Satisfiability Modulo Theories Solvers

- SMT solvers are used as core engines in many tools in
- program analysis and verification
- software engineering
- hardware verification, ...
- Combine propositional satisfiability search techniques with solvers for specific first-order theories
- Linear arithmetic
- Bit vectors
- Uninterpreted functions
- Arrays, ...

First-Order Logic

First-Order Logic - Syntax Overview

- Functions, Variables, Predicates
$-a, b f, g, \quad x, y, z, \quad P, Q=$
- Terms
$-a, f(a), g(x, y)$
- Atomic formulas, Literals
$-P(x, f(a)), \neg Q(y, z)$
- Quantifier free formulas
$-P(f(a), b) \wedge c=g(d)$
- Formulas, sentences
$-\forall x . \forall y \cdot[P(x, f(x)) \vee g(y, x)=h(y)]$

Signatures

- A signature Σ consists of
- a set of function symbols:

$$
\Sigma_{F}=\{f, g, \ldots\}
$$

- a set of predicate symbols:

$$
\Sigma_{P}=\{P, Q,=, \text { true } \text { false, } \ldots\}
$$

- and an arity function:
arity: $\left(\Sigma_{\mathrm{F}} \cup \Sigma_{\mathrm{P}}\right) \rightarrow \mathrm{N}$
- Function symbols with arity 0 are called constants
- A countable set X of variables
- disjoint from Σ

Terms

- Given a signature Σ and a set of variables X
- The set of terms $T(\Sigma, X)$ is the smallest set formed by the grammar:

$$
\begin{array}{rll}
t \in T::=x & x \in X \\
& \mid & f\left(t_{1}, \ldots, t_{n}\right) \\
& f \in \Sigma_{\mathrm{F}} t_{1}, \ldots, t_{n} \in T
\end{array}
$$

- The terms $T(\Sigma, \varnothing)$ are called ground terms.

Atomic Formulas

- Atomic formulas are built from terms and predicate symbols:
$a::=P\left(t_{1}, \ldots, t_{n}\right) \quad P \in \Sigma_{p} t_{1}, \ldots, t_{n} \in T(\Sigma, X)$
An atom is ground if $t_{1}, \ldots, t_{n} \in T\left(\Sigma_{F}, \varnothing\right)$
- Literals are (negated) atoms:

$$
|::=a| \neg a
$$

Quantifier-Free Formulas

- The set $\operatorname{QFF}(\Sigma, X)$ of quantifier-free formulas is the smallest set such that:

$$
\begin{array}{lll}
\varphi \in \operatorname{QFF}(\Sigma, X) & ::=a & \\
& \mid \neg \varphi & \text { atoms } \\
& \mid \varphi \leftrightarrow \varphi^{\prime} & \\
& \mid \varphi \wedge \varphi^{\prime} & \text { bi-implications } \\
& \mid \varphi \vee \varphi^{\prime} & \\
& \mid \varphi \rightarrow \varphi^{\prime} & \\
& \text { disjunjunction } \\
& \text { implication }
\end{array}
$$

Formulas

- The set of first-order formulas are obtained by adding the formation rules:
$\varphi::=$...

$$
\begin{array}{ll}
\mid \forall x . \varphi & \text { universal quant. } \\
\mid \exists x . \varphi & \text { existential quant. }
\end{array}
$$

- Free occurrences of variables in a formula are those not bound by a quantifier.
- A sentence is a first-order formula with no free variables.

Dreadbury Mansion Mystery

- Someone who lived in Dreadbury Mansion killed Aunt Agatha.
- Agatha, the Butler and Charles were the only people who lived in Dreadbury Mansion.
- A killer always hates his victim, and is never richer than his victim.
- Charles hates no one that aunt Agatha hates.
- Agatha hates everyone except the butler.
- The butler hates everyone not richer than Aunt Agatha.
- The butler also hates everyone Agatha hates.
- No one hates everyone.
- Agatha is not the butler.

Who killed Aunt Agatha?

Semantics: Structures

- A first-order structure M consists of:
- Domain U; nonempty set of elements.
- Interpretation, $f^{M}: U^{n} \rightarrow U$ for each $f \in \Sigma_{\mathrm{F}}$ with $\operatorname{arity}(f)=n$
- Interpretation $P^{M} \subseteq U^{n}$ for each $P \in \Sigma_{P}$ with arity $(P)=n$
- Assignment $x^{M} \in U$ for every variable $x \in X$
- A formula φ is true in a structure M if it evaluates to true under the given interpretations over the domain U.

Semantics: Evaluation of Terms and Atoms

- A term t in a structure M evaluates to

$$
\begin{array}{ll}
-x^{M} & \text { if } t=x \text { for some variable } \\
-f^{M}\left(u_{1}, \ldots, u_{n}\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right) \text { and each } \\
& t_{i} \text { evaluates to } u_{i} \text { in } M
\end{array}
$$

- An $P\left(t_{1}, \ldots, t_{n}\right)$ atom in a structure M evaluates to $b \in\{$ true, false $\}$, where
$-b$ iff $\left(u_{1}, \ldots, u_{n}\right) \in P^{M}$
- and each t_{i} evaluates to u_{i} in M

Semantics: Evaluation of Formulas

- The satisfaction relation is defined recursively as follows:
$-M \vDash a$
$-M \vDash \neg \varphi$
$-M \vDash \varphi \leftrightarrow \varphi^{\prime}$
$-M \vDash \varphi \wedge \varphi^{\prime}$
$-M \vDash \varphi \vee \varphi^{\prime}$
$-M \vDash \varphi \rightarrow \varphi^{\prime}$
$-M \vDash \forall x . \varphi$
$-M \vDash \exists x . \varphi$
iff a evaluates to true in M
iff $M \nLeftarrow \varphi$ (M does not satisfy φ)
iff $M \vDash \varphi$ is equivalent to $M \vDash \varphi^{\prime}$
iff $M \vDash \varphi$ and $M \vDash \varphi^{\prime}$
iff $M \vDash \varphi$ or $M \vDash \varphi^{\prime}$
iff $M \vDash \varphi$ implies $M \vDash \varphi^{\prime}$
iff for all $u \in U, M[x \mapsto u] \vDash \varphi$
iff exists $u \in U, M[x \mapsto u] \vDash \varphi$

Notation (as for Propositional Logic)

F, G: first-order formulas over Σ
M : first-order structure over Σ

- $M \vDash F \quad F$ is true in M (M is a model of F)
- $\vDash F \quad F$ is valid
- $F \vDash G \quad F \rightarrow G$ is valid (F entails G)
- $F \vDash \perp \quad F$ is unsatisfiable

Semantics: Exercise

- Drinker's paradox:
- There is someone in the pub such that, if he is drinking, everyone in the pub is drinking.
$-\exists x .(D(x) \rightarrow \forall y . D(y))$
- Is this formula
- valid?
- unsatisfiable?
- satisfiable but not valid?

Theories

- Let $D C(\Gamma)$ be the deductive closure of a set of sentences Γ, i.e. $D C(\Gamma)$ is the smallest set such that
$-\Gamma \subseteq D C(\Gamma)$
$-\left\{\varphi^{\prime} \mid \varphi \in D C(\Gamma), \varphi \vDash \varphi^{\prime}\right\} \subseteq D C(\Gamma)$
- A (first-order) theory T (over signature Z) is a set of deductively closed sentences (over Σ), i.e. $D C(T)=T$
- If $T=D C(\Gamma)$ for some set of sentences Γ, then the elements of Γ are called axioms of T
- A theory T is constistent if false $\notin T$
- We can also view a theory T as the class of all models of T

T-Satisfiability and T-Validity

- M is a model for the theory T if all sentences of T are true in M.
- A formula $\varphi(x)$ is T-satisfiable in a theory T if
- there is a model M of T in which $\varphi(x)$ evaluates to true
- Notation: $M \vDash_{T} \varphi(x)$
- A formula $\varphi(\boldsymbol{x})$ is T-valid in a theory T if
- $\varphi(x)$ evaluates to true in every model M of T.
- Notation: $\vDash_{\mathrm{T}} \varphi(\boldsymbol{x})$

Theory of Equality T_{E}

- also known as theory of uninterpreted functions and theory of free functions
- Signature: $\Sigma_{E}=\{=, a, b, c, \ldots, f, g, h, \ldots, P, Q, R, \ldots$.
- = is a binary predicate, interpreted by axioms
- all constant, function, and predicate symbols.
- Axioms:

1. $\forall x \cdot x=x \quad$ (reflexivity)
2. $\forall x, y, x=y \rightarrow y=x \quad$ (symmetry)
3. $\forall x, y, z . x=y \wedge y=z \rightarrow x=z \quad$ (transitivity)

Theory of Equality T_{E}

- Axioms (continued):

4. for each positive integer n and n-ary function symbol f,

$$
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow f\left(x_{1}, \ldots, x_{n}\right)=\underset{ }{f\left(y_{1}, \ldots, y_{n}\right)} \text { (congruence) }
$$

5. for each positive integer n and n-ary predicate symbol P

$$
\begin{array}{r}
\forall x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} . \wedge_{i} x_{i}=y_{i} \rightarrow\left(P\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow P\left(y_{1}, \ldots, y_{n}\right)\right) \\
\text { (equivalence) }
\end{array}
$$

Theory Example: Peano Arithmetic (Natural Numbers)

- Signature: $\Sigma_{P A}=\{0,1,+, *,=\}$
- Axioms of $T_{P A}$: axioms for theory of equality, T_{E}, plus:

1. $\forall x \cdot \neg(x+1=0)$
2. $\forall x, y \cdot x+1=y+1 \rightarrow x=y$
3. $F[0] \wedge(\forall x . F[x] \rightarrow F[x+1]) \rightarrow \forall x . F[x]$
4. $\forall x \cdot x+0=x$
5. $\forall x, y \cdot x+(y+1)=(x+y)+1$
6. $\forall x . x * 0=0$
7. $\forall x, y \cdot x *(y+1)=x * y+x$
(zero)
(successor)
(induction)
(plus zero)
(plus successor)
(times zero)
(times successor)

Line 3 is an axiom schema for all formulas $F[x]$.

Theory Fragments

- A fragment of a theory T is a syntactically restricted subset of the formulas of the theory
- Example:
- The quantifier-free fragment of theory T is the set of formulas without quantifiers that are valid in T
- Often there are decidable fragments for undecidable theories
- Theory T is decidable if T-validity is decidable for every formula F of T
- There is an algorithm that always terminates with "yes" if F is T-valid, and "no" if $\neg F$ is T-satisfiable

Theory Fragments: Examples

- The theory of equality is undecidable
- its quantifier-free fragment is decidable
- its fragment consisting of formulas of the form $\exists \boldsymbol{y} . \forall \boldsymbol{x} . F(\boldsymbol{x}, \boldsymbol{y})$ where F is quantifier-free and the variables \boldsymbol{x} do not appear below function symbols is decidable (Bernays-Schoenfinkel-Ramsey fragment)
- The theory of integer arithmetic is undecidable
- the theory of linear integer arithmetic is decidable (Presburger arithmetic)
- The theory of arithmetic over reals is decidable

SMT Solvers

SMT Solver Architecture

SMT Solver Architecture

SMT-LIB Syntax

(set-logic QFUFLIA)

choose logic/theories
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (>= (* 2 x) (+ y z)))
(assert $(<(f x)(g x x)))$ assert formula
(assert (> (fy) (g x x)))
(check-sat)
(get-model)
check satisfiability

SMT-LIB Syntax

$\bullet \bullet \bullet$
(check-sat)
(get-model)
(push)
clauses can be added and removed interactively (check-sat)
(pop)
(exit)

Lazy Approach to SMT

Lazy Approach to SMT

$$
g(a)=c \wedge(f(g(a)) \neq f(c) \vee g(a)=d) \wedge c \neq d
$$

Lazy Approach to SMT

Lazy Approach to SMT

- SAT solver returns model $[1, \neg 2, \neg 4]$

Lazy Approach to SMT

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, $\neg 2$] T-unsat

Lazy Approach to SMT

$$
\underbrace{g(a)=c}_{1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{(2)} \vee \underbrace{(g(a)=d)}_{3} \wedge \underbrace{c \neq d}
$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, $\neg 2$] T-unsat
- Send $\left[1, \neg 2 \vee 3, \neg 4, \neg 1 \Delta \Delta^{2}+0\right.$ SAT solver

Lazy Approach to SMT

$$
\underbrace{g(a)=c}_{1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{(2)} \vee \underbrace{(g(a)=d)}_{3} \wedge \underbrace{\mathrm{c} \neq \mathrm{f}}_{~} \mathrm{~d}
$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, $\neg 2$] T-unsat
- Send $[1, \neg 2 \vee 3, \neg 4, \neg 1 \vee 2]$ to SAT solver
- SAT solver returns model [1, 2, 3, $\neg 4]$

Lazy Approach to SMT

$$
\underbrace{g(a)=c}_{1} \wedge \underbrace{(f(g(a)) \neq f(c)}_{\neg 2} \vee \underbrace{g(a)=d)}_{3} \wedge \underbrace{c \neq d}_{\neg 4}
$$

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, ᄀ2] T-unsat
- Send $[1, \neg 2 \vee 3, \neg 4, \neg 1 \vee 2]$ to SAT solver
- SAT solver returns model [1, 2, 3, ᄀ4]
- Theory solver detects [1, 3, ᄀ4] T-unsat

Lazy Approach to SMT

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, ᄀ2] T-unsat
- Send $[1, \neg 2 \vee 3, \neg 4, \neg 1 \vee 2$] to SAT solver
- SAT solver returns model $[1,2,3, \neg 4]$
- Theory solver detects $[1,3, \neg 4]$ T-unsat
- Send [1, $\neg 2 \vee 3, \neg 4, \neg 1 \vee 2, \neg 1 \vee \neg 3 \vee 4$] to SAT solver

Lazy Approach to SMT

- SAT solver returns model $[1, \neg 2, \neg 4]$
- Theory solver detects [1, ᄀ2] T-unsat
- Send [1, $\neg 2 \vee 3, \neg 4, \neg 1 \vee 2$] to SAT solver
- SAT solver returns model $[1,2,3, \neg 4]$
- Theory solver detects $[1,3, \neg 4]$ T-unsat
- Send [1, $\neg 2 \vee 3, \neg 4, \neg 1 \vee 2, \neg 1 \vee \neg 3 \vee 4$] to SAT solver
- SAT solver detects unsat

Lazy Approach to SMT

- SAT solver handles all propositional reasoning
- Theory solvers only need to reason about conjunctions of literals
- How to decide T-satisfiability of individual theories?
- How to compose individual theory solvers to decide theory combinations?
- How to deal with quantifiers?

