Propositional Logic

Syntax

Definition

• The set of *formulas* of propositional logic is given by the abstract syntax:

Form \ni A, B, C ::= $P \mid \perp \mid (\neg A) \mid (A \land B) \mid (A \lor B) \mid (A \to B)$

where P ranges over a countable set **Prop**, whose elements are called *propositional symbols* or *propositional variables*. (We also let Q, R range over **Prop**.)

• Formulas of the form \perp or *P* are called *atomic*.

• \top abbreviates $(\neg \bot)$ and $(A \leftrightarrow B)$ abbreviates $((A \rightarrow B) \land (B \rightarrow A))$.

Remark

- Conventions to omit parentheses are:
 - outermost parentheses can be dropped;
 - the order of precedence (from the highest to the lowest) of connectives is: \neg , \land , \lor and \rightarrow ;
 - binary connectives are right-associative.
- There are recursion and induction principles (e.g. structural ones) for Form .

Definition

A is a subformula of B when A "occurs in" B.

Definition

- T (true) and F (false) form the set of truth values.
- A valuation is a function \(\rho\): Prop \(->\{F, T\)}\) that assigns truth values to propositional symbols.
- Given a valuation ρ, the *interpretation function* [[·]]_ρ : Form -> {F, T} is defined recursively as follows:

$$\llbracket \bot \rrbracket_{\rho} = \mathbf{F}$$

$$\llbracket P \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \rho(P) = \mathbf{T}$$

$$\llbracket \neg A \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{F}$$

$$\llbracket A \land B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{T} \text{ and } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

$$\llbracket A \lor B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{T} \text{ or } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

$$\llbracket A \lor B \rrbracket_{\rho} = \mathbf{T} \quad \text{iff} \quad \llbracket A \rrbracket_{\rho} = \mathbf{F} \text{ or } \llbracket B \rrbracket_{\rho} = \mathbf{T}$$

Definition

A propositional model \mathcal{M} is a set of proposition symbols, i.e. $\mathcal{M} \subseteq \mathbf{Prop}$. The validity relation $\models \subseteq \mathcal{P}(\mathbf{Prop}) \times \mathbf{Form}$ is defined inductively by:

$\mathcal{M}\models P$	iff	$P\in\mathcal{M}$
$\mathcal{M} \models \neg A$	iff	$\mathcal{M} \not\models A$
$\mathcal{M} \models A \land B$	iff	$\mathcal{M} \models A$ and $\mathcal{M} \models B$
$\mathcal{M} \models A \lor B$	iff	$\mathcal{M} \models A \text{ or } \mathcal{M} \models B$
$\mathcal{M}\models A ightarrow B$	iff	$\mathcal{M} \not\models A \text{ or } \mathcal{M} \models B$

Remark

The two semantics are equivalent. In fact, valuations are in bijection with propositional models. In particular, each valuation ρ determines a model $\mathcal{M}_{\rho} = \{P \in \mathbf{Prop} \mid \rho(P) = \mathbf{T}\}$ s.t.

$$\mathcal{M}_{\rho} \models A \quad iff \quad \llbracket A \rrbracket_{\rho} = \mathsf{T},$$

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

- A formula A is valid in a model M (or M satisfies A), iff M ⊨ A. When M ⊭ A, A is said refuted by M.
- A formula A is satisfiable iff there exists some model M such that M |= A. It is refutable iff some model refutes A.
- A formula A is valid (also called a tautology) iff every model satisfies A. A formula A is a contradiction iff every model refutes A.

Proposition

Let \mathcal{M} and \mathcal{M}' be two propositional models and let A be a formula. If for any propositional symbol P occuring in A, $\mathcal{M} \models P$ iff $\mathcal{M}' \models P$, then $\mathcal{M} \models A$ iff $\mathcal{M}' \models A$.

Proof.

By induction on A.

Remark

The previous proposition justifies that the truth table method suffices for deciding weather or not a formula is valid, which in turn guarantees that the validity problem of PL is decidable

Definition

A is *logically equivalent* to B, (denoted by $A \equiv B$) iff A and B are valid exactly in the same models.

Some logical equivalences

Some logical equivalences			
$ eg \neg \neg A \equiv A$		(double negation)	
$ eg (A \land B) \equiv \neg A \lor \neg B$	$\neg (A \lor B) \equiv \neg A \land \neg B$	(De Morgan's laws)	
$A \to B \equiv \neg A \lor B$	$ eg A \equiv A ightarrow \bot$	(interdefinability)	
$A \wedge (B \lor C) \equiv (A \wedge B) \lor (A \wedge C)$	$A \lor (B \land C) \equiv (A \lor B) \land (A \lor C)$	(distributivity)	

Remark

- ullet \equiv is an equivalence relation on Form .
- Given $A \equiv B$, the replacement in a formula C of an occurrence of A by B produces a formula equivalent to C.
- The two previous results allow for equational reasoning in proving logical equivalence.

Definition

Given a propositional formula A, we say that it is in:

- Conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals (atomic formulas or negated atomic formulas), i.e. $A = \bigwedge_i \bigvee_i I_{ij}$, for literals I_{ij} ;
- Disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals, i.e. $A = \bigvee_i \bigwedge_i I_{ij}$, for literals I_{ij} .

Note that in some treatments, \perp is not allowed in literals.

Proposition

Any formula is equivalent to a CNF and to a DNF.

Proof.

The wanted CNF and DNF can be obtained by rewriting of the given formula, using the logical equivalences listed before.

Notation

We let Γ, Γ', \ldots range over sets of formulas and use Γ, A to abbreviate $\Gamma \cup \{A\}$.

Definition

Let Γ be a set of formulas.

- Γ is valid in a model M (or M satisfies Γ), iff M ⊨ A for every formula A ∈ Γ.
 We denote this by M ⊨ Γ.
- Γ is *satisfiable* iff there exists a model \mathcal{M} such that $\mathcal{M} \models \Gamma$, and it is *refutable* iff there exists a model \mathcal{M} such that $\mathcal{M} \not\models \Gamma$.
- Γ is *valid*, denoted by $\models \Gamma$, iff $\mathcal{M} \models \Gamma$ for every model \mathcal{M} , and it is *unsatisfiable* iff it is not satisfiable.

Definition

Let A be a formula and Γ a set of formulas. If every model that validates Γ also validates A, we say that Γ entails A (or A is a logical consequence of Γ). We denote this by $\Gamma \models A$ and call $\models \subseteq \mathcal{P}(\mathbf{Form}) \times \mathbf{Form}$ the semantic entailment or logical consequence relation.

Proposition

- A is valid iff $\models A$, where $\models A$ abbreviates $\emptyset \models A$.
- A is a contradiction iff $A \models \bot$.
- $A \equiv B$ iff $A \models B$ and $B \models A$. (or equivalently, $A \leftrightarrow B$ is valid).

Proposition

The semantic entailment relation satisfies the following properties (of an abstract consequence relation):

- For all $A \in \Gamma$, $\Gamma \models A$.
- If $\Gamma \models A$, then $\Gamma, B \models A$.
- If $\Gamma \models A$ and $\Gamma, A \models B$, then $\Gamma \models B$.

(inclusion) (monotonicity) (cut)

Proposition

Further properties of semantic entailment are:

•
$$\Gamma \models A \land B$$
 iff $\Gamma \models A$ and $\Gamma \models B$
• $\Gamma \models A \lor B$ iff $\Gamma \models A$ or $\Gamma \models B$
• $\Gamma \models A \rightarrow B$ iff $\Gamma, A \models B$
• $\Gamma \models \neg A$ iff $\Gamma, A \models \bot$
• $\Gamma \models A$ iff $\Gamma, \neg A \models \bot$

Proof system

The natural deduction system $\mathcal{N}_{\mathsf{PL}}$

- The proof system we will consider is a "natural deduction in sequent style" (not to confuse with a "sequent calculus"), which we name N_{PL}.
- The "judgments" (or "assertions") of N_{PL} are sequents Γ ⊢ A, where Γ is a set of formulas (a.k.a. *context* or LHS) and A a formula (a.k.a. *conclusion* or RHS), informally meaning that "A can be proved from the assumptions in Γ".
- Natural deduction systems typically have "introduction" and "elimination" rules for each connective. The set of rules of N_{PL} is below.

Rules of $\mathcal{N}_{\mathsf{PL}}$

(Ax)
$$\overline{\Gamma, A \vdash A}$$
 (RAA) $\overline{\Gamma, \neg A \vdash \bot}$ $\Gamma \vdash A$

Introduction Rules:

$$\begin{array}{ccc} (\mathsf{I}_{\wedge}) & \frac{\Gamma \vdash A}{\Gamma \vdash A \wedge B} & (\mathsf{I}_{\vee i}) & \frac{\Gamma \vdash A_{i}}{\Gamma \vdash A_{1} \vee A_{2}} & i \in \{1, 2\} \\ \\ & (\mathsf{I}_{\rightarrow}) & \frac{\Gamma, A \vdash B}{\Gamma \vdash A \rightarrow B} & (\mathsf{I}_{\neg}) & \frac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A} \end{array}$$

Elimination Rules:

$$\begin{array}{c} (\mathsf{E}_{\wedge i}) & \frac{\Gamma \vdash A_1 \wedge A_2}{\Gamma \vdash A_i} & i \in \{1, 2\} \\ \end{array} \begin{array}{c} (\mathsf{E}_{\vee}) & \frac{\Gamma \vdash A \vee B}{\Gamma \vdash B} \end{array} \begin{array}{c} \Gamma \vdash A \vee B & \Gamma, A \vdash C & \Gamma, B \vdash C \\ \hline \Gamma \vdash C & \Gamma \vdash C \end{array} \end{array}$$

Definition

- A derivation of a sequent Γ ⊢ A is a tree of sequents, built up from instances of the inference rules of N_{PL}, having as root Γ ⊢ A and as leaves instances of (Ax). (The set of N_{PL}-derivations can formally be given as an inductive definition and has associated recursion and inductive principles.)
- Derivations induce a binary relation $\vdash \in \mathcal{P}(Form) \times Form$, called the *derivability/deduction relation*:
 - $(\Gamma, A) \in \vdash$ iff there is a derivation of the sequent $\Gamma \vdash A$ in \mathcal{N}_{PL} ;
 - typically we overload notation and abbreviate (Γ, A) ∈ ⊢ by Γ ⊢ A, reading "Γ ⊢ A is derivable", or "A can be derived (or deduced) from Γ", or "Γ infers A";
- A formula that can be derived from the empty context is called a *theorem*.

Definition

An inference rule is *admissible* in \mathcal{N}_{PL} if every sequent that can be derived making use of that rule can also be derived without it.

Proof system

Proposition

The following rules are admissible in $\mathcal{N}_{\mathsf{PL}}$:

Weakening
$$\frac{\Gamma \vdash A}{\Gamma, B \vdash A}$$
 $Cut \frac{\Gamma \vdash A}{\Gamma \vdash B}$ $(\bot) \frac{\Gamma \vdash \bot}{\Gamma \vdash A}$

Proof.

- Admissibility of weakening is proved by induction on the premise's derivation.
- Cut is actually a *derivable rule* in \mathcal{N}_{PL} , i.e. can be obtained through a combination of \mathcal{N}_{PL} rules.
- Admissibility of (\bot) follows by combining weakening and *RAA*.

Definition

 Γ is said *inconsistent* if $\Gamma \vdash \bot$ and otherwise is said *consistent*.

Proposition

If Γ is consistent, then either $\Gamma \cup \{A\}$ or $\Gamma \cup \{\neg A\}$ is consistent (but not both).

Proof.

If not, one could build a derivation of $\Gamma \vdash \bot$ (how?), and Γ would be inconsistent.

Remark

Traditional presentations of natural deduction take formulas as judgements and not sequents. In these presentations:

- derivations are trees of formulas, whose leaves can be either "open" or "closed";
- open leaves correspond to the assumptions upon which the conclusion formula (the root of the tree) depends;
- some rules allow for the closing of leaves (thus making the conclusion formula not depend on those assumptions).

For example, introduction and elimination rules for implication look like:

In rule (I_{\rightarrow}) , any number of occurrences of A as a leaf may be closed (signalled by the use of square brackets).

Adequacy of the proof system

Theorem (Soundness)

If $\Gamma \vdash A$, then $\Gamma \models A$.

Proof.

By induction on the derivation of $\Gamma \vdash A$. Some of the cases are illustrated:

• If the last step is

Ax)
$$\overline{\Gamma', A \vdash A}$$

We need to prove $\Gamma', A \models A$, which holds by the inclusion property of semantic entailment.

• If the last step is

$$(\mathsf{I}_{\rightarrow}) \quad \frac{\mathsf{\Gamma}, B \vdash C}{\mathsf{\Gamma} \vdash B \rightarrow C}$$

By IH, we have $\Gamma, B \models C$, which is equivalent to $\Gamma \models B \rightarrow C$, by one of the properties of semantic entailment.

If the last step is

$$(\mathsf{E}_{\rightarrow}) \quad \frac{\Gamma \vdash B \qquad \Gamma \vdash B \rightarrow A}{\Gamma \vdash A}$$

By IH, we have both $\Gamma \models B$ and $\Gamma \models B \rightarrow A$. From these, we can easily get $\Gamma \models A$.

Adequacy of the proof system

Definition

 Γ is *maximally consistent* iff it is consistent and furthermore, given any formula A, either A or $\neg A$ belongs to Γ (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent set Γ and given a formula A, $\Gamma \vdash A$ implies $A \in \Gamma$.

Lemma

If Γ is consistent, then there exists $\Gamma' \supseteq \Gamma$ s.t. Γ' is maximally consistent.

Proof.

Let $\Gamma_0 = \Gamma$ and consider an enumeration A_1, A_2, \ldots of the set of formulas **Form**. For each of these formulas, define Γ_i to be $\Gamma_{i-1} \cup \{A_i\}$ if this is consistent, or $\Gamma_{i-1} \cup \{\neg A_i\}$ otherwise. (Note that one of these sets is consistent.) Then, we take $\Gamma' = \bigcup_i \Gamma_i$. Clearly, by construction, $\Gamma' \supseteq \Gamma$ and for each A_i either $A_i \in \Gamma'$ or $\neg A_i \in \Gamma'$. Also, Γ' is consistent (otherwise some Γ_i would be inconsistent).

Adequacy of the proof system

Proposition

 Γ is consistent iff Γ is satisfiable.

Proof.

The "if statement" follows from the soundness theorem. Let us proof the converse.

Let Γ' be a maximally consistent extension of Γ (guaranteed to exist by the previous lemma) and define \mathcal{M} as the set of proposition symbols that belong to Γ' .

Claim: $\mathcal{M} \models A$ iff $A \in \Gamma'$.

As $\Gamma' \supseteq \Gamma$, \mathcal{M} is a model of Γ , hence Γ is satisfiable.

The claim is proved by induction on A. Two cases are illustrated.

Case A = P. The claim is immediate by construction of \mathcal{M} .

Case $A = B \rightarrow C$. By IH and the fact that Γ' is maximally consistent, $\mathcal{M} \models B \rightarrow C$ is equivalent to $\neg B \in \Gamma'$ or $C \in \Gamma'$, which in turn is equivalent to $B \rightarrow C \in \Gamma'$. The latter equivalence is proved with the help of the fact that Γ' , being maximally consistent, is closed for derivability.