
Satisfiability Modulo Theories Solvers

• SMT solvers are used as core engines in many tools in
– program analysis and verification
– software engineering
– hardware verification, …

• Combine propositional satisfiability search techniques
with solvers for specific first-order theories
– Linear arithmetic
– Bit vectors
– Uninterpreted functions
– Arrays, …

First-Order Logic

First-Order Logic – Syntax Overview

• Functions , Variables, Predicates

– a, b f, g, x, y, z, P, Q, =
• Terms

– a, f(a), g(x, y)
• Atomic formulas, Literals

– P(x,f(a)), Q(y,z)
• Quantifier free formulas

– P(f(a), b)  c = g(d)
• Formulas, sentences

– x . y . [P(x, f(x))  g(y,x) = h(y)]

Signatures
• A signature  consists of

– a set of function symbols:
 F = { f, g, … }
– a set of predicate symbols:
 P = { P, Q,=, true, false, … }
– and an arity function:

 arity: (F [P)  N

• Function symbols with arity 0 are called
constants

• A countable set X of variables

– disjoint from 

Terms

• Given a signature  and a set of variables X

• The set of terms T(, X) is the smallest set
formed by the grammar:

 t  T ::= x x  X

 | f(t1, …, tn) f  F t1, …, tn  T

• The terms T(,) are called ground terms.

Atomic Formulas

• Atomic formulas are built from terms and
predicate symbols:

a ::= P(t1, …, tn) P  P t1, …, tn  T (, X)

An atom is ground if t1, …, tn  T(F ,)

• Literals are (negated) atoms:
l ::= a | a

Quantifier-Free Formulas

• The set QFF(,X) of quantifier-free formulas is the
smallest set such that:

  QFF (,X) ::= a atoms

 |  negations

 |   ’ bi-implications

 |   ’ conjunction

 |   ’ disjunction

 |   ’ implication

Formulas

• The set of first-order formulas are obtained
by adding the formation rules:

  ::= …
 |  x .  universal quant.

 |  x .  existential quant.

• Free occurrences of variables in a formula are
those not bound by a quantifier.

• A sentence is a first-order formula with no
free variables.

Dreadbury Mansion Mystery
• Someone who lived in Dreadbury Mansion killed Aunt Agatha.
• Agatha, the Butler and Charles were the only people who lived in

Dreadbury Mansion.
• A killer always hates his victim, and is never richer than his victim.
• Charles hates no one that aunt Agatha hates.
• Agatha hates everyone except the butler.
• The butler hates everyone not richer than Aunt Agatha.
• The butler also hates everyone Agatha hates.
• No one hates everyone.
• Agatha is not the butler.

Who killed Aunt Agatha?

Semantics: Structures
• A first-order structure M consists of:

– Domain U; nonempty set of elements.
– Interpretation, fM : Un  U for each f  F with arity(f) = n
– Interpretation PM  Un for each P  P with arity(P) = n

– Assignment xM  U for every variable x  X

• A formula  is true in a structure M if it evaluates to true
under the given interpretations over the domain U.

• A term t in a structure M evaluates to
– xM if t = x for some variable x 2 X

– fM(u1, …, un) if t = f(t1, …, tn) and each
 ti evaluates to ui in M

• An P(t1, …, tn) atom in a structure M evaluates to
b 2 {true, false}, where
– b iff (u1, …, un)  PM

– and each ti evaluates to ui in M

Semantics: Evaluation of Terms and Atoms

Semantics: Evaluation of Formulas
• The satisfaction relation is defined recursively as follows:

– M ⊨ a iff a evaluates to true in M

– M ⊨  iff M ⊭  (M does not satisfy )
– M ⊨   ’ iff M ⊨  is equivalent to M ⊨ ’
– M ⊨   ’ iff M ⊨  and M ⊨ ’
– M ⊨   ’ iff M ⊨  or M ⊨ ’
– M ⊨   ’ iff M ⊨  implies M ⊨ ’
– M ⊨ x. iff for all u  U, M[xu] ⊨ 

– M ⊨ x. iff exists u  U, M[xu] ⊨ 

Notation (as for Propositional Logic)

F, G: first-order formulas over §
M: first-order structure over §

• M ² F F is true in M (M is a model of F)

• ² F F is valid

• F ² G F ! G is valid (F entails G)

• F ² ? F is unsatisfiable

Semantics: Exercise

• Drinker’s paradox:
– There is someone in the pub such that, if he is drinking,

everyone in the pub is drinking.

– x. (D(x)  y. D(y))

• Is this formula
– valid?
– unsatisfiable?
– satisfiable but not valid?

Theories
• Let DC() be the deductive closure of a set of sentences

, i.e. DC() is the smallest set such that
–  µ DC()
– {’ | 2 DC(),  ² ’} µ DC()

• A (first-order) theory T (over signature ) is a set of

deductively closed sentences (over ), i.e. DC(T) = T

• If T = DC() for some set of sentences , then the
elements of  are called axioms of T

• A theory T is constistent if false  T

• We can also view a theory T as the class of all models of T

T-Satisfiability and T-Validity

• M is a model for the theory T if all sentences of T are true
in M.

• A formula (x) is T-satisfiable in a theory T if
– there is a model M of T in which (x) evaluates to true
– Notation: M ⊨T (x)

• A formula (x) is T-valid in a theory T if

– (x) evaluates to true in every model M of T.

– Notation: ⊨T (x)

Theory of Equality TE

• also known as theory of uninterpreted functions and
theory of free functions

• Signature: ΣE = { =, a, b, c, …, f, g, h, …, P, Q, R, …. }

– = is a binary predicate, interpreted by axioms
– all constant, function, and predicate symbols.

• Axioms:
1. x . x = x (reflexivity)
2. x, y. x = y  y = x (symmetry)
3. x, y, z. x = y  y = z  x = z (transitivity)

Theory of Equality TE
• Axioms (continued):

4. for each positive integer n and n-ary function symbol f,
x1,…, xn, y1,…, yn . i xi = yi  f(x1,…, xn) = f(y1,…, yn)
 (congruence)

5. for each positive integer n and n-ary predicate symbol P

 x1,…, xn, y1,…, yn . i xi = yi  (P(x1,…, xn)  P(y1,…, yn))
 (equivalence)

Theory Example:
Peano Arithmetic (Natural Numbers)

• Signature: ΣPA = { 0, 1, +, *, = }
• Axioms of TPA : axioms for theory of equality, TE , plus:
1. ∀x. ¬ (x + 1 = 0) (zero)
2. ∀x, y. x + 1 = y + 1  x = y (successor)
3. F[0] ∧ (∀x.F[x]  F[x + 1])  ∀x.F[x] (induction)
4. ∀x. x + 0 = x (plus zero)
5. ∀x, y. x + (y + 1) = (x + y) + 1 (plus successor)
6. ∀x. x * 0 = 0 (times zero)
7. ∀x, y. x * (y + 1) = x * y + x (times successor)

Line 3 is an axiom schema for all formulas F[x].

Theory Fragments
• A fragment of a theory T is a syntactically restricted subset of

the formulas of the theory
• Example:

– The quantifier-free fragment of theory T is the set of
formulas without quantifiers that are valid in T

• Often there are decidable fragments for undecidable theories
• Theory T is decidable if T-validity is decidable for every formula

F of T

– There is an algorithm that always terminates with “yes” if F
is T-valid, and “no” if :F is T-satisfiable

Theory Fragments: Examples

• The theory of equality is undecidable
– its quantifier-free fragment is decidable
– its fragment consisting of formulas of the form

9y. 8x. F(x,y) where F is quantifier-free and the
variables x do not appear below function symbols is
decidable (Bernays-Schoenfinkel-Ramsey fragment)

• The theory of integer arithmetic is undecidable
– the theory of linear integer arithmetic is decidable

(Presburger arithmetic)
• The theory of arithmetic over reals is decidable

SMT Solvers

SMT Solver Architecture

Core

SAT Solver
(DPLL)

Arithmetic

Uninterpreted
Functions

Arrays

Bit-Vectors

Quantifier
Instantiation

explanations
conflicts
lemmas
propagations

… …

SMT Solver Architecture

Core

SAT Solver
(DPLL)

Arithmetic

Uninterpreted
Functions

Arrays

Bit-Vectors

Quantifier
Instantiation

explanations
conflicts
lemmas
propagations

… …

SAT
on steroids

SMT-LIB Syntax
(set-logic QFUFLIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun z () Int)
(declare-fun f (Int) Int)
(declare-fun g (Int Int) Int)
(assert (>= (* 2 x) (+ y z)))
(assert (< (f x) (g x x)))
(assert (> (f y) (g x x)))
(check-sat)
(get-model)

choose logic/theories

declare signature

assert formula

check satisfiability

SMT-LIB Syntax

…
(check-sat)
(get-model)
(push)
(assert (= x y))
(check-sat)
(pop)
(exit)

• Available at
http://rise4fun.com/z3

clauses can be added
and removed
interactively

    

Lazy Approach to SMT

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

Lazy Approach to SMT

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

Propositional abstraction

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

theory lemma

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver
• SAT solver returns model [1, 2, 3, :4]

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver
• SAT solver returns model [1, 2, 3, :4]
• Theory solver detects [1, 3, :4] T-unsat

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver
• SAT solver returns model [1, 2, 3, :4]
• Theory solver detects [1, 3, :4] T-unsat
• Send [1, :2Ç3, :4, :1Ç2, :1Ç:3Ç4] to SAT solver

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

g(a) c Æ (f(g(a))  f(c) Ç g(a) d) Æ c  d

• SAT solver returns model [1, :2, :4]
• Theory solver detects [1, :2] T-unsat
• Send [1, :2 Ç 3, :4, :1 Ç 2] to SAT solver
• SAT solver returns model [1, 2, 3, :4]
• Theory solver detects [1, 3, :4] T-unsat
• Send [1, :2Ç3, :4, :1Ç2, :1Ç:3Ç4] to SAT solver
• SAT solver detects unsat

Lazy Approach to SMT

1 Æ (:2 Ç 3) Æ :4

Lazy Approach to SMT

• SAT solver handles all propositional reasoning
• Theory solvers only need to reason about

conjunctions of literals
– How to decide T-satisfiability of individual

theories?
– How to compose individual theory solvers to

decide theory combinations?
– How to deal with quantifiers?

