxiliary variables: occur (*free*) in φ and/or ψ but do not occur in commands in program C

- program variables: occur in commands in program C may occur (*free*) in φ and ψ
- ► auxiliary variables: occur (*free*) in φ and/or ψ but do not occur in commands in program C
- needed, e.g., for specification of *in-place sort* program

if $x \leq y$ then skip else z = y; y = x; x = z

- program variables: occur in commands in program C may occur (*free*) in φ and ψ
- auxiliary variables: occur (*free*) in φ and/or ψ but do not occur in commands in program C
- needed, e.g., for specification of *in-place sort* program

if
$$x \le y$$
 then skip else $z = y$; $y = x$; $x = z$

► take precondition φ ≡ x = x₀ ∧ y = y₀ ∧ x₀ > y₀ and postcondition ψ ≡ x = y₀ ∧ y = x₀