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Hoare logic

I introduced by Hoare in 1969
builds on first-order logic

I correctness specification = pre- and postcondition pair

I standard presentation of Hoare logic:
proof uses invariant for every loop in program

I here:
invariants are given as part of correctness specification

I correctness proof possible only if invariants are adequate for
pre- and postcondition pair
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Programs

I (program) expression

e ::= x | f (e1, . . . , en)

where f maps into domain of values

I Boolean expression

b ::= x | f (e1, . . . , en)

where f maps into Boolean domain

I command

C ::= skip | x :=e | C1 ; C2 | if b then C1 else C2 | while b do C
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Semantics of Expression e

I state s = function from program variables to value,

s : Var→ Val

I program expression e in state s evaluates to value

[|e|](s) ∈ Val

I semantics of program expressions e
= function from set of states to set of values

[|e|] : States→ Val

I interpretation of function symbol f in expression f (e1, . . . , en)
depends on logical first-order model

(“+” interpreted over model of unbounded integers or
in model for modulo arithmetic?)
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Semantics of Boolean Expression b

I state s = function from program variables to values,

s : Var→ Val

I Boolean expression b in state s evaluates to Boolean truth
value

[|b|](s) ∈ {T,F}

I semantics of Boolean expression b
= function from set of states to set of Boolean truth values

[|b|] : States→ {T,F}

I evaluation of Boolean expression b depends on logical
first-order model

(“x ≤ x + 1” true in model of unbounded integers but
false in model for modulo arithmetic)
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Semantics of Commands C (1)

I semantics of command C
= functions from set of states to set of states

[|C |] : States→ States, s 7→ s ′

I execution of command C starting in state s ends in state s ′

(C , s) s ′

I execution of update statement
= update of function s : Var→ Val

(x :=e, s) s ′ where s ′(x) = [|e|](s) and
s ′(y) = s(y) for x 6≡ y

I execution of update depends on logical first-order model
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Semantics of Commands C (2)

I execution of sequence of commands C ≡ C1 ; C2

= execution of first command C1 followed by execution of
second command C2

(C , s) s ′′ if (C1, s) s ′ and (C2, s
′) s ′′

I execution of command skip does not change state

(skip, s) s

(“empty sequence of commands”)
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Semantics of Commands C (3)

I execution of conditional command C ≡ if b then C1 else C2

= execution of then-command C1 if expression b evaluates to
true

(C , s) s ′ if [|b|](s) = T and (C1, s) s ′

I execution of conditional command C ≡ if b then C1 else C2

= execution of then-command C2 if expression b evaluates to
false

(C , s) s ′ if [|b|](s) = F and (C2, s) s ′

I execution of conditional depends on logical first-order model
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I execution of while command C ≡ while b do C0
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Hoare Triple {φ} C {ψ}

I {φ} C {ψ} valid in given logical first-order model if

for all states s
if [|φ|](s) = T and
if (C , s) s ′ then
[|ψ|](s ′) = T

I {φ} C {ψ} valid if valid in every logical first-order model

I Γ |= {φ} C {ψ} if {φ} C {ψ} valid in every logical first-order
model of set of assertions Γ



Hoare Triple {φ} C {ψ}

I {φ} C {ψ} valid in given logical first-order model if
for all states s
if [|φ|](s) = T and

if (C , s) s ′ then
[|ψ|](s ′) = T

I {φ} C {ψ} valid if valid in every logical first-order model

I Γ |= {φ} C {ψ} if {φ} C {ψ} valid in every logical first-order
model of set of assertions Γ



Hoare Triple {φ} C {ψ}

I {φ} C {ψ} valid in given logical first-order model if
for all states s
if [|φ|](s) = T and
if (C , s) s ′ then

[|ψ|](s ′) = T

I {φ} C {ψ} valid if valid in every logical first-order model

I Γ |= {φ} C {ψ} if {φ} C {ψ} valid in every logical first-order
model of set of assertions Γ



Hoare Triple {φ} C {ψ}

I {φ} C {ψ} valid in given logical first-order model if
for all states s
if [|φ|](s) = T and
if (C , s) s ′ then
[|ψ|](s ′) = T

I {φ} C {ψ} valid if valid in every logical first-order model

I Γ |= {φ} C {ψ} if {φ} C {ψ} valid in every logical first-order
model of set of assertions Γ



Variables in Hoare Triple {φ} C {ψ}

I program variables: occur in commands in program C

may occur (free) in φ and ψ

I auxiliary variables: occur (free) in φ and/or ψ
but do not occur in commands in program C

I needed, e.g., for specification of in-place sort program

if x ≤ y then skip else z :=y ; y :=x ; x :=z

I take precondition φ ≡ x = x0 ∧ y = y0 ∧ x0 > y0
and postcondition ψ ≡ x = y0 ∧ y = x0
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