The Long-Standing Software
Safety and Security Problem

What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software, its mainte-
nance and safe evolution year after year (up to
20 even 30 years).

Computer hardware change of scale

The 25 last years, computer hardware has seen 1ts per-
formances multiplied by 10% to 109 / 10°:

S il o

o

ENIAC (5000 (;phs)- Intel/Sandia Teraflops System (10' flops)

The information processing revolution

A scale of 10° is typical of a significant revolution:
- Energy: nuclear power station / Roman slave;

- Transportation: distance Earth — Mars / Boston
— Washington

Sclence Phasing
Asrobraking Phage? Miy-54 1 g
M-8 tor Mot = i TR Jo g
¥
- — ¥ a - - . *
\ {* L P —— Nois United States ol

York of America

I:F.I.LH!.‘: 1o Mars |
How-56 to Sep-97 i i Pennsylvania

Agrobraldng Phase 1 Washington
kov-57 1o May-08

\ i
AE— Rosums Aerobraking
Mars Orblt Insertion Moy

Sep-O7

Computer software change of scale

— The size of the programs executed by these computers
has grown up in similar proportions;

— Example 1 (modern text editor for the general public):

- > 1 700 000 lines of C EET T T EE L Y rE

- Bz s|BE==sssEeE O-4-A-
e

- 20 000 procedures;
- 400 files;
- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!

Computer software change of scale (cont’d)

— Example 2 (professional computer system):

- 30 000 000 lines of code;
- 30 000 (known) bugs!

P - Software bugs BUgs |

- whether anticipat

- or unforeseen
of Ariane V lai

are quite frequef- ..'f"

= Bugs can be ver
‘huge goftware

- Bugs 1 have catastrophlc consequences either very costly
or madmlss’Menﬂi.edded software in transportation sys-
tems);

The estimated cost of an overflow

— 500 000 000 $;
— Including indirect costs (delays, lost markets, etc):
2 000 000 000 $;

— The financial results of Arianespace were negative in
2000, for the first time since 20 years.

Who cares?

— No one 1s legally responsible for bugs:

This software 1s distributed WITHOUT ANY
WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

— 50, no one cares about software verification

— And even more, one can even make money out of bugs
(customers buy the next version to get around bugs in
software)

Why no one cares?

— Software designers don’t care because there 1s no risk
in writing bugged software

— The law/judges can never enforce more than what is
offered by the state of the art

— Automated software verification by formal methods is
undecidable whence thought to be impossible

— Whence the state of the art is that no one will ever be
able to eliminate all bugs at a reasonable price

— And so no one ever bear any responsability

Current research results

— Research is presently changing the state of the art (e.g.
ASTREE)

— We can check for the absence of large categories of
bugs (may be not all of them but a significant portion
of them)

— The verification can be made automatically by me-
chanical tools

— Some bugs can be found completely automatically,
without any human intervention

The next step (5/10 years)

— If these tools are successful, their use can be enforced
by quality norms

— Professional have to conform to such norms (otherwise
they are not credible)

— Because of complete tool automaticity, no one can be
discharged from the duty of applying such state of the
art tools

— Third parties of confidence can check software a pos-
teriori to trace back bugs and prove responsabilities

A foreseeable future (10/15 years)

— The real take-off of software verification must be en-
forced

— Development costs arguments have shown to be inef-
fective

— Norms/laws might be much more convincing

— This requires effectiveness and complete automation
(to avoid acquittal based on human capacity limita-
tions arguments)

Why will “partial software verification”
ultimately succeed?

— The state of the art will change toward complete au-
tomation, at least for common categories of bugs

— So responsabilities can be established (at least for au-
tomatically detectable bugs)

— Whence the law will change (by adjusting to the new
state of the art)

— To ensure at least partial software verification
— For the benefit of all of us

Program Verification Methods

Testing

— To prove the presence of bugs relative to a specifica-
tion;
— Some bugs may be missed;

— Nothing can be concluded on correctness when no bug
1s found;

— B.g.: debugging, simulation, code review, bounded
model checking.

Verification

— To prove the absence of bugs relative to a specification;
— No bug is ever missed ?;

— Inconclusive situations may exist (undecidability) —
bug or false alarm

— Correctness follows when no bug 1s found;
— H.g.: deductive methods, static analysis.

2 ralative to the specification which is checked.

An historical perspective
on formal software verification

The origins of program proving

— The 1dea of proving the correctness of a program in
a mathematical sense dates back to the early days

of computer science with John von Neumann [1] and
Alan Turing [2].

_ Reference

[1] J. von Neumann. “Planning and Coding of Problems for an Electronic Computing Instrument”, U.S. Army
and Institute for Advanced Study report, 1946. In John von Neumann, Collected Works, Volume V, Perg-
amon Press, Oxford, 1961, pp. 34-235.

[2] A. M. Turing, “ Checking a Large Routine”. In Report of a Conference on High Speed Automatic Calculating
Machines, Univ. Math. Lab., Cambridge, pp 67-69 (1949).

John Von Neumann

The pilonneers

— R. Floyd [3] and P. Naur [4]| introduced the “partial

correctness” specification together with the “invariance
proof method”;

— R. Floyd [3] also introduced the “variant proof method”
to prove “program termination”;

_ Reference

[3] Robert W. Floyd. “Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied
Mathematics, vol. 19, pp. 19-31, 1967.

[4] Peter Naur. “Proof of Algorithms by General Snapshots”, BIT 6 (1966), pp. 310-316.

Peter Naur

Robert Floyd

The pionneers (Cont’d)

— C.A.R. Hoare formalized the Floyd/Naur partial cor-
rectness proof method in a logic (so-called “Hoare logic”)
using an Hilbert style inference system:;

— 7. Manna and A. Pnueli extended the logic to “total
correctness” (i.e. partial correctness 4+ termination).

_ Reference

[5] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming. Commun. ACM 12(10): 576-580 (1969)

[6] Zohar Manna, Amir Pnueli. “Axiomatic Approach to Total Correctness of Programs”. Acta Inf. 3: 243-263
(1974)

l.‘ Ii‘

11 1

W

IR

C.A.R. Hoare Ziohar Manna Amir Pnueli

Assertions

— An assertion is a statement (logical predicate) about
the values of the program variables (i.e., the memory
state®), which may or may not be valid at some point
during the program computation;

— A precondition 1s an assertion at program entry;
— A postcondition is an assertion at program exit;

3 This may also include auxiliary variables to denote initial/intermediate values of program variables.

Partial correctness

— Partial correctness states that if a given precondition P
holds on entry of a program C' and program execution
terminates, then a given postcondition ¢) holds, if and
when execution of C' terminates;

— Hoare triple notation [5]: {P}C{Q}.

Partial correctness (example)

— Tautologies: {P}C{true}
{false}C{Q}
— Nontermination: {P}C{false}
{P}C{Q} if {P}C{false}

The Euclidian integer division example [3]

START
————— X=20,Y>0

Q—0

l

R—X

d

R < Y? f HAL’I‘

@ —D<R<YX20X R+ QY

(B | {X>0AY >0}
Q—@+1 C
e {0<R<YAX>0

FIGURE 5. Algorithm to compute quotient @ and remainder R of

X +Y, for integers X 20, Y > 0 A\ .X — R —l_ QY}

Invariant

— An invariant at a given program point i1s an assertion
which holds during execution whenever control reaches
that point

The

Euclidian integer division example [3]

START
————— Xz0,Y>0

l——-—— Xgi0,Y>0,Q=0

—0sSR<Y, X20,X=R+QY

————— Rz2Y>0,X20,Q20, X=R+ QY

l ————— R20,Y>0, X20,0>0, X=R+ QY

FIGURE 5. Algorithm to compute quotient Q and remainder R of
X=+Y, forintegers X 20, Y >0

Floyd/Naur invariance proof method

To prove that assertions attached to program points are
invariant:

— Basic verification condition: Prove the assertion at
program entry holds (e.g. follows from a precondi-
tion hypothesis);

— Inductive verification condition: Prove that if an
assertions holds at some program point and a pro-
gram step 1s executed then the assertion does hold
at next program point.

Soundness of Floyd/Naur invariance proof
method

By induction on the number of program steps, all asser-
tions are invariants®.

4 Aslo called inductive invariants

Assignment verification condition

{P(X,Y,...)}
X = EX,Y,...)
{Q(X,Y,...)}

. vX,Y,...:(3X : P(XY,.)AX =E(XY,..)))

—
Q(X,Y,...) R. Floyd
. vX,Y,...: P(X,Y,...)
—
QX,Y,..)|X = E|° C.A.R. Hoare

® B[z := A is the substitution of A for z in B.

Assignment verification condition (example)

{X >0}
X =X +1
{X >0}
. VX (3X X' >0ANX =X +1)
—
X >0 R. Floyd

o VX : X >0
—
(X+1)>0 C.A.R. Hoare

Conditional verification condition

{A(X,Y,...)}
if B(X,Y,...) then
(By(X,Y,..)} e P(X,Y,..)AB(X,Y,...)
— P)(X,Y,...)
{P3(X,Y,...)}
else
{P4(X,Y,...)} e PI(X)Y,..)AN-B(X,Y,...)
— Py(X,Y,...)
{B5(X,Y,...)}
fi o P3(X)Y,..)V FB(X,)Y,...)
{Ps(X,Y,...)} — Ps(X,Y,...)

Conditional verification condition (example)

{X =0}
if X > 0 then
{X =202 0}
skip
{X =z9 >0}
else
{X =9 <0}
X = =X
{X = —zg9 > 0}
fi

{X = |zo|}

6 |a| is the absolute value of a.

e X =zgNX >0
— X =120 >0

e X =z AN X >0
— X =29 <0

e X =20>0VX=—-29>0
:>X:|£Co|6

While loop verification condition

(P(X,Y,...)} e PI(X,Y,..)AB(X,Y,...)
while B(X,Y,...) do — Py(X,Y,...)
{Py(X,Y,...)} e PI(X,Y,..)A-B(X,Y,...)
— Py(X,Y,...)
{P3(X,Y,...)} e P3(X,Y,..)AB(X,Y,...)
od — Py(X,Y,...)
{Py(X,Y,...)} e P4(X,Y,..)A-B(X,Y,...)

— Py(X,Y,...)

While loop verification condition (example)

{X >0}
while X # 0 do
{X > 0}

X =X -1
{X >0}

od
{X =0}

e X >0NX #0
— X >0

e X >0AN-X #0
— X =0

e X >0NX #0
— X >0

e X >0N-X #0
— X =0

Floyd/Naur partial correctness proof method

— Let be given a precondition P and a postcondition Q);
— Find assertions A; attached to all program points ;

— Assuming precondition P, prove all assertions A; to be
invariants (using the assignment/conditional and loop
verification conditions);

— Prove the invariant on exit implies the postcondition

Q.

The Euclidian integer division example
{z > 0Ny >0} initial condition
a:= 0;b:=x
{b=z>0ANy>0ANay+b==zc}
while b>y do
{>0ANb>y>0Nay+b==zc}
{>0AN0>y>0A(a+1)y+(b—vy) ==z}
b:=b — y; a:=a +1
{>0ANb>0ANy>0Aay+b=r1z}
od

{ay+b=zN0<b<y} partial correctness

Hoare logic

— {P[x :=]} x:=e {P}

{P}C1{R}, {R}C2{Q}
{P}C1; Co{Q}

1P ABICHRQY, 1P A bC1 QS
{P} if b then Cj else Cy fi {Q}

{P ABYC{P}

{P} while bdo C od {P A —b}

(P = P'),

{P}c{Q},

(Q'= Q)

assignment axiom (1)

composition rule (2)

if-the-else rule (3)

while rule (4)

1PrC{Q}

consequence rule (5)

Formal Partial Correctness Proof of Integer Division

def
We let p = while b>y do b:=b — y;a:=a +1 od

(a) {0y+z=zA Az >0}a=0{ay+z=z ANz >0}
by the assignment axiom (1)

(b) {a.y+zxz=zANx>0}b:=x{a.y+b=zAb>0}
by the assignment axiom (1)
(¢) {0 y+xz=zAz>0}a:=0;b:=x{a.y+b=zAb>0}
by (a), (b) and the composition rule (2)

(d) (z>0Ay>0)= 0y+z=zAz>0)

by first-order logic

() {c>0Ay >0}a=0;b:=x{a.y+b=zAb>0}
by (d), (c) and the consequence rule (5)
) {(ea+1)y+b—y=aAb—y >0} b:=b — vy {(a +
Dy+b=zAb>0}
by the assignment axiom (1)
(g) {(a+1).y+b=zAb>0} a:=a +1{a.y+b=zAb > 0}
by the assignment axiom (1)
(h) {(a+1)y+b—y=xzAb—y > 0} bi=b — y;ai=a
+1{ay+b=zAb>0}
by (f), (g) and the composition rule (2)

(1) (ay+b=2zAb2>20Nb>y)—= ((a+1)y+b—y=
zANb—1y>0)

by first-order logic

(j) {a.y+b=zAb>0Ab > y} b:=b — y;a:=a +1{a.y+b =

rANb>0}

by (h), (i) and the consequence rule (5)

(k) {a.y+b=zAb>0}p{ay+b=zAb>0A=(b>1y)}

by (j) and the while rule (4)

(£) {z > 0Ay >0} aa= Ojbi=x;p fay+b=aAb >
0A=(b>y)}

by (e), (k) and the composition rule (2)

Q.E.D.

Soundness and Completeness

— Soundness: no erroneous fact can be derived by Hoare
logic;

— Completeness: all true facts can be derived by Hoare
logic;

— If the first-order logic includes arithmetic then there

exists no complete axiomatization of — 1in the con-
sequence rule (5) (Godel theorem)

Relative Completeness

— Relative completeness [7]: all true facts can be derived
by Hoare logic provided:

- the first-order assertion language is rich enough to
express loop invariants;

- all first-order theorems needed in the consequence
rule are given (e.g. by an oracle).

_ Reference

[7] Stephen A. Cook: “Soundness and Completeness of an Axiom System for Program Verification”. SIAM J.
Comput. 7(1): 70-90 (1978)

Termination

— Termination: no program execution can run for ever;

— Bounded termination: the program terminates in a

time bounded by some function of the input;
— BExample of unbounded termination:

X :=7; < random number generator
while X > 0 do
Y := 7;
while Y > 0 do
Y =Y -1
od;

od

Well-founded relation

— A relation r i1s well-founded on a set S if and only if
there 1s no infinite sequence s of elements of S which

are r-related:

—~(3s e N— S : Vi € N: 7(s;,5:41))

— Examples: > on N (the naturals, n >n—-1>... >
0)

— Counter-examples: > on 7Z (the integers, 0 > —1 >
—2 > ...), > on Q (the rationals, 1 > % > % > % o)

Floyd termination proof method

— BExhibit a so-called ranking function from the values
of the program variables to a set S and a well-founded
relation r on S;

— Show that the ranking function takes r-related values
on each program step.

Soundness: non-termination would be in contradiction
with well-foundedness

Completeness: for a terminating program, the number
of remaining steps’ strictly decreases.

7 This is meaningfull for bounded termination only, otherwise one has to resort to ordinals.

The Euclidian integer division example [3]

Xz20Y>0
(X, 6)

l ____{X=20,Y>0,Q=0
s (X - Q,5)

Xz 0, ¥ 50,9=0 RuX

R20,X20,Y>0,Q20, X=R+QY

0SR<Y,X20,X=R+QY

T UX-92
R2Y>0,X20,Q20, X=R+ QY
_____ (X - Q2
IR—R—Y
R20,Y>0,X20,Q=0, X=R+(Q+1Y
T T Wx—ay
Q—Q+1

' Rz0,Y>0,X20,0>0, X=R+ QY
_____ (X - Q.4)

FIGURE 5. Algorithm to compute quotient @ and remainder R of
X =Y, forintegers X 20, Y > 0

Suppose, for example, that an interpretation of a flowchart is supple-
mented by associating with each edge in the flowchart an expression for
a function, which we shall call a W-function, of the free variables of the
interpretation, taking its values in a well-ordered set W. If we can show
that after each execution of a command the current value of the W-function
associated with the exit is less than the prior value of the W-function asso-
ciated with the entrance, the value of the function must steadily decrease.
Because no infinite decreasing sequence is possible in a well-ordered set,
the program must sooner or later terminate. Thus, we prove termination,
a global property of a flowchart, by local arguments, just as we prove the
correctness of an algorithm.

Termination of structured programs

Its sufficient to prove termination of loops®. Example:
{z >0Ay >0} initial condition
a:=0;b:=x
{b=2>0Ny>0ANay+b=r=z}
while b>y do

{>0ANb>y>0Nay+b==z}
b:=b — y; ai=a +1
{>0Ab>0ANy>0Aay+b==zc}
od
{ay+b=zAN0<b<y} total correctness

8 and recursive functions.

Example: Integer Division by Euclid’s
Algorithm

— Assume the initial condition y > O;

— The value b of variable b within the loop is positive
whence belongs to the well-ordering (N, <);

— The value b of variable b strictly decreases (by y > 0)
on each loop 1teration.

Note:
— Partially but not totally correct when 1nitially y = 0.

Total correctness

Total correctness = partial correctness A termination

Ordinals

— An extension of naturals for ranking (15¢, ond ard)
beyond infinity

— The first ordinals are O, 1, 2, ..., w®, w41, w+2, ...,
wH+w=2w, 2w+1, ..., 3w, 3w+1, ..., w.w:wz, w2-|—1,

w .
w W w times
3 w € 1o_ww }
,ooo, O - ,ooo

w
L, W, L, W

, W

9
10

w 18 the first transfinite ordinal.

€o 1s the first ordinal numbers which cannot be constructed from smaller ones by finite additions, multipli-
cations, and exponentiations.

The Manna/Pnueli logic
- |P|C|Q)] Hoare total correctness triple

— Interpretation:
If the assertion P holds before the execution

of command C then execution of C terminates
and assertion () holds upon termination

(P(a@) Aa > 0) = b,[P(a) Aa > 0]C[38 < a: P(B)], P(0) = —b

|[Jo : P(a)] while b do C od [P(0)]
while rule (6) **

11 on the values of the program variables and auxiliary mathematical variables

12 a, B, ...are ordinals.

Formal Total Correctness Proof of Integer Division

- Rdéfa.y—kb::c/\bzo

— P(n) CRANY<b< (n+1)y
— We have:
- (P(n)An>0)= (b>vy)
- [P(n+1)] b:=b — y;a:=a +1[P(n)]
- P(0) = ~(b > y)
- RAy>0=— dn: P(n)
so that by the while rule (6) and the consequence rule (5),

we conclude:

la.y+b=2zAb>0Ay >0]play+b=zAb>0A~(b> y)]

Predicate transformers

Eidsger W. Dijkstra introduced predicate transformers:
— wlp[C] @ is the weakest liberal ** precondition:

- {wlp[C]Q}C{Q}

- {P}C{Q} = (P = wip[C]Q)
— wp|C|Q is the weakest precondition:

- [wp[C]QIC|Q)

- [PICIQ] = (P = wp[C]Q)

_ Reference

[8] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of Programs”. Com-
mun. ACM 18(8): 453-457 (1975)

13 4iheral” means nontermination is possible i.e. partial correctness.

Edsger W. Dijkstra

Predicate transformer calculus

— skip 18 the command that leaves the state unchanged
wlp[skip]| P = P
wp|skip]| P = P

— abort 1s the command that never terminates
wlp[abort] P = t
wp|abort| P = f

— : 18 the sequential composition of commands
wip[Cy ; Co] P = wlp[Ci[[(wlip[Ca] P)
wp[C1 ; Cof] P = wp[C1](wp[Ca] P)

Nondeterministic Choice

— | is the nondeterministic choice of commands
wip[Cq | Co] P = wip[C1] P A wip[Co] P
Wp[[Cl |] Cg]] P = Wp[[Cl]] P A Wp[[Cg]] P

— BExample:

wp [skip | abort] P = wp[skip]| P Awp[abort] P = PA
ff =1ft

wlp[skip | abort]| P = wlp|skip| P A wlp[labort| P =
PANtt =P

GGuards

— If b is a guard (precondition), then 7b is defined by *:
wip[?b] P = bV P
wp|?b| P = bV P

— If b is a guard (precondition), then !b skips if b holds

and does not terminate if —b holds;

wip[!b] P © _bvP

wp[Ilb] P £ b A P

14 wp [?ff] ff = t& so the ?ff command is not implementable since it should miraculously terminate in a state

where ff holds!

Conditional

— if b then (1 else (o © (?b; C1) | (7—b; Co)

— Below, w|C] P is either wp[[C]| P or wip|C| P
w(if b then Cq else Co| P
=w[(?h; C1) | (77b; C2)] P =w(?b; C1] PAw([?=b; Co] P
= (w[?b](w[C1] P)) A (w[?=b](w[C2] P))
(b vV w[Ci] P) A (b Vv w[Co] P)
= (b = w[|C{] P) A (b = w[C] P)
= (bAw[C{] P)V (—=bAw[Ca] P)

Conditional

— if bg — (o |] b1 — (1 fi e !(bo V bl); (?bo; Co ﬂ?bl; Cl)
Wp[[if bo — Cp H b1 — (4 fi]] P
= (J2 € [0,1] : b;) A (Ve € [0,1] : b; = wp[(;] P)

“The first term ‘3z € [0,1] : b;’ requires that the alter-
native construct as such will not lead to abortion on
account of all guards false; the second term requires
that each guarded list eligible for execution will lead
to an acceptable final state” [8].

Iteration

— The execution of Dijkstra’s repetitive construct:
do bg — Cg | b1 — Cq1 od

immediately terminates if both guards bg and b; are
false otherwise it consists in executing one of the al-
ternatives C;,¢2 € [1,2] which guard b; is true before
repeting the execution of the loop.

— wplldobg = Cg | b1 = C1 od] =7
AQ Ifp F™[do bg — Co | b1 — Cq 0d](Q)

— F™[do bg — Cg | b1 — C1 od](Q) =
AP . (QAV2€|0,1] : =b;) Vwp|if bg = Co | by = Cq £fi] P

— wlp[do bg — Cg | b1 — C1 od]] =
AQ .gfp F™[do by — Co | by — C1 0d](Q)

— F"P[do bg — Co [b1 = C1 0d(Q) =
AP . (QAV2€|0,1]:—b;) Vwlp[if bg — Co | b1 — Cq £i]| P

15 Ifp- f is the C-least fixpoint of f, if any. Dually, gfpf is the C-greatest fixpoint of f, if any.

Automatic
Program Verification Methods

First attempts towards automation

— James C. King, a student of Robert Floyd, produced
the first automated proof system for numerical pro-
grams, in 1969 [9].

— The use of automated theorem proving in the verifi-
cation of symbolic programs (a la LISP [10]) was pio-
nneered, a.o., by Robert S. Boyer and J. Strother Moore
[11].

_ Reference

[9] King, J. C., “A Program Verifier”, Ph.D. Thesis, Carnegle-Mellon University (1969).

[10] John McCarthy. “Recursive functions of symbolic expressions and their computation by machine (Part I)”.
Communications of the ACM (CACM), April 1960.

[11] Robert S. Boyer and J. Strother Moore, “Proving Theorems about LISP Functions”. Journal of the ACM
(JACM), Volume 22, Issue 1 (January 1975) pp. 129-144.

B

John McCarthy Robert 5. Boyer J. Strother Moore

Present day theorem-proving based followers
Automatic deductive methods (based on theorem provers
or checkers with user-provided assertions and guidance):

- ACL2

- B

- COQ

— ESC/Java & ESC/Java2

— PVS

— Why
Very useful for small programs, huge difficulties to scale
up.

A Grand Challenge

A grand challenge in computer science

“T'he construction and application of a verify-
ing compiler that guarantees correctness of a
program before running it” [12].

_ Reference

[12] Tony Hoare. “The verifying compiler: A grand challenge for computing research”, Journal of the ACM
(JACM), Volume 50, Issue 1 (January 2003), pp. 63-69.

