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trace abstraction

given a program P,
find a set of correct programs P1 , ... , Pn

check whether every behavior of P is covered:
                     P ⊆ P1 ⋃ ... ⋃ Pn

P1 , ... , Pn constructed from proofs of traces

check = inclusion between automata



Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [ · · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [ · · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }
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: while(n >= 0)
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p := 0

n != 0
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n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

                                                

correct?







global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;
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local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)
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. . . // work on the task c
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thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

c(1)

end(1)

c(2)

end(2)

c(35)

end(35) len

next

. . . . . .

c(3)

end(34)

threads                      
have acquired block of tasks  
have not yet started working

1, 2, . . . , 35
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validity of assert statement

non-reachability of error location

validity of safety property

validity of invariant

infeasibility of control flow traces

partial correctness

partial correctness for pre/postcondition (true, false) 

all inter-reducible:



x := 1 ; x == -1 ;

x == 1 ; x == -1 ;

infeasible 
⟺

correct  wrt. pre/condition pair  ( true, false )

{ true }                                   { false }

{ true }                                   { false }
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⌃

⌃\{ n-- }
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⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

correct program  =  infeasible trace 



infeasible trace

x := 1 ; x == -1 ;

x == 1 ; x == -1 ;

unsatisfiable formula

x

0 = 1 ^ x

0 = �1

x = 1 ^ x = �1



`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)



`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

(p != 0)

(p==0)



(p != 0)

(p==0)



q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)



q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)
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(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)
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ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)
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possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

all error traces of program have the same proof as sample trace
(same unsatisfiable core of unsatisfiability proof)

correct program (error location is not reachable)
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(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

... from unsatisfiable core of unsatisfiability proof for sample trace

correct program  P1 constructed from a proof 
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`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`
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err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--
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Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not
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Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

does a proof exist for every error trace ?
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`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`
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err
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Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

automaton
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`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`
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Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not
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Fig. 2: Automata A
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which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

inclusion between automata

P                                                   P1                        



Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [ · · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [ · · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }



`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`
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err
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Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not
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Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
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inclusion check fails and returns word in P\P1
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`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`
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err
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Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
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possible to execute the assume statements p!=0 and p==0 without an update of
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1
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sequences of statements that contain p!=0 and p==0 without an update of p in
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ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
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rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
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loop will exit directly, without executing the assert statement.
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use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
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automaton characterizes the case of exactly the executions for which the cor-
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fails).
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the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.
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the case split and then constructing the corresponding correctness arguments,
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fails).
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into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
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The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

⋃
!
⊆

a proof does exist for every trace!
inclusion check succeeds:



Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [ · · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [ · · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }
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previous example:

automata from unsatisfiable core
(for proof of infeasibility of error trace)

add self-loop for each irrelevant statement 
(does not modify variables in unsatisfiable core)



automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)



• learn correct programs from unsatisfiability proofs

• learn correct programs from Hoare triples
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`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q
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q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2
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one path from `
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; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `
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and determine that `
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is not reachable.
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lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
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program P :



of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }
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in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P
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of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
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in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P
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(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
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.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
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The automaton A
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in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `
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to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A
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in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P
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       unsatisfiable core of unsatisfiability proof uses variable X 
  => program constructed from unsatisfiability proof has 
       no self-loop with statement  X++ in 



of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1
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2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

Hoare triples
proving infeasibility :

              infeasibility  ⇔  pre/postcondition pair (true, false)
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Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `
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corresponding to x � 0 to the location `
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and determine that `
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In our implementation [12], the set of Hoare triples comes from an interpo-
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paths that reach the error location via the edge labeled with y==-1.
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automata thus characterize a case of executions in the sense discussed above.
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more times? We need to construct an automaton that covers the case of those
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We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
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holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1
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It has three states, one for each assertion: the initial state q
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for true, the state
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for x � 0, the (only) final state q
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for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `
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and determine that `
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is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.
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{y = 0} x++ {y = 0}
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and determine that `
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paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
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and determine that `
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paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
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lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
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{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
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We use them in the same way as above in order to construct the automaton
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automaton can have arbitrary loops. In contrast, an automaton constructed as
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Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `
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; such a static analysis may assign an abstract value
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and determine that `
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lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
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The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
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We use them in the same way as above in order to construct the automaton
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for true, the state
q
1
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for false. The construction of such a
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automaton can have arbitrary loops. In contrast, an automaton constructed as
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and determine that `
err
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The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
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We use them in the same way as above in order to construct the automaton
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for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
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Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `
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and determine that `
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proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
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{ true } y:=0 {y = 0}
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The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `
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and determine that `
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is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
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correct programs, 
constructed by Hoare proof or by unsatisfiability proof, 

sufficient if inclusion check succeeds



Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [ · · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [ · · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no
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parametrized .....................
proofs that count .............

Buchi automata
nested word automata 
alternating finite automata 
predicate automata
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