Satisfiability Modulo Theories Solvers

- SMT solvers are used as core engines in many tools in
 - program analysis and verification
 - software engineering
 - hardware verification, ...
- Combine propositional satisfiability search techniques with solvers for specific first-order theories
 - Linear arithmetic
 - Bit vectors
 - Uninterpreted functions
 - Arrays, ...

First-Order Logic

First-Order Logic – Syntax Overview

- Functions , Variables, Predicates
 a, *b* f, g, *x*, *y*, *z*, P, Q, =
- Terms
 - a, f(a), g(x, y)
- Atomic formulas, Literals
 - − P(x,f(a)), ¬Q(y,z)
- Quantifier free formulas
 - $P(f(a), b) \land c = g(d)$
- Formulas, sentences

- $\forall x . \forall y . [P(x, f(x)) \lor g(y,x) = h(y)]$

Signatures

- A signature Σ consists of
 - a set of *function symbols*:

 $\Sigma_{\mathsf{F}} = \{ f, g, \dots \}$

– a set of *predicate symbols*:

 $\Sigma_{P} = \{ P, Q, =, true, false, ... \}$

– and an *arity* function:

arity: $(\Sigma_{\mathsf{F}} \cup \Sigma_{\mathsf{P}}) \rightarrow \mathsf{N}$

- Function symbols with arity 0 are called constants
- A countable set *X* of *variables*
 - disjoint from Σ

Terms

- Given a signature Σ and a set of variables X
- The set of *terms* $T(\Sigma, X)$ is the smallest set formed by the grammar:

$$t \in T ::= x$$
 $x \in X$
 $| f(t_1, ..., t_n)$ $f \in \Sigma_F t_1, ..., t_n \in T$

• The terms $T(\Sigma, \emptyset)$ are called *ground terms*.

Atomic Formulas

• *Atomic formulas* are built from terms and predicate symbols:

 $a ::= P(t_1, ..., t_n) \qquad P \in \Sigma_P t_1, ..., t_n \in T(\Sigma, X)$

An atom is *ground* if $t_1, ..., t_n \in T(\Sigma_F, \emptyset)$

Literals are (negated) atoms:
 I ::= a | ¬a

Quantifier-Free Formulas

The set QFF(Σ,X) of *quantifier-free formulas* is the smallest set such that:

 $\begin{array}{ll} \varphi \in \mathsf{QFF}\left(\Sigma,X\right) & ::= a & atoms \\ & | \neg \varphi & negations \\ & | \varphi \leftrightarrow \varphi' & bi-implications \\ & | \varphi \wedge \varphi' & conjunction \\ & | \varphi \lor \varphi' & disjunction \\ & | \varphi \rightarrow \varphi' & implication \end{array}$

Formulas

- The set of *first-order formulas* are obtained by adding the formation rules:
 - $\varphi ::= ...$ $| \forall x . \varphi \qquad universal quant.$ $| \exists x . \varphi \qquad existential quant.$
- *Free occurrences* of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

Dreadbury Mansion Mystery

- Someone who lived in Dreadbury Mansion killed Aunt Agatha.
- Agatha, the Butler and Charles were the only people who lived in Dreadbury Mansion.
- A killer always hates his victim, and is never richer than his victim.
- Charles hates no one that aunt Agatha hates.
- Agatha hates everyone except the butler.
- The butler hates everyone not richer than Aunt Agatha.
- The butler also hates everyone Agatha hates.
- No one hates everyone.
- Agatha is not the butler.

Who killed Aunt Agatha?

Semantics: Structures

- A *first-order structure M* consists of:
 - Domain U; nonempty set of elements.
 - Interpretation, $f^{\mathcal{M}}: U^n \rightarrow U$ for each $f \in \Sigma_{\mathsf{F}}$ with arity(f) = n
 - Interpretation $P^M \subseteq U^n$ for each $P \in \Sigma_P$ with arity(P) = n
 - Assignment $x^M \in U$ for every variable $x \in X$
- A formula φ is true in a structure M if it evaluates to true under the given interpretations over the domain U.

Semantics: Evaluation of Terms and Atoms

- A term *t* in a structure *M* evaluates to
 - $\begin{array}{ll} -x^{\mathcal{M}} & \text{if } t = x \text{ for some variable } x \in X \\ -f^{\mathcal{M}}(u_1, \, ..., \, u_n) & \text{if } t = f(t_1, \, ..., \, t_n) \text{ and each} \\ & t_i \text{ evaluates to } u_i \text{ in } M \end{array}$
- An P(t₁, ..., t_n) atom in a structure M evaluates to
 b ∈ {true, false}, where

$$-b \text{ iff } (u_1, ..., u_n) \in P^M$$

- and each t_i evaluates to u_i in M

Semantics: Evaluation of Formulas

- The *satisfaction relation* is defined recursively as follows:
 - $-M \vDash a$
 - $-M \vDash \neg \varphi$
 - $-\mathit{M}\vDash\varphi\leftrightarrow\varphi'$
 - $-\mathit{M}\vDash \varphi \land \varphi'$
 - $-\mathit{M}\vDash \varphi \lor \varphi'$
 - $\mathit{M} \vDash \varphi \mathop{\rightarrow} \varphi'$
 - $-M \vDash \forall x. \varphi$

 $-M \vDash \exists x.\varphi$

iff *a* evaluates to *true* in M

- iff $M \not\models \varphi$ (M does not satisfy φ)
- iff $M \vDash \varphi$ is equivalent to $M \vDash \varphi'$
- iff $M \vDash \varphi$ and $M \vDash \varphi'$
- iff $M \vDash \varphi$ or $M \vDash \varphi'$
- iff $M \vDash \varphi$ implies $M \vDash \varphi'$
- iff for all $u \in U$, $M[x \mapsto u] \vDash \varphi$
- iff exists $u \in U$, $M[x \mapsto u] \vDash \varphi$

Notation (as for Propositional Logic)

F, G: first-order formulas over Σ M: first-order structure over Σ

- $M \vDash F$ F is true in M (M is a model of F)
- $\models F$ F is valid
- $F \models G$ $F \rightarrow G$ is valid (F *entails* G)
- $F \models \bot$ F is unsatisfiable

Semantics: Exercise

- Drinker's paradox:
 - There is someone in the pub such that, if he is drinking, everyone in the pub is drinking.
 - $\exists x. (D(x) \rightarrow \forall y. D(y))$
- Is this formula
 - valid?
 - unsatisfiable?
 - satisfiable but not valid?

Theories

- Let DC(Γ) be the deductive closure of a set of sentences
 Γ, i.e. DC(Γ) is the smallest set such that
 - $\Gamma \subseteq DC(\Gamma)$
 - $\ \{ \varphi' \mid \varphi \in \mathsf{DC}(\Gamma), \ \varphi \models \varphi' \} \subseteq \mathsf{DC}(\Gamma)$
- A (first-order) theory T (over signature Σ) is a set of deductively closed sentences (over Σ), i.e. DC(T) = T
- If $T = DC(\Gamma)$ for some set of sentences Γ , then the elements of Γ are called *axioms* of T
- A theory T is *constistent* if *false* \notin T
- We can also view a theory *T* as the class of all models of *T*

T-Satisfiability and T-Validity

- *M* is a *model for the theory T* if all sentences of *T* are *true* in *M*.
- A formula *φ*(**x**) is *T*-satisfiable in a theory *T* if
 - there is a model M of T in which $\varphi(\mathbf{x})$ evaluates to true
 - Notation: $M \vDash_{\tau} \varphi(\mathbf{x})$
- A formula *φ*(**x**) is *T*-*valid* in a theory *T* if
 - $-\varphi(x)$ evaluates to *true* in every model *M* of *T*.
 - Notation: $\vDash_{\mathsf{T}} \varphi(\mathbf{x})$

Theory of Equality T_E

- also known as theory of uninterpreted functions and theory of free functions
- Signature: Σ_E = { =, a, b, c, ..., f, g, h, ..., P, Q, R, }
 = is a binary predicate, interpreted by axioms
 all constant, function, and predicate symbols.
- Axioms:
- 1. $\forall x . x = x$ (reflexivity)
- 2. $\forall x, y. x = y \rightarrow y = x$ (symmetry)
- 3. $\forall x, y, z. x = y \land y = z \rightarrow x = z$ (transitivity)

Theory of Equality T_E

• Axioms (continued):

4. for each positive integer *n* and *n*-ary function symbol *f*, $\forall x_1, \dots, x_n, y_1, \dots, y_n$. $\bigwedge_i x_i = y_i \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ (congruence)

5. for each positive integer *n* and *n*-ary predicate symbol *P*

 $\forall x_1, \dots, x_n, y_1, \dots, y_n \colon \bigwedge_i x_i = y_i \to (P(x_1, \dots, x_n) \leftrightarrow P(y_1, \dots, y_n))$ (equivalence)

Theory Example: Peano Arithmetic (Natural Numbers)

• Signature:
$$\Sigma_{PA} = \{ 0, 1, +, *, = \}$$

- Axioms of T_{PA} : axioms for theory of equality, T_E , plus:
- 1. $\forall x. \neg (x + 1 = 0)$ (zero)2. $\forall x, y. x + 1 = y + 1 \rightarrow x = y$ (successor)3. $F[0] \land (\forall x.F[x] \rightarrow F[x + 1]) \rightarrow \forall x.F[x]$ (induction)

4.
$$\forall x. x + 0 = x$$

- 5. $\forall x, y. x + (y + 1) = (x + y) + 1$
- 6. $\forall x. x * 0 = 0$
- 7. $\forall x, y. x * (y + 1) = x * y + x$

(zero) (successor) (induction) (plus zero) (plus successor) (times zero) (times successor)

Line 3 is an axiom schema for all formulas F[x].

Theory Fragments

- A *fragment* of a theory *T* is a syntactically restricted subset of the formulas of the theory
- Example:
 - The *quantifier-free fragment* of theory *T* is the set of formulas without quantifiers that are valid in *T*
- Often there are decidable fragments for undecidable theories
- Theory *T* is *decidable* if *T*-validity is decidable for every formula *F* of *T*
 - There is an algorithm that always terminates with "yes" if F
 - is *T*-valid, and "no" if $\neg F$ is *T*-satisfiable

Theory Fragments: Examples

- The theory of equality is undecidable
 - its quantifier-free fragment is decidable
 - its fragment consisting of formulas of the form $\exists y. \forall x. F(x,y)$ where F is quantifier-free and the variables x do not appear below function symbols is decidable (Bernays-Schoenfinkel-Ramsey fragment)
- The theory of integer arithmetic is undecidable
 - the theory of linear integer arithmetic is decidable (Presburger arithmetic)
- The theory of arithmetic over reals is decidable

SMT Solvers

SMT Solver Architecture

SMT Solver Architecture

SMT-LIB Syntax

SMT-LIB Syntax

 $g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$

Propositional abstraction

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

• SAT solver returns model $[1, \neg 2, \neg 4]$

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, \neg 2] T-unsat

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, \neg 2] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1$ theory lemma

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, \neg 2] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2]$ to SAT solver
- SAT solver returns model $[1, 2, 3, \neg 4]$

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, \neg 2] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2]$ to SAT solver
- SAT solver returns model $[1, 2, 3, \neg 4]$
- Theory solver detects [1, 3, ¬4] T-unsat

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, ¬2] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2]$ to SAT solver
- SAT solver returns model $[1, 2, 3, \neg 4]$
- Theory solver detects [1, 3, ¬4] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2, \neg 1 \lor \neg 3 \lor 4]$ to SAT solver

$$g(a) = c \land (f(g(a)) \neq f(c) \lor g(a) = d) \land c \neq d$$

$$1 \land (\neg 2 \lor 3) \land \neg 4$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, ¬2] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2]$ to SAT solver
- SAT solver returns model $[1, 2, 3, \neg 4]$
- Theory solver detects [1, 3, ¬4] T-unsat
- Send $[1, \neg 2 \lor 3, \neg 4, \neg 1 \lor 2, \neg 1 \lor \neg 3 \lor 4]$ to SAT solver
- SAT solver detects unsat

- SAT solver handles all propositional reasoning
- Theory solvers only need to reason about conjunctions of literals
 - How to decide T-satisfiability of individual theories?
 - How to compose individual theory solvers to decide theory combinations?
 - How to deal with quantifiers?