Satisfiability Modulo Theories Solvers

 SMT solvers are used as core engines in many tools in
— program analysis and verification
— software engineering
— hardware verification, ...

 Combine propositional satisfiability search techniques
with solvers for specific first-order theories
— Linear arithmetic
— Bit vectors
— Uninterpreted functions
— Arrays, ...



First-Order Logic



First-Order Logic — Syntax Overview

 Functions, Variables, Predicates
—a,bfg XYz PQ, =
* Terms
— a, f(a), g(x, y)
 Atomic formulas, Literals
— P(x,f(a)), —Qly,z)
 Quantifier free formulas
— P(f(a), b) A c =g(d)
 Formulas, sentences
— Vx. Vy.[P(x f(x)) v gly,x) = h(y) ]



Signatures

* Asignature X consists of

— a set of function symbols:

z:|: = {ﬁ g, .. }
— a set of predicate symbols:

2o ={P Q,= true, false, ... }
— and an arity function:
arity: (U X,) > N
e Function symbols with arity O are called
constants
* A countable set X of variables
— disjoint from X



Terms

* Given a signature 2 and a set of variables X

 The set of terms T(Z, X) is the smallest set
formed by the grammar:

teTl::=x xeX
| flt, ..., t) feXt,. ., teT

* The terms T(2,J) are called ground terms.



Atomic Formulas

* Atomic formulas are built from terms and
predicate symbols:

a:=Pt,..t) PeX,t,..,t e€T(ZX)

An atom is ground if t,, ..., t, € T(Z; ,<)

* Literals are (negated) atoms:

[:=a | —a



Quantifier-Free Formulas

 The set QFF(X2,X) of quantifier-free formulas is the
smallest set such that:

@ €QFF (X,X)

..=da

-
P> ¢
PN Q@
AV
Q> @

atoms
negations
bi-implications
conjunction
disjunction

implication



Formulas

* The set of first-order formulas are obtained
by adding the formation rules:

Q= ..
VX.Q universal quant.

dx. ¢ existential quant.

* Free occurrences of variables in a formula are
those not bound by a quantifier.

* A sentence is a first-order formula with no
free variables.



Dreadbury Mansion Mystery

Someone who lived in Dreadbury Mansion killed Aunt Agatha.

Agatha, the Butler and Charles were the only people who lived in
Dreadbury Mansion.

A killer always hates his victim, and is never richer than his victim.

Charles hates no one that aunt Agatha hates.
Agatha hates everyone except the butler.

The butler hates everyone not richer than Aunt Agatha.
The butler also hates everyone Agatha hates.

Wl Ty

No one hates everyone.
Agatha is not the butler.

Who killed Aunt Agatha? - '



Semantics: Structures

e A first-order structure M consists of:
— Domain U; nonempty set of elements.
— Interpretation, M : U"— U for each f € X with arity(f) = n
— Interpretation PM — U" for each P € Z, with arity(P) = n
— Assignment xM € U for every variable x € X

* A formula @is true in a structure M if it evaluates to true
under the given interpretations over the domain U.



Semantics: Evaluation of Terms and Atoms

e Aterm tin a structure M evaluates to
— xM if t = x for some variable x € X

- My, ..., u,) ift=f(t, .., t)andeach
t; evaluates to u;in M

* AnP(t, ..., t ) atom in a structure M evaluates to
b & {true, false}, where

—biff (uy, ..., u,) € PV
— and each t; evaluates to u; in M



Semantics: Evaluation of Formulas

 The satisfaction relation is defined recursively as follows:

—MEa iff a evaluates to true in M
—ME=@ iff M @ (M does not satisfy ¢)
—-ME @< ¢ iff M E @ is equivalentto M E ¢’
—MEQAQ iff MEg@and M E ¢’
-MEQ@V @ iff ME@ or ME ¢’

- ME@p— ¢ iff ME @ implies M £¢’

- MEVX.@ iff forallu e U Mx—u]E ¢

— ME3dXx.@ iff existsu € U, M[x—u] E @



Notation (as for Propositional Logic)

F G: first-order formulas over ./
M: first-order structure over X

s MEF Fistruein M (M is a model of F)
e FF Fis valid
e FEG F — G is valid (F entails G)

e FE | F is unsatisfiable



Semantics: Exercise

* Drinker’s paradox:

— There is someone in the pub such that, if he is drinking,
everyone in the pub is drinking.

— 3x. (D(x) > Yy. D(y))

* |Is this formula
— valid?
— unsatisfiable?
— satisfiable but not valid?




Theories

Let DC(I') be the deductive closure of a set of sentences
I[',i.e. DC(I') is the smallest set such that

— T C DC(I)
—{¢" o € DCI), ¢ F ¢} C DC(I')

A (first-order) theory T (over signature 2) is a set of
deductively closed sentences (over 2),i.e. DC(T) =T

If T=DC(I') for some set of sentences I, then the
elements of I are called axioms of T

A theory T is constistent if false ¢ T

We can also view a theory T as the class of all models of T



T-Satisfiability and T-Validity

* Misamodel for the theory T if all sentences of T are true
in M.

* Aformula @(x) is T-satisfiable in a theory T if
— there is a model M of T in which ¢(x) evaluates to true
— Notation: M E; ¢(x)

* Aformula ¢(x)is T-valid in a theory T if
— ¢(x) evaluates to true in every model M of T.
— Notation: E; ¢(x)



Theory of Equality T,

e also known as theory of uninterpreted functions and
theory of free functions

* Signature:2.={=,0a,b,¢,.., g h, .., BQR, ..}
— =is a binary predicate, interpreted by axioms
— all constant, function, and predicate symbols.

* Axioms:
1. Vx.x=x (reflexivity)
2. VX, y.X=y—>y=x (symmetry)

3. VXx,y,zz.x=yAy=z—>x=z (transitivity)



Theory of Equality T,

* Axioms (continued):

4. for each positive integer n and n-ary function symbol f,

Xy, Xy Vayrr Yoo I\ X = Y0 = f(Xye, X ) = F(V1peens V)
(congruence)

5. for each positive integer n and n-ary predicate symbol P

Y Xpyeory Xy Vayorr Voo I\ X =Y —> (P(Xgpeey X,) <> P(V1peees V)
(equivalence)



Theory Example:
Peano Arithmetic (Natural Numbers)

 Signature: 5, ={0,1, +, *, =}

Axioms of T,, : axioms for theory of equality, T,, plus:

Vx.-(x+1=0) (zero)

VX,y.Xx+1=y+1—>x=y successor)
F[O] A (Vx.F[x] = F[x + 1]) > Vx.F[x] induction)
VX. X+ 0 =X plus zero)

VX, y.x+(y+1)=(x+y)+1
Vx.x*0=0
VX, y. X *x (y+1)=x*y+X

plus successor)
times zero)

N o U s LN

(
(
(
(
(
(times successor)

Line 3 is an axiom schema for all formulas F[x].



Theory Fragments

A fragment of a theory T is a syntactically restricted subset of
the formulas of the theory

Example:

— The quantifier-free fragment of theory T is the set of
formulas without quantifiers that arevalidin T

Often there are decidable fragments for undecidable theories

Theory Tis decidable if T-validity is decidable for every formula
FofT

— There is an algorithm that always terminates with “yes” if F
is T-valid, and “no” if —F is T-satisfiable



Theory Fragments: Examples

 The theory of equality is undecidable
— its quantifier-free fragment is decidable

— its fragment consisting of formulas of the form
dy. Vx. F(x,y) where F is quantifier-free and the
variables x do not appear below function symbols is
decidable (Bernays-Schoenfinkel-Ramsey fragment)

* The theory of integer arithmetic is undecidable

— the theory of linear integer arithmetic is decidable
(Presburger arithmetic)

* The theory of arithmetic over reals is decidable



SMT Solvers



SMT Solver Architecture

Quantifier
Instantiation

Uninterpreted

! Bit-Vectors
Functions

i conflicts
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| propagations

SAT Solver

(DPLL)




SMT Solver Architecture

Quantifier
Instantiation

Uninterpreted

! Bit-Vectors
Functions

| conflicts

i lemmas
| propagations _!
SAT Solver ' SA |

(DPLL) on steroids




SMT-LIB Syntax

(set-logic QFUFLIA)

choose logic/theories

(declare-fun x () Int)

(declare-fun y () Int) —

declare signature

(declare-fun z () Int)
(declare-fun f (Int) Int)

(declare-fun g (Int Int) Int)

(assert (>= (* 2 x) (+vy z2)))

(assert (< (f x) (g x x)))

(assert (> (fy) (g x xX)))
(check-sat)

assert formula

(get-model)

check satisfiability




SMT-LIB Syntax

(check-sat)
(get-model)

( pus h ) clauses can be added
(asser‘t (= y y)) and removed

interactively

(pop)
(exit)



Lazy Approach to SMT



Lazy Approach to SMT

g(a)=c A (f(g(a)) #f(c) Vgla)=d) Ac=d



Lazy Approach to SMT

g(a)=c A (f(g(a)) #f(c) Vgla)=d) Ac=d
\ J \ ; J \ J \_v_}

1 A =2 V 3 ) A —4

Propositional abstraction




Lazy Approach to SMT

g(a)=c A (f(g(a)) #f(c) Vgla)=d) Ac=d
\ Y J \ Y J \ Y J \_Y_}
1 A —2 V 3 ) A 4

e SAT solver returns model [1, =2, —4]



Lazy Approach to SMT

gla)=c A (flga)) = f(c) V gla) = d) A

| |
1 A —2 Y, 3 ) A

e SAT solver returns model [1, =2, —4]
* Theory solver detects [1, —2] T-unsat



Lazy Approach to SMT

f(c)’ \/\g(a) = d)} Ac#d

gla)=c A (f(g(a)) #
1 A -2

V 3 ) A

e SAT solver returns model [1, =2, —4]

* Theory solver detects [1, —2] T-unsat

e Send[1, -2V 3, 4, -1

AR +q SAT solver

theory lemma

v ——



Lazy Approach to SMT

g(a)=c A (f(g(a)) #f(c) Vgla)=d) Ac=d
\ Y J \ Y J \ Y J \_Y_}
1 A —2 V 3 ) A 4

SAT solver returns model [1, =2, —4]
Theory solver detects [1, —2] T-unsat

Send [1, =2 VV 3, =4, =1 \V 2] to SAT solver
SAT solver returns model [1, 2, 3, —4]



Lazy Approach to SMT

g(a)=c A (f(g(a)) #f(c) Vgla)=d) Ac=d
\ Y J \ Y J \ Y J \_Y_}
1 A —2 V 3 ) A 4

SAT solver returns model [1, =2, —4]
Theory solver detects [1, —2] T-unsat
Send [1, =2 VV 3, =4, =1 \V 2] to SAT solver
SAT solver returns model [1, 2, 3, —4]
Theory solver detects [1, 3, 4] T-unsat



Lazy Approach to SMT

g(a)=c A (f(g(a)) =f(c) Vgla)=d) Ac=d
\ Y J \ Y J \ Y J \_Y_}

1 A —2 V 3 ) A —4

SAT solver returns model [1, =2, 4]

Theory solver detects [1, —2] T-unsat

Send [1, =2 VV 3, =4, =1 \/ 2] to SAT solver

SAT solver returns model [1, 2, 3, —4]

Theory solver detects [1, 3, =4] T-unsat

Send [1, =2V3, =4, =1V/2, =1\/—3V4] to SAT solver



Lazy Approach to SMT

g(a)=c A (f(g(a)) =f(c) Vgla)=d) Ac=d
\ Y J \ Y J \ Y J \_Y_}

1 A —2 V 3 ) A —4

SAT solver returns model [1, =2, 4]

Theory solver detects [1, —2] T-unsat

Send [1, =2 VV 3, =4, =1 \/ 2] to SAT solver

SAT solver returns model [1, 2, 3, —4]

Theory solver detects [1, 3, =4] T-unsat

Send [1, =2V3, =4, =1V/2, =1\/—3V4] to SAT solver
SAT solver detects unsat



Lazy Approach to SMT

e SAT solver handles all propositional reasoning

* Theory solvers only need to reason about
conjunctions of literals

— How to decide T-satisfiability of individual
theories?

— How to compose individual theory solvers to
decide theory combinations?

— How to deal with quantifiers?



