
The Long-Standing Software
Safety and Security Problem

§!xx§x

What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software, its mainte-
nance and safe evolution year after year (up to
20 even 30 years).

Computer hardware change of scale

The 25 last years, computer hardware has seen its per-
formances multiplied by 104 to 106=109;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)

The information processing revolution

A scale of 106 is typical of a significant revolution:
- Energy: nuclear power station / Roman slave;
- Transportation: distance Earth — Mars / Boston
— Washington

Computer software change of scale

– The size of the programs executed by these computers
has grown up in similar proportions;
– Example 1 (modern text editor for the general public):
- > 1 700 000 lines of C 1;
- 20 000 procedures;
- 400 files;
- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!

Computer software change of scale (cont’d)

– Example 2 (professional computer system):

- 30 000 000 lines of code;
- 30 000 (known) bugs!

Bugs– Software bugs
- whether anticipated (Y2K bug)
- or unforeseen (failure of the 5.01 flight
of Ariane V launcher)

are quite frequent;
– Bugs can be very difficult to discover in
huge software;
– Bugs can have catastrophic consequences either very costly

or inadmissible (embedded software in transportation sys-
tems);

The estimated cost of an overflow

– 500 000 000 $;
– Including indirect costs (delays, lost markets, etc):

2 000 000 000 $;

– The financial results of Arianespace were negative in
2000, for the first time since 20 years.

Who cares?

– No one is legally responsible for bugs:
This software is distributed WITHOUT ANY
WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.

– So, no one cares about software verification
– And even more, one can even make money out of bugs
(customers buy the next version to get around bugs in
software)

Why no one cares?

– Software designers don’t care because there is no risk
in writing bugged software
– The law/judges can never enforce more than what is
offered by the state of the art
– Automated software verification by formal methods is
undecidable whence thought to be impossible
– Whence the state of the art is that no one will ever be
able to eliminate all bugs at a reasonable price
– And so no one ever bear any responsability

Current research results

– Research is presently changing the state of the art (e.g.
ASTRÉE)
– We can check for the absence of large categories of
bugs (may be not all of them but a significant portion
of them)
– The verification can be made automatically by me-
chanical tools
– Some bugs can be found completely automatically,
without any human intervention

The next step (5/10 years)

– If these tools are successful, their use can be enforced
by quality norms
– Professional have to conform to such norms (otherwise
they are not credible)
– Because of complete tool automaticity, no one can be
discharged from the duty of applying such state of the
art tools
– Third parties of confidence can check software a pos-
teriori to trace back bugs and prove responsabilities

A foreseeable future (10/15 years)

– The real take-off of software verification must be en-
forced
– Development costs arguments have shown to be inef-
fective
– Norms/laws might be much more convincing
– This requires effectiveness and complete automation
(to avoid acquittal based on human capacity limita-
tions arguments)

Why will “partial software verification”
ultimately succeed?

– The state of the art will change toward complete au-
tomation, at least for common categories of bugs
– So responsabilities can be established (at least for au-
tomatically detectable bugs)
– Whence the law will change (by adjusting to the new
state of the art)
– To ensure at least partial software verification
– For the benefit of all of us

Program Verification Methods

Testing
– To prove the presence of bugs relative to a specifica-
tion;
– Some bugs may be missed;
– Nothing can be concluded on correctness when no bug
is found;
– E.g.: debugging, simulation, code review, bounded
model checking.

Verification
– To prove the absence of bugs relative to a specification;
– No bug is ever missed 2;
– Inconclusive situations may exist (undecidability) !
bug or false alarm
– Correctness follows when no bug is found;
– E.g.: deductive methods, static analysis.

2 ralative to the specification which is checked.

An historical perspective
on formal software verification

The origins of program proving

– The idea of proving the correctness of a program in
a mathematical sense dates back to the early days
of computer science with John von Neumann [1] and
Alan Turing [2].

Reference

[1] J. von Neumann. “Planning and Coding of Problems for an Electronic Computing Instrument”, U.S. Army
and Institute for Advanced Study report, 1946. In John von Neumann, Collected Works, Volume V, Perg-
amon Press, Oxford, 1961, pp. 34-235.

[2] A. M. Turing, “ Checking a Large Routine”. In Report of a Conference on High Speed Automatic Calculating
Machines, Univ. Math. Lab., Cambridge, pp 67-69 (1949).

John Von Neumann Alan Turing

The pionneers (Cont’d)

– R. Floyd [3] and P. Naur [4] introduced the “partial
correctness” specification together with the “invariance
proof method”;
– R. Floyd [3] also introduced the “variant proof method”
to prove “program termination”;

Reference

[3] Robert W. Floyd. “Assigning meanings to programs”. In Proc. Amer. Math. Soc. Symposia in Applied
Mathematics, vol. 19, pp. 19–31, 1967.

[4] Peter Naur. “Proof of Algorithms by General Snapshots”, BIT 6 (1966), pp. 310-316.

Robert Floyd Peter Naur

The pionneers (Cont’d)

– C.A.R. Hoare formalized the Floyd/Naur partial cor-
rectness proof method in a logic (so-called “Hoare logic”)
using an Hilbert style inference system;
– Z. Manna and A. Pnueli extended the logic to “total
correctness” (i.e. partial correctness + termination).

Reference

[5] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming. Commun. ACM 12(10): 576-580 (1969)

[6] Zohar Manna, Amir Pnueli. “Axiomatic Approach to Total Correctness of Programs”. Acta Inf. 3: 243-263
(1974)

C.A.R. Hoare Zohar Manna Amir Pnueli

Assertions

– An assertion is a statement (logical predicate) about
the values of the program variables (i.e., the memory
state 3), which may or may not be valid at some point
during the program computation;
– A precondition is an assertion at program entry;
– A postcondition is an assertion at program exit;

3 This may also include auxiliary variables to denote initial/intermediate values of program variables.

Partial correctness

– Partial correctness states that if a given precondition P
holds on entry of a program C and program execution
terminates, then a given postcondition Q holds, if and
when execution of C terminates;
– Hoare triple notation [5]: fPgCfQg.

Partial correctness (example)

– Tautologies: fPgCftrueg
ffalsegCfQg

– Nontermination: fPgCffalseg
fPgCfQg if fPgCffalseg

The Euclidian integer division example [3]

fX – 0 ^ Y > 0g
C
f0 » R < Y ^X – 0
^X = R+QY g

Invariant

– An invariant at a given program point is an assertion
which holds during execution whenever control reaches
that point

The Euclidian integer division example [3]

Floyd/Naur invariance proof method

To prove that assertions attached to program points are
invariant:

– Basic verification condition: Prove the assertion at
program entry holds (e.g. follows from a precondi-
tion hypothesis);

– Inductive verification condition: Prove that if an
assertions holds at some program point and a pro-
gram step is executed then the assertion does hold
at next program point.

Soundness of Floyd/Naur invariance proof
method

By induction on the number of program steps, all asser-
tions are invariants 4.

4 Aslo called inductive invariants

Assignment verification condition
fP (X; Y; : : :)g
X := E(X,Y,...)
fQ(X;Y; : : :)g

› 8X; Y; : : : : (9X 0 : P (X 0; Y; : : :) ^X = E(X 0; Y; : : :))
=)
Q(X; Y; : : :) R. Floyd

› 8X; Y; : : : : P (X;Y; : : :)
=)
Q(X; Y; : : :)[X := E] 5 C.A.R. Hoare

5 B[x := A] is the substitution of A for x in B.

Assignment verification condition (example)

fX – 0g
X := X + 1
fX > 0g

› 8X : (9X 0 : X 0 – 0 ^X = X 0 + 1)
=)
X > 0 R. Floyd

› 8X : X – 0
=)
(X + 1) > 0 C.A.R. Hoare

Conditional verification condition

fP1(X;Y; : : :)g
if B(X;Y; : : :) then
fP2(X;Y; : : :)g › P1(X;Y; : : :) ^B(X;Y; : : :)
. . . =) P2(X;Y; : : :)
fP3(X;Y; : : :)g

else
fP4(X;Y; : : :)g › P1(X;Y; : : :) ^ :B(X;Y; : : :)
. . . =) P4(X;Y; : : :)
fP5(X;Y; : : :)g

fi › P3(X;Y; : : :) _ P5(X;Y; : : :)
fP6(X;Y; : : :)g =) P6(X;Y; : : :)

Conditional verification condition (example)
fX = x0g
if X – 0 then
fX = x0 – 0g › X = x0 ^X – 0
skip =) X = x0 – 0
fX = x0 – 0g

else
fX = x0 < 0g › X = x0 ^ :X – 0
X := -X =) X = x0 < 0
fX = `x0 > 0g

fi › X = x0 – 0 _X = `x0 > 0
fX = jx0jg =) X = jx0j 6

6 jaj is the absolute value of a.

While loop verification condition

fP1(X;Y; : : :)g › P1(X;Y; : : :) ^B(X;Y; : : :)
while B(X;Y; : : :) do =) P2(X;Y; : : :)
fP2(X;Y; : : :)g › P1(X;Y; : : :) ^ :B(X;Y; : : :)
. . . =) P4(X;Y; : : :)
fP3(X;Y; : : :)g › P3(X;Y; : : :) ^B(X;Y; : : :)

od =) P2(X;Y; : : :)
fP4(X;Y; : : :)g › P3(X;Y; : : :) ^ :B(X;Y; : : :)

=) P4(X;Y; : : :)

While loop verification condition (example)

fX – 0g › X – 0 ^X 6= 0
while X 6= 0 do =) X > 0
fX > 0g › X – 0 ^ :X 6= 0
X := X - 1 =) X = 0
fX – 0g › X – 0 ^X 6= 0

od =) X > 0
fX = 0g › X – 0 ^ :X 6= 0

=) X = 0

Floyd/Naur partial correctness proof method

– Let be given a precondition P and a postcondition Q;
– Find assertions Ai attached to all program points i;
– Assuming precondition P , prove all assertions Ai to be
invariants (using the assignment/conditional and loop
verification conditions);
– Prove the invariant on exit implies the postcondition
Q.

The Euclidian integer division example
fx – 0 ^ y – 0g initial condition

a:= 0; b:=x

fb = x – 0 ^ y – 0 ^ a:y + b = xg
while b–y do

fx – 0 ^ b – y – 0 ^ a:y + b = xg
fx – 0 ^ b – y – 0 ^ (a+ 1):y + (b` y) = xg
b:=b ` y; a:=a +1

fx – 0 ^ b – 0 ^ y – 0 ^ a:y + b = xg
od

fa:y + b = x ^ 0 » b < yg partial correctness

Hoare logic
– fP [x := e]g x:=e fPg assignment axiom (1)

–
fPgC1fRg; fRgC2fQg

fPgC1;C2fQg
composition rule (2)

–
fP ^ bgC1fQg; fP ^ :bgC2fQg
fPg if b then C1 else C2 fi fQg

if-the-else rule (3)

–
fP ^ bgCfPg

fPg while b do C od fP ^ :bg
while rule (4)

–
(P =) P 0); fP 0gCfQ0g; (Q0 =) Q)

fPgCfQg
consequence rule (5)

Formal Partial Correctness Proof of Integer Division

We let p def= while b–y do b:=b ` y; a:=a +1 od

(a) f0:y + x = x ^ x – 0g a:= 0fa:y + x = x ^ x – 0g
by the assignment axiom (1)

(b) fa:y + x = x ^ x – 0g b:=x fa:y + b = x ^ b – 0g
by the assignment axiom (1)

(c) f0:y+x = x^x – 0g a:= 0; b:=x fa:y+ b = x^ b – 0g
by (a), (b) and the composition rule (2)

(d) (x – 0 ^ y – 0) =) (0:y + x = x ^ x – 0)
by first-order logic

(e) fx – 0 ^ y – 0g a:= 0; b:=x fa:y + b = x ^ b – 0g
by (d), (c) and the consequence rule (5)

(f) f(a + 1):y + b ` y = x ^ b ` y – 0g b:=b ` y f(a +
1):y + b = x ^ b – 0g

by the assignment axiom (1)
(g) f(a+1):y+b = x^b – 0g a:=a +1fa:y+b = x^b – 0g

by the assignment axiom (1)
(h) f(a + 1):y + b ` y = x ^ b ` y – 0g b:=b ` y; a:=a
+1fa:y + b = x ^ b – 0g

by (f), (g) and the composition rule (2)

(i) (a:y + b = x ^ b – 0 ^ b – y) =) ((a+ 1):y + b` y =
x ^ b` y – 0)

by first-order logic
(j) fa:y+b = x^b – 0^b – yg b:=b ` y; a:=a +1fa:y+b =
x ^ b – 0g

by (h), (i) and the consequence rule (5)
(k) fa:y+ b = x^ b – 0g p fa:y+ b = x^ b – 0^:(b – y)g

by (j) and the while rule (4)
(‘) fx – 0 ^ y – 0g a:= 0; b:=x; p fa:y + b = x ^ b –
0 ^ :(b – y)g

by (e), (k) and the composition rule (2)
Q.E.D.

Soundness and Completeness

– Soundness: no erroneous fact can be derived by Hoare
logic;
– Completeness: all true facts can be derived by Hoare
logic;
– If the first-order logic includes arithmetic then there
exists no complete axiomatization of =) in the con-
sequence rule (5) (Gödel theorem)

Relative Completeness

– Relative completeness [7]: all true facts can be derived
by Hoare logic provided:
- the first-order assertion language is rich enough to
express loop invariants;
- all first-order theorems needed in the consequence
rule are given (e.g. by an oracle).

Reference

[7] Stephen A. Cook: “Soundness and Completeness of an Axiom System for Program Verification”. SIAM J.
Comput. 7(1): 70-90 (1978)

Termination

– Termination: no program execution can run for ever;
– Bounded termination: the program terminates in a
time bounded by some function of the input;
– Example of unbounded termination:

X := ?; random number generator
while X > 0 do

Y := ?;
while Y > 0 do

Y := Y - 1
od;
X := X - 1

od

Well-founded relation

– A relation r is well-founded on a set S if and only if
there is no infinite sequence s of elements of S which
are r-related:

:(9s 2 N 7! S : 8i 2 N : r(si; si+1))

– Examples: > on N (the naturals, n > n ` 1 > . . . >
0)
– Counter-examples: > on Z (the integers, 0 > `1 >
`2 > . . .), > on Q (the rationals, 1 > 12 >

1
3 >

1
4 . . .)

Floyd termination proof method

– Exhibit a so-called ranking function from the values
of the program variables to a set S and a well-founded
relation r on S;
– Show that the ranking function takes r-related values
on each program step.

Soundness: non-termination would be in contradiction
with well-foundedness
Completeness: for a terminating program, the number
of remaining steps 7 strictly decreases.

7 This is meaningfull for bounded termination only, otherwise one has to resort to ordinals.

The Euclidian integer division example [3]

Termination of structured programs

Its sufficient to prove termination of loops 8. Example:
fx – 0 ^ y > 0g initial condition

a:= 0; b:=x

fb = x – 0 ^ y > 0 ^ a:y + b = xg
while b–y do

fx – 0 ^ b – y > 0 ^ a:y + b = xg
b:=b ` y; a:=a +1

fx – 0 ^ b – 0 ^ y > 0 ^ a:y + b = xg
od

fa:y + b = x ^ 0 » b < yg total correctness

8 and recursive functions.

Example: Integer Division by Euclid’s
Algorithm

– Assume the initial condition y > 0;
– The value b of variable b within the loop is positive
whence belongs to the well-ordering hN; <i;
– The value b of variable b strictly decreases (by y > 0)
on each loop iteration.
Note:
– Partially but not totally correct when initially y = 0.

Total correctness

Total correctness = partial correctness ^ termination

Ordinals

– An extension of naturals for ranking (1st, 2nd, 3rd, . . .)
beyond infinity
– The first ordinals are 0, 1, 2, . . . , ! 9, !+1, !+2, . . . ,
!+!=2!, 2!+1, . . . , 3!, 3!+1, . . . , !.!=!2, !2+1,

. . . , !3, . . . , !!, !!
!

, . . . , ›0 10 = !
!!
!
::: ff

! times
, . . .

9 ! is the first transfinite ordinal.
10 ›0 is the first ordinal numbers which cannot be constructed from smaller ones by finite additions, multipli-
cations, and exponentiations.

The Manna/Pnueli logic

– [P]C[Q] Hoare total correctness triple

– Interpretation:
If the assertion P 11 holds before the execution
of command C then execution of C terminates
and assertion Q holds upon termination

–
(P (¸) ^ ¸ > 0)) b; [P (¸) ^ ¸ > 0]C[9˛ < ¸ : P (˛)]; P (0)) :b

[9¸ : P (¸)] while b do C od [P (0)]
while rule (6) 12

11 on the values of the program variables and auxiliary mathematical variables
12 ¸, ˛, . . . are ordinals.

Formal Total Correctness Proof of Integer Division
– R def= a:y + b = x ^ b – 0

– P (n) def= R ^ n:y » b < (n+ 1):y
– We have:

- (P (n) ^ n > 0) =) (b – y)
- [P (n+ 1)] b:=b ` y; a:=a +1[P (n)]

- P (0) =) :(b – y)
- R ^ y > 0 =) 9n : P (n)

so that by the while rule (6) and the consequence rule (5),
we conclude:

[a:y+b = x^b – 0^y > 0] p [a:y+b = x^b – 0^:(b – y)]

Predicate transformers

Edsger W. Dijkstra introduced predicate transformers:
– wlp!C"Q is the weakest liberal 13 precondition:
- fwlp!C"QgCfQg
- fPgCfQg =) (P) wlp!C"Q)

– wp!C"Q is the weakest precondition:
- [wp!C"Q]C[Q]
- [P]C[Q] =) (P) wp!C"Q)

Reference

[8] Edsger W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of Programs”. Com-
mun. ACM 18(8): 453-457 (1975)

13 “liberal” means nontermination is possible i.e. partial correctness.

Edsger W. Dijkstra

Predicate transformer calculus

– skip is the command that leaves the state unchanged
wlp!skip"P = P
wp!skip"P = P
– abort is the command that never terminates
wlp!abort"P = tt
wp!abort"P = ¸
– ; is the sequential composition of commands
wlp!C1 ; C2"P = wlp!C1"(wlp!C2"P)
wp!C1 ; C2"P = wp!C1"(wp!C2"P)

Nondeterministic Choice

– [] is the nondeterministic choice of commands
wlp!C1 [] C2"P = wlp!C1"P ^ wlp!C2"P
wp!C1 [] C2"P = wp!C1"P ^ wp!C2"P
– Example:
wp!skip [] abort"P = wp!skip"P ^wp!abort"P = P ^
¸ = ¸
wlp!skip [] abort"P = wlp!skip"P ^ wlp!abort"P =
P ^ tt = P

Guards

– If b is a guard (precondition), then ?b is defined by 14:
wlp!?b"P = :b _ P
wp!?b"P = :b _ P
– If b is a guard (precondition), then !b skips if b holds
and does not terminate if :b holds;
wlp!!b"P def= :b _ P
wp!!b"P def= b ^ P

14 wp!?¸"¸ = tt so the ?¸ command is not implementable since it should miraculously terminate in a state
where ¸ holds!

Conditional

– if b then C1 else C2
def
= (?b;C1) [] (?:b;C2)

– Below, w!C"P is either wp!C"P or wlp!C"P
w!if b then C1 else C2"P
= w!(?b;C1) [] (?:b;C2)"P = w!?b;C1"P^w!?:b;C2"P
= (w!?b"(w!C1"P)) ^ (w!?:b"(w!C2"P))
= (:b _ w!C1"P) ^ (::b _ w!C2"P)
= (b =) w!C1"P) ^ (:b =) w!C2"P)
= (b ^ w!C1"P) _ (:b ^ w!C2"P)

Conditional

– if b0! C0 [] b1! C1 fi
def
= !(b0 _ b1); (?b0;C0 []?b1;C1)

wp!if b0! C0 [] b1! C1 fi"P
= (9i 2 [0; 1] : bi) ^ (8i 2 [0; 1] : bi =) wp!Ci"P)

“The first term ‘9i 2 [0; 1] : bi’ requires that the alter-
native construct as such will not lead to abortion on
account of all guards false; the second term requires
that each guarded list eligible for execution will lead
to an acceptable final state” [8].

Iteration

– The execution of Dijkstra’s repetitive construct:

do b0! C0 [] b1! C1 od

immediately terminates if both guards b0 and b1 are
false otherwise it consists in executing one of the al-
ternatives Ci; i 2 [1; 2] which guard bi is true before
repeting the execution of the loop.

– wp!do b0! C0 [] b1! C1 od" = 15

–Q . lfp
=)
F wp!do b0! C0 [] b1! C1 od"(Q)

– F wp!do b0! C0 [] b1! C1 od"(Q) =
–P . (Q ^ 8i 2 [0; 1] : :bi) _ wp!if b0! C0 [] b1! C1 fi"P
– wlp!do b0! C0 [] b1! C1 od" =
–Q . gfp

=)
F wlp!do b0! C0 [] b1! C1 od"(Q)

– F wlp!do b0! C0 [] b1! C1 od"(Q) =
–P . (Q ^ 8i 2 [0; 1] : :bi) _ wlp!if b0! C0 [] b1! C1 fi"P

15 lfp
v
f is the v-least fixpoint of f , if any. Dually, gfp

v

f
is the v-greatest fixpoint of f , if any.

Automatic
Program Verification Methods

First attempts towards automation
– James C. King, a student of Robert Floyd, produced
the first automated proof system for numerical pro-
grams, in 1969 [9].
– The use of automated theorem proving in the verifi-
cation of symbolic programs (à la LISP [10]) was pio-
nneered, a.o., by Robert S. Boyer and J. Strother Moore
[11].
Reference

[9] King, J. C., “A Program Verifier”, Ph.D. Thesis, Carnegle-Mellon University (1969).

[10] John McCarthy. “Recursive functions of symbolic expressions and their computation by machine (Part I)”.
Communications of the ACM (CACM), April 1960.

[11] Robert S. Boyer and J. Strother Moore, “Proving Theorems about LISP Functions”. Journal of the ACM
(JACM), Volume 22, Issue 1 (January 1975) pp. 129–144.

John McCarthy Robert S. Boyer J. Strother Moore

Present day theorem-proving based followers
Automatic deductive methods (based on theorem provers
or checkers with user-provided assertions and guidance):
– ACL2

– B

– COQ

– ESC/Java & ESC/Java2

– PVS

– Why
Very useful for small programs, huge difficulties to scale
up.

A Grand Challenge

A grand challenge in computer science

“The construction and application of a verify-
ing compiler that guarantees correctness of a
program before running it” [12].

Reference

[12] Tony Hoare. “The verifying compiler: A grand challenge for computing research”, Journal of the ACM
(JACM), Volume 50, Issue 1 (January 2003), pp. 63–69.

