
Propositional Logic



Syntax

Definition

The set of formulas of propositional logic is given by the abstract syntax:

Form ∋ A, B, C ::= P | ⊥ | (¬A) | (A ∧ B) | (A ∨ B) | (A → B)

where P ranges over a countable set Prop , whose elements are called
propositional symbols or propositional variables. (We also let Q, R range over
Prop .)

Formulas of the form ⊥ or P are called atomic.

⊤ abbreviates (¬⊥) and (A ↔ B) abbreviates ((A → B) ∧ (B → A)).

Remark

Conventions to omit parentheses are:

outermost parentheses can be dropped;
the order of precedence (from the highest to the lowest) of connectives is:
¬, ∧, ∨ and →;
binary connectives are right-associative.

There are recursion and induction principles (e.g. structural ones) for Form .

Definition

A is a subformula of B when A “occurs in” B.



Semantics

Definition

T (true) and F (false) form the set of truth values.

A valuation is a function ρ : Prop − > {F, T} that assigns truth values to
propositional symbols.

Given a valuation ρ, the interpretation function [[·]]ρ : Form − > {F, T} is
defined recursively as follows:

[[⊥]]ρ = F

[[P]]ρ = T iff ρ(P) = T

[[¬A]]ρ = T iff [[A]]ρ = F

[[A ∧ B]]ρ = T iff [[A]]ρ = T and [[B]]ρ = T

[[A ∨ B]]ρ = T iff [[A]]ρ = T or [[B]]ρ = T

[[A → B]]ρ = T iff [[A]]ρ = F or [[B]]ρ = T



Semantics

Definition

A propositional model M is a set of proposition symbols, i.e. M ⊆ Prop . The
validity relation |= ⊆ P(Prop ) × Form is defined inductively by:

M |= P iff P ∈ M
M |= ¬A iff M ,|= A
M |= A ∧ B iff M |= A and M |= B
M |= A ∨ B iff M |= A or M |= B
M |= A → B iff M ,|= A or M |= B

Remark

The two semantics are equivalent. In fact, valuations are in bijection with
propositional models. In particular, each valuation ρ determines a model
Mρ = {P ∈ Prop | ρ(P) = T} s.t.

Mρ |= A iff [[A]]ρ = T,

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

A formula A is valid in a model M (or M satisfies A), iff M |= A. When
M ,|= A, A is said refuted by M.
A formula A is satisfiable iff there exists some model M such that M |= A. It is
refutable iff some model refutes A.
A formula A is valid (also called a tautology) iff every model satisfies A. A
formula A is a contradiction iff every model refutes A.



Semantics

Proposition

Let M and M′ be two propositional models and let A be a formula. If for any
propositional symbol P occuring in A, M |= P iff M′ |= P, then M |= A iff M′ |= A.

Proof.

By induction on A.

Remark

The previous proposition justifies that the truth table method suffices for deciding
weather or not a formula is valid, which in turn guarantees that the validity problem of
PL is decidable

Definition

A is logically equivalent to B, (denoted by A ≡ B) iff A and B are valid exactly in the
same models.

Some logical equivalences

¬¬A ≡ A (double negation)

¬(A ∧ B)≡¬A ∨ ¬B ¬(A ∨ B)≡¬A ∧ ¬B (De Morgan’s laws)

A → B ≡¬A ∨ B ¬A≡A → ⊥ (interdefinability)

A∧(B∨C)≡ (A∧B)∨(A∧C) A ∨ (B ∧ C)≡ (A∨B)∧(A ∨C) (distributivity)



Semantics

Remark

≡ is an equivalence relation on Form .
Given A ≡ B, the replacement in a formula C of an occurrence of A by B
produces a formula equivalent to C.
The two previous results allow for equational reasoning in proving logical
equivalence.

Definition

Given a propositional formula A, we say that it is in:

Conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals
(atomic formulas or negated atomic formulas), i.e. A =

∧
i

∨
j lij , for literals lij ;

Disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals,
i.e. A =

∨
i

∧
j lij , for literals lij .

Note that in some treatments, ⊥ is not allowed in literals.

Proposition

Any formula is equivalent to a CNF and to a DNF.

Proof.

The wanted CNF and DNF can be obtained by rewriting of the given formula, using
the logical equivalences listed before.



Semantics

Notation

We let Γ, Γ′, . . . range over sets of formulas and use Γ, A to abbreviate Γ ∪ {A}.

Definition

Let Γ be a set of formulas.

Γ is valid in a model M (or M satisfies Γ), iff M |= A for every formula A ∈ Γ.
We denote this by M |= Γ.
Γ is satisfiable iff there exists a model M such that M |= Γ, and it is refutable
iff there exists a model M such that M ,|= Γ.
Γ is valid, denoted by |= Γ, iff M |= Γ for every model M, and it is unsatisfiable
iff it is not satisfiable.

Definition

Let A be a formula and Γ a set of formulas. If every model that validates Γ also
validates A, we say that Γ entails A (or A is a logical consequence of Γ).
We denote this by Γ |= A and call |= ⊆ P(Form ) × Form the semantic entailment
or logical consequence relation.



Semantics

Proposition

A is valid iff |= A, where |= A abbreviates ∅ |= A.
A is a contradiction iff A |= ⊥.
A ≡ B iff A |= B and B |= A. (or equivalently, A ↔ B is valid).

Proposition

The semantic entailment relation satisfies the following properties (of an abstract
consequence relation):

For all A ∈ Γ, Γ |= A. (inclusion)
If Γ |= A, then Γ, B |= A. (monotonicity)
If Γ |= A and Γ, A |= B, then Γ |= B. (cut)

Proposition

Further properties of semantic entailment are:

Γ |= A ∧ B iff Γ |= A and Γ |= B
Γ |= A ∨ B iff Γ |= A or Γ |= B
Γ |= A → B iff Γ, A |= B
Γ |= ¬A iff Γ, A |= ⊥
Γ |= A iff Γ,¬A |= ⊥



Proof system

The natural deduction system NPL

The proof system we will consider is a ”natural deduction in sequent style” (not
to confuse with a ”sequent calculus”), which we name NPL.
The ”judgments” (or ”assertions”) of NPL are sequents Γ ⊢ A, where Γ is a set
of formulas (a.k.a. context or LHS) and A a formula (a.k.a. conclusion or
RHS), informally meaning that “A can be proved from the assumptions in Γ”.
Natural deduction systems typically have ”introduction” and ”elimination” rules
for each connective. The set of rules of NPL is below.

Rules of NPL

(Ax)
Γ, A ⊢ A

Γ,¬A ⊢ ⊥
(RAA)

Γ ⊢ A

Introduction Rules:

Γ ⊢ A Γ ⊢ B
(I∧)

Γ ⊢ A ∧ B

Γ ⊢ Ai
(I∨i ) i ∈ {1, 2}

Γ ⊢ A1 ∨ A2

Γ, A ⊢ B
(I→)

Γ ⊢ A → B

Γ, A ⊢ ⊥
(I¬)

Γ ⊢ ¬A

Elimination Rules:

Γ ⊢ A1 ∧ A2
(E∧i ) i ∈ {1, 2}

Γ ⊢ Ai

Γ ⊢ A ∨ B Γ, A ⊢ C Γ, B ⊢ C
(E∨)

Γ ⊢ C

Γ ⊢ A Γ ⊢ A → B
(E→)

Γ ⊢ B
Γ ⊢ A Γ ⊢ ¬A

(E¬)
Γ ⊢ B



Proof system

Definition

A derivation of a sequent Γ ⊢ A is a tree of sequents, built up from instances of
the inference rules of NPL, having as root Γ ⊢ A and as leaves instances of
(Ax) . (The set of NPL-derivations can formally be given as an inductive
definition and has associated recursion and inductive principles.)

Derivations induce a binary relation ⊢ ∈ P(Form ) × Form , called the

derivability/deduction relation:

(Γ, A) ∈⊢ iff there is a derivation of the sequent Γ ⊢ A in NPL;
typically we overload notation and abbreviate (Γ, A) ∈⊢ by Γ ⊢ A, reading
“Γ ⊢ A is derivable”, or “A can be derived (or deduced) from Γ”, or “Γ
infers A”;

A formula that can be derived from the empty context is called a theorem.

Definition

An inference rule is admissible in NPL if every sequent that can be derived making use
of that rule can also be derived without it.



Proof system

Proposition

The following rules are admissible in NPL:

Γ ⊢ A
Weakening

Γ, B ⊢ A

Γ ⊢ A Γ, A ⊢ B
Cut

Γ ⊢ B

Γ ⊢ ⊥
(⊥)

Γ ⊢ A

Proof.

Admissibility of weakening is proved by induction on the premise’s derivation.
Cut is actually a derivable rule in NPL, i.e. can be obtained through a
combination of NPL rules.
Admissibility of (⊥) follows by combining weakening and RAA.

Definition

Γ is said inconsistent if Γ ⊢ ⊥ and otherwise is said consistent.

Proposition

If Γ is consistent, then either Γ ∪ {A} or Γ ∪ {¬A} is consistent (but not both).

Proof.

If not, one could build a derivation of Γ ⊢ ⊥ (how?), and Γ would be inconsistent.



Proof system

Remark

Traditional presentations of natural deduction take formulas as judgements and not
sequents. In these presentations:

derivations are trees of formulas, whose leaves can be either “open” or “closed”;

open leaves correspond to the assumptions upon which the conclusion formula
(the root of the tree) depends;

some rules allow for the closing of leaves (thus making the conclusion formula
not depend on those assumptions).

For example, introduction and elimination rules for implication look like:

A → B A
(E→)

B

[A]

.

.

.

B
(I→)

A → B

In rule (I→) , any number of occurrences of A as a leaf may be closed (signalled by
the use of square brackets).



Adequacy of the proof system

Theorem (Soundness)

If Γ ⊢ A, then Γ |= A.

Proof.

By induction on the derivation of Γ ⊢ A. Some of the cases are illustrated:

If the last step is
(Ax)

Γ′, A ⊢ A

We need to prove Γ′, A |= A, which holds by the inclusion property of semantic
entailment.
If the last step is

Γ, B ⊢ C
(I→)

Γ ⊢ B → C

By IH, we have Γ, B |= C , which is equivalent to Γ |= B → C , by one of the
properties of semantic entailment.
If the last step is

Γ ⊢ B Γ ⊢ B → A
(E→)

Γ ⊢ A

By IH, we have both Γ |= B and Γ |= B → A. From these, we can easily get
Γ |= A.



Adequacy of the proof system

Definition

Γ is maximally consistent iff it is consistent and furthermore, given any formula A,
either A or ¬A belongs to Γ (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent
set Γ and given a formula A, Γ ⊢ A implies A ∈ Γ.

Lemma

If Γ is consistent, then there exists Γ′ ⊇ Γ s.t. Γ′ is maximally consistent.

Proof.

Let Γ0 = Γ and consider an enumeration A1, A2, . . . of the set of formulas Form . For
each of these formulas, define Γi to be Γi−1 ∪ {Ai} if this is consistent, or
Γi−1 ∪ {¬Ai} otherwise. (Note that one of these sets is consistent.) Then, we take
Γ′ =

⋃
i Γi . Clearly, by construction, Γ′ ⊇ Γ and for each Ai either Ai ∈ Γ′ or

¬Ai ∈ Γ′. Also, Γ′ is consistent (otherwise some Γi would be inconsistent).



Adequacy of the proof system

Proposition

Γ is consistent iff Γ is satisfiable.

Proof.

The “if statement” follows from the soundness theorem. Let us proof the converse.

Let Γ′ be a maximally consistent extension of Γ (guaranteed to exist by the previous
lemma) and define M as the set of proposition symbols that belong to Γ′.

Claim: M |= A iff A ∈ Γ′.

As Γ′ ⊇ Γ, M is a model of Γ, hence Γ is satisfiable.

The claim is proved by induction on A. Two cases are illustrated.

Case A = P. The claim is immediate by construction of M.

Case A = B → C . By IH and the fact that Γ′ is maximally consistent, M |= B → C is
equivalent to ¬B ∈ Γ′ or C ∈ Γ′, which in turn is equivalent to B → C ∈ Γ′. The
latter equivalence is proved with the help of the fact that Γ′, being maximally
consistent, is closed for derivability.


