Propositional Logic



@ The set of formulas of propositional logic is given by the abstract syntax:
Form 5 AB,C == P|L|(FA|(AAB)|(AvB)|(A— B)

where P ranges over a countable set Prop , whose elements are called

propositional symbols or propositional variables. (We also let @, R range over
Prop .)

@ Formulas of the form L or P are called atomic.

@ T abbreviates (—_L) and (A <> B) abbreviates ((A — B) A (B — A)).

@ Conventions to omit parentheses are:

@ outermost parentheses can be dropped;

@ the order of precedence (from the highest to the lowest) of connectives is:
-, A\, V and —;

@ binary connectives are right-associative.

@ There are recursion and induction principles (e.g. structural ones) for Form .

A is a subformula of B when A “occurs in” B.



Semantics

@ T (true) and F (false) form the set of truth values.

@ A valuation is a function p : Prop — > {F, T} that assigns truth values to
propositional symbols.

@ Given a valuation p, the interpretation function [-], : Form — > {F, T} is
defined recursively as follows:

[L], =F
[Plo=T iff p(P)=T
[-Al, =T iff [A],=F
[AANBl, =T iff [Al,=Tand[B],=T
[AVBl, =T iff [Al,=Tor[B]l,=T
[A—B]l,=T iff [Alp=For[B],=T




Semantics

Definition

A propositional model M is a set of proposition symbols, i.e. M C Prop . The
validity relation = C P(Prop ) X Form is defined inductively by:

MEP iff PecM
M -A iff M A
MEANAB iff ME=Aand M EB
MEAVB  iff MEAo MEB

MEA—-B iff MEAor MEB

Remark

The two semantics are equivalent. In fact, valuations are in bijection with
propositional models. In particular, each valuation p determines a model

M, ={P €Prop |p(P)=T} s.t.

M, E=A iff [Al,=T,

which can be proved by induction on A. Henceforth, we adopt the latter semantics.

Definition

@ A formula A is valid in a model M (or M satisfies A), iff M = A. When
M E A, Ais said refuted by M.

@ A formula A is satisfiable iff there exists some model M such that M = A. It is
refutable iff some model refutes A.

@ A formula A is valid (also called a tautology) iff every model satisfies A. A
formula A is a contradiction iff every model refutes A.




Semantics

Proposition

Let M and M’ be two propositional models and let A be a formula. If for any
propositional symbol P occuring in A, M = P iff M' |= P, then M = A iff M’ = A.

By induction on A. []

The previous proposition justifies that the truth table method suffices for deciding
weather or not a formula is valid, which in turn guarantees that the validity problem of
PL is decidable

Definition

A is logically equivalent to B, (denoted by A = B) iff A and B are valid exactly in the
same models.

Some logical equivalences

——A=A (double negation)
-(AANB)=-AV -B -(Av B)=-AA-B (De Morgan'’s laws)
A— B=-AVB —A=A— L (interdefinability)
AN(BVC)=(AAB)VIAANC) AV (BAC)=(AVB)AAVC) (distributivity)



Semantics

Remark

@ = js an equivalence relation on Form .

@ Given A = B, the replacement in a formula C of an occurrence of A by B
produces a formula equivalent to C.

@ The two previous results allow for equational reasoning in proving logical
equivalence.

Definition

Given a propositional formula A, we say that it is in:

@ Conjunctive normal form (CNF), if it is a conjunction of disjunctions of literals
(atomic formulas or negated atomic formulas), i.e. A=A,V [y, for literals /;

@ Disjunctive normal form (DNF), if it is a disjunction of conjunctions of literals,
i.e. A=V, N\, lj, for literals [;.

Note that in some treatments, L is not allowed in literals.

Proposition

Any formula is equivalent to a CNF and to a DNF.

The wanted CNF and DNF can be obtained by rewriting of the given formula, using
the logical equivalences listed before. L]



Semantics

We let T, T, ... range over sets of formulas and use I', A to abbreviate ' U {A}.

Definition

Let [ be a set of formulas.

@ T is valid in a model M (or M satisfies I'), iff M |= A for every formula A € T.

We denote this by M |=T.

@ T is satisfiable iff there exists a model M such that M =T, and it is refutable
iff there exists a model M such that M (£ T.

@ T is valid, denoted by =T, iff M =T for every model M, and it is unsatisfiable
iff it is not satisfiable.

Definition

Let A be a formula and [ a set of formulas. If every model that validates I also
validates A, we say that I entails A (or A is a logical consequence of I').

We denote this by I' = A and call = C P(Form ) x Form the semantic entailment
or logical consequence relation.




Semantics

Proposition

@ Aisvalid iff = A, where |= A abbreviates ) = A.
@ A is a contradiction iff A L.
@ A=B iff A= B and B |= A. (or equivalently, A — B is valid).

The semantic entailment relation satisfies the following properties (of an abstract
consequence relation):

@ Forall AcT, T A (inclusion)
@ IfT = A, thenT,B = A. (monotonicity)
@ IfT=Aandl,AE=B, thenT = B. (cut)

Further properties of semantic entailment are:

@ TEAAB iff TEAandl EB
r=AVB iff TEAorlT EB
r=A—B iff T,AEB
r=-A iff AEL

r=A iff T,-AE L
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The natural deduction system Np|

@ The proof system we will consider is a " natural deduction in sequent style” (not
to confuse with a "sequent calculus”), which we name Np_.

@ The "judgments” (or "assertions”) of Np| are sequents I' - A, where T is a set
of formulas (a.k.a. context or LHS) and A a formula (a.k.a. conclusion or
RHS), informally meaning that “A can be proved from the assumptions in .

@ Natural deduction systems typically have "introduction” and "elimination” rules
for each connective. The set of rules of Np| is below.

Rules of Np|
(Ax) RAA L-AF L
FAFA (RAA) EA
Introduction Rules:
= A =B M= A; )
| )
NAEB AE L
(1-) (1) —/—
r'-A— B M- —A
Elimination Rules:
AL ANA r'Av B AEC BEC
EA; 1,2 E
M= A M= A B M= A M- —-A
(E-) — (E-)
r-B -5




@ A derivation of a sequent [ = A is a tree of sequents, built up from instances of
the inference rules of Nlp|, having as root I = A and as leaves instances of
(Ax) . (The set of Np -derivations can formally be given as an inductive
definition and has associated recursion and inductive principles.)

@ Derivations induce a binary relation - € P(Form ) x Form , called the

derivability /deduction relation:

o (I, A) €t iff there is a derivation of the sequent ' - A in Np(;

@ typically we overload notation and abbreviate (I', A) €+ by I' = A, reading
“I' = A is derivable”, or “A can be derived (or deduced) from ", or “T
infers A”;

@ A formula that can be derived from the empty context is called a theorem.

Definition

An inference rule is admissible in Np| if every sequent that can be derived making use
of that rule can also be derived without it.



The following rules are admissible in Np| :

Weakening

M- A e TEA A B (1) LFL
FBF A ut [ B M- A

Proof.

@ Admissibility of weakening is proved by induction on the premise’s derivation.

@ Cut is actually a derivable rule in Np_, i.e. can be obtained through a
combination of Np| rules.

@ Admissibility of (L) follows by combining weakening and RAA.

Definition

[ is said inconsistent if [ = 1 and otherwise is said consistent.

Proposition
If T is consistent, then either T U {A} or I U{—A} is consistent (but not both).
If not, one could build a derivation of ' = L (how?), and I would be inconsistent. [



Traditional presentations of natural deduction take formulas as judgements and not
sequents. In these presentations:

@ derivations are trees of formulas, whose leaves can be either “open” or “closed”;

@ open leaves correspond to the assumptions upon which the conclusion formula
(the root of the tree) depends;

@ some rules allow for the closing of leaves (thus making the conclusion formula
not depend on those assumptions).

For example, introduction and elimination rules for implication look like:

A
A— B A
(E) _ ‘
(=) 2=F

In rule (I~ ) , any number of occurrences of A as a leaf may be closed (signalled by
the use of square brackets).




Adequacy of the proof system

Theorem (Soundness)

IfT E A, thenT = A.

Proof.

By induction on the derivation of [ = A. Some of the cases are illustrated:

@ If the last step is
(Ax)

M AF A

We need to prove [, A = A, which holds by the inclusion property of semantic
entailment.

@ If the last step is

MBEFC

=) Fre=c

By IH, we have I', B = C, which is equivalent to ' = B — C, by one of the
properties of semantic entailment.
@ If the last step is

- B r-B— A
r=A

By IH, we have both ' =B and I' = B — A. From these, we can easily get
= A

(E-)




Adequacy of the proof system

Definition

[ is maximally consistent iff it is consistent and furthermore, given any formula A,
either A or —A belongs to I (but not both can belong).

Proposition

Maximally consistent sets are closed for derivability, i.e. given a maximally consistent
set [ and given a formula A, I = A implies A € T,

If T is consistent, then there exists ' D I s.t. [’ is maximally consistent.

Proof.

Let o = I and consider an enumeration Ay, Ay, ... of the set of formulas Form . For
each of these formulas, define I'; to be I';_; U {A;} if this is consistent, or

i1 U{—A;} otherwise. (Note that one of these sets is consistent.) Then, we take

" =J,; ;. Clearly, by construction, I’ D I and for each A; either A; € " or

—A; € I". Also, I'" is consistent (otherwise some I'; would be inconsistent). n




Adequacy of the proof system

[ is consistent iff I is satisfiable.

The "“if statement” follows from the soundness theorem. Let us proof the converse.

Let I’ be a maximally consistent extension of ' (guaranteed to exist by the previous
lemma) and define M as the set of proposition symbols that belong to ',

Claim: M= A iff Ael’

As T’ DT, M is a model of I', hence I is satisfiable.

The claim is proved by induction on A. Two cases are illustrated.
Case A = P. The claim is immediate by construction of M.

Case A= B — C. By IH and the fact that I’ is maximally consistent, M =B — C is
equivalent to =B € I or C € '/, which in turn is equivalent to B — C € I''. The
latter equivalence is proved with the help of the fact that [/, being maximally
consistent, is closed for derivability. []




