
Satisfiability Modulo Theories Solvers 

• SMT solvers are used as core engines in many tools in 
– program analysis and verification 
– software engineering 
– hardware  verification,  … 

• Combine propositional satisfiability search techniques 
with solvers for specific first-order theories 
– Linear arithmetic  
– Bit vectors  
– Uninterpreted functions 
– Arrays,  … 



First-Order Logic 



First-Order Logic – Syntax Overview 

 
• Functions , Variables, Predicates 

– a, b f, g,         x, y, z,           P, Q, =   
• Terms 

– a, f(a), g(x, y) 
• Atomic formulas, Literals 

– P(x,f(a)), Q(y,z) 
• Quantifier free formulas 

– P(f(a), b)  c = g(d) 
• Formulas, sentences 

– x . y . [ P(x, f(x))  g(y,x) = h(y) ] 



Signatures 
• A signature  consists of  

– a set of function symbols: 
   F = { f,  g,  …  } 
– a set of predicate symbols:  
   P = { P, Q,=, true, false, …  } 
– and an arity function:  

  arity: (F [ P)  N 

• Function symbols with arity 0 are called 
constants 

• A countable set X of variables  

– disjoint from   



Terms 

• Given a signature  and a set of variables X 

• The set of terms T(, X) is the smallest set 
formed by the grammar: 

 
       t  T  ::= x   x  X 

  |     f(t1,  …,  tn) f  F t1,  …,  tn  T 
 

• The terms T(,) are called ground terms. 



Atomic Formulas 

• Atomic formulas are built from terms and 
predicate symbols: 
 
a ::= P(t1,  …,  tn) P  P t1,  …,  tn  T (, X)  
 
An atom is ground if t1,  …,  tn  T(F ,) 
 

• Literals are (negated) atoms: 
l ::= a | a 



Quantifier-Free Formulas 

• The set QFF(,X) of quantifier-free formulas is the 
smallest set such that: 

 
      QFF (,X)  ::= a    atoms 

              |      negations 

    |   ’  bi-implications 

    |   ’  conjunction 

    |   ’  disjunction 

    |   ’  implication  



Formulas 

• The set of first-order formulas are obtained 
by adding the formation rules: 

   ::=  … 
  |  x .   universal quant. 

  |  x .   existential quant. 

• Free occurrences of variables in a formula are 
those not bound by a quantifier. 

• A sentence is a first-order formula with no 
free variables. 



Dreadbury Mansion Mystery 
• Someone who lived in Dreadbury Mansion killed Aunt Agatha. 
• Agatha, the Butler and Charles were the only people who lived in 

Dreadbury Mansion.  
• A killer always hates his victim, and is never richer than his victim.  
• Charles hates no one that aunt Agatha hates.  
• Agatha hates everyone except the butler.  
• The butler hates everyone not richer than Aunt Agatha.  
• The butler also hates everyone Agatha hates.  
• No one hates everyone.  
• Agatha is not the butler.  

 
Who killed Aunt Agatha? 



Semantics: Structures 
• A first-order structure M consists of: 

– Domain U; nonempty set of elements. 
– Interpretation, fM : Un  U for each f  F with arity(f) = n 
– Interpretation PM  Un for each P  P with arity(P) = n 

– Assignment xM  U for every variable x  X 

 

• A formula  is true in a structure M if it evaluates to true 
under the given interpretations over the domain U. 

 



• A term t in a structure M evaluates to 
– xM  if t = x for some variable x 2 X 

– fM(u1,  …,  un) if t = f(t1,  …,  tn) and each 
   ti evaluates to ui in M 

 

 

• An P(t1,  …,  tn) atom in a structure M evaluates to  
b 2 {true, false}, where 
– b iff (u1,  …,  un)  PM 

– and each ti evaluates to ui in M 

Semantics: Evaluation of Terms and Atoms 



Semantics: Evaluation of Formulas 
• The satisfaction relation is defined recursively as follows: 

 
– M ⊨ a   iff a evaluates to true in M 

– M ⊨    iff  M ⊭  (M does not satisfy ) 
– M ⊨   ’    iff   M ⊨   is equivalent to  M ⊨ ’ 
– M ⊨   ’    iff   M ⊨   and  M ⊨ ’ 
– M ⊨   ’  iff   M ⊨   or  M ⊨ ’ 
– M ⊨   ’  iff   M ⊨   implies  M ⊨ ’ 
– M ⊨ x.  iff   for all u  U,  M[xu] ⊨  

– M ⊨ x.  iff   exists u  U, M[xu] ⊨  

 



Notation (as for Propositional Logic) 

F, G: first-order formulas over § 
M: first-order structure over § 

 
• M ² F F is true in M (M is a model of F) 

 
• ² F  F is valid 

 
• F ² G F ! G is valid (F entails G) 

 
• F ² ? F is unsatisfiable 



Semantics: Exercise 

• Drinker’s  paradox: 
– There is someone in the pub such that, if he is drinking, 

everyone in the pub is drinking. 

– x. (D(x)  y. D(y))  
 

• Is this formula  
– valid? 
– unsatisfiable?  
– satisfiable but not valid? 



Theories 
• Let DC() be the deductive closure of a set of sentences 

, i.e. DC() is the smallest set such that 
–  µ DC() 
– {’  |  2 DC(),   ² ’} µ DC() 

 
• A (first-order) theory T (over signature ) is a set of 

deductively closed sentences (over ), i.e. DC(T) = T 
 

• If T = DC() for some set of sentences , then the 
elements of  are called axioms of T 

 
• A theory T is constistent if false  T 

 
• We can also view a theory T as the class of all models of T 



T-Satisfiability and T-Validity  

• M is a model for the theory T if all sentences of T are true 
in M.  
 

• A formula (x) is T-satisfiable in a theory T if 
– there is a model M of T in which (x) evaluates to true 
– Notation: M ⊨T (x)  

 
• A formula (x) is T-valid in a theory T if 

– (x) evaluates to true in every model M of T. 

– Notation: ⊨T (x)  
 



Theory of Equality TE 

• also known as theory of uninterpreted functions and 
theory of free functions 

 
• Signature: ΣE = { =,  a,  b,  c,  …,    f,  g,  h,  …,    P,  Q,  R,  ….  } 

– = is a binary predicate, interpreted by axioms 
– all constant, function, and predicate symbols. 

 
• Axioms: 
1. x . x = x     (reflexivity) 
2. x, y. x = y  y = x  (symmetry) 
3. x, y, z. x = y  y = z  x = z  (transitivity) 



Theory of Equality TE 
• Axioms (continued): 

 
4. for each positive integer n and n-ary function symbol f, 
x1,…, xn, y1,…, yn . i xi = yi   f(x1,…, xn) = f(y1,…, yn )     
             (congruence) 
 
5. for each positive integer n and n-ary predicate symbol P 

 x1,…, xn, y1,…, yn . i xi = yi   (P(x1,…, xn)  P(y1,…, yn))   
             (equivalence) 



Theory Example: 
Peano Arithmetic (Natural Numbers) 

• Signature: ΣPA = { 0, 1, +, *, = } 
• Axioms of TPA :  axioms for theory of equality, TE , plus: 
1. ∀x. ¬ (x + 1 = 0)    (zero) 
2. ∀x, y. x + 1 = y + 1  x = y   (successor) 
3. F[0]  ∧ (∀x.F[x]  F[x + 1])  ∀x.F[x]  (induction) 
4. ∀x. x + 0 = x     (plus zero) 
5. ∀x, y. x + (y + 1) = (x + y) + 1    (plus successor) 
6. ∀x. x * 0 = 0     (times zero) 
7. ∀x, y. x * (y + 1) = x * y + x   (times successor) 
 
Line 3 is an axiom schema for all formulas F[x]. 



Theory Fragments 
• A fragment of a theory T is a syntactically restricted subset of 

the formulas of the theory 
• Example: 

– The quantifier-free fragment of theory T is the set of 
formulas without quantifiers that are valid in T 

• Often there are decidable fragments for undecidable theories 
• Theory T is decidable if T-validity is decidable for every formula 

F of T 

– There  is  an  algorithm  that  always  terminates  with    “yes”  if    F 
is  T-valid,  and  “no”  if    :F is T-satisfiable 



Theory Fragments: Examples 

• The theory of equality is undecidable 
– its quantifier-free fragment is decidable 
– its fragment consisting of formulas of the form  

9y. 8x. F(x,y) where F is quantifier-free and the 
variables x do not appear below function symbols is 
decidable (Bernays-Schoenfinkel-Ramsey fragment) 

• The theory of integer arithmetic is undecidable 
– the theory of linear integer arithmetic is decidable 

(Presburger arithmetic) 
• The theory of arithmetic over reals is decidable 



SMT Solvers 



SMT Solver Architecture 

Core 

SAT Solver 
(DPLL) 

Arithmetic 

Uninterpreted 
Functions 

Arrays 

Bit-Vectors 

Quantifier 
Instantiation 

explanations 
conflicts 
lemmas 
propagations 

… … 
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SMT-LIB Syntax 
(set-logic QFUFLIA) 
(declare-fun x () Int) 
(declare-fun y () Int) 
(declare-fun z () Int) 
(declare-fun f (Int) Int) 
(declare-fun g (Int Int) Int) 
(assert (>= (* 2 x) (+ y z))) 
(assert (< (f x) (g x x))) 
(assert (> (f y) (g x x))) 
(check-sat) 
(get-model) 

choose logic/theories 

declare signature 

assert formula 

check satisfiability 



SMT-LIB Syntax 

… 
(check-sat) 
(get-model) 
(push) 
(assert (= x y)) 
(check-sat) 
(pop) 
(exit) 
 

• Available at 
http://rise4fun.com/z3 

clauses can be added 
and removed 
interactively 



                                            
              

 
                                      
                                       
                                            
                                        
                                          
                                                 
                          

Lazy Approach to SMT 



g(a) c  Æ  (f(g(a))  f(c) Ç g(a) d) Æ c  d 
              

 
                                      
                                       
                                            
                                        
                                          
                                                 
                          

Lazy Approach to SMT 



g(a) c  Æ  (f(g(a))  f(c) Ç g(a) d) Æ c  d 
             
 
                                      
                                       
                                            
                                        
                                          
                                                 
                          

Lazy Approach to SMT 

1       Æ  ( :2             Ç  3      )   Æ :4 

Propositional abstraction 



g(a) c  Æ  (f(g(a))  f(c) Ç g(a) d) Æ c  d 
             
 
• SAT solver returns model [1, :2, :4] 
                                       
                                            
                                        
                                          
                                                 
                          

Lazy Approach to SMT 

1       Æ  ( :2             Ç  3      )   Æ :4 



g(a) c  Æ  (f(g(a))  f(c) Ç g(a) d) Æ c  d 
             
 
• SAT solver returns model [1, :2, :4] 
• Theory solver detects [1, :2] T-unsat 
                                            
                                        
                                          
                                                 
                          

Lazy Approach to SMT 

1       Æ  ( :2             Ç  3      )   Æ :4 



g(a) c  Æ  (f(g(a))  f(c) Ç g(a) d) Æ c  d 
             
 
• SAT solver returns model [1, :2, :4] 
• Theory solver detects [1, :2] T-unsat 
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver 
                                        
                                          
                                                 
                          

Lazy Approach to SMT 

1       Æ  ( :2             Ç  3      )   Æ :4 

theory lemma 
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Lazy Approach to SMT 

• SAT solver handles all propositional reasoning 
• Theory solvers only need to reason about 

conjunctions of literals 
– How to decide T-satisfiability of individual 

theories? 
– How to compose individual theory solvers to 

decide theory combinations? 
– How to deal with quantifiers? 


