
Software Model Checking with Automizer

 (Sequential Programs)

Andreas Podelski

University of Freiburg
Germany

Overall
1. UAutomizer
2. SMACK
3. CPA-Seq

6th Competition on Software Verification (SV-COMP) 2017

Abstract

Refine

 C Program “program correct”

feasible trace

Yes

No
Property

Refine infeasible trace new abstraction

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

trace abstraction

given a program P,
find a set of correct programs P1 , ... , Pn

check whether every behavior of P is covered:
 P ⊆ P1 ⋃ ... ⋃ Pn

P1 , ... , Pn constructed from proofs of traces

check = inclusion between automata

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

correct?

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

global int len; // length of array

global int array(len) : tasks; // array of tasks

global int next; // position of next available task block

global lock m; // lock protecting next

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

// perform block of tasks

7 while (c < end):

8 tasks[c] := 0; // mark task c as started

. . . // work on the task c

9 tasks[c] := 1; // mark task c as finished

10 assert(tasks[c] == 1); // no other thread has started task c

11 c := c + 1;

thread T:

local int : c; // position of current task

local int : end; // position of last task in acquired block

// acquire block of tasks

1 lock(m);

2 if(next + 10 <= len)

3 { c := next; next := next + 10; end := next; }
4 else

5 { c := next; next := next + 10; end := len; }
6 unlock(m);

c(1)

end(1)

c(2)

end(2)

c(35)

end(35) len

next

.

c(3)

end(34)

threads
have acquired block of tasks
have not yet started working

1, 2, . . . , 35

Next ...

• learn correct programs from unsatisfiability proofs

• learn correct programs from Hoare triple proofs

• learn correct programs from unsatisfiability proofs

• learn correct programs from Hoare triple proofs

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

correct?

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

`5:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

no execution violates assertion = no execution reaches error location

`5:

validity of assert statement

non-reachability of error location

validity of safety property

validity of invariant

infeasibility of control flow traces

partial correctness

partial correctness for pre/postcondition (true, false)

all inter-reducible:

x := 1 ; x == -1 ;

x == 1 ; x == -1 ;

infeasible
⟺

correct wrt. pre/condition pair (true, false)

{ true } { false }

{ true } { false }

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

correct program = infeasible trace

infeasible trace

x := 1 ; x == -1 ;

x == 1 ; x == -1 ;

unsatisfiable formula

x

0 = 1 ^ x

0 = �1

x = 1 ^ x = �1

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(p == 0)

(p != 0)

(p==0)

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

(p != 0)

(p==0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

all error traces of program have the same proof as sample trace
(same unsatisfiable core of unsatisfiability proof)

correct program (error location is not reachable)

(p != 0)
(n >= 0)
(p == 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

... from unsatisfiable core of unsatisfiability proof for sample trace

correct program P1 constructed from a proof

(p != 0)
(n >= 0)
(p == 0)

(p != 0)

(p==0)

 P1

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

does a proof exist for every error trace ?

P P1

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

automaton

alphabet: {statements}

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

inclusion between automata

P P1

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

?
⊆

inclusion check fails and returns word in P\P1

P P1

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

new trace:

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

word in P

 P

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

P1

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

word not in P1

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

(n == 0)

(n--)
(n >= 0)

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(n == 0)

(n--)
(n >= 0)

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

(p != 0)
(n >= 0)
(n == 0)
(p := 0)
(n--)
(n >= 0)
(p == 0)

correct program P2 constructed from a proof

... from unsatisfiable core of unsatisfiability proof for sample trace

(n == 0)

(n--)
(n >= 0)

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

⋃
?
⊆

does a proof exist for every trace ?
check inclusion between automata

q

0

q

1

q

2

⌃

⌃

p != 0

p == 0

⌃\{ p := 0 }

p

0

p

1

p

2

p

3

n == 0

n--

n >= 0

⌃

⌃\{ n-- }

⌃\{ n-- }

⌃

Fig. 2: Automata A
1

and A
2

which are a proof of correctness for
P
ex1

(an edge labelled with ⌃ means a transition reading any let-
ter, an edge labeled with ⌃\{ p := 0 }) means a transition reading any letter

except for p := 0 , etc.)

possible to execute the assume statements p!=0 and p==0 without an update of
p in between.

We construct the automaton A
1

in Figure 2 which recognizes the set of all
sequences of statements that contain p!=0 and p==0 without an update of p in
between (and with any statements before or after). I.e., A

1

recognizes the set
of sequences of statements that are infeasible for the same reason as above (i.e.,
the inconsistency of p 6= 0 and p = 0).

A sequence of statements is not accepted by A
1

if it contains p!=0 and p==0

with an update of p in between. The shortest path from `
0

to `
err

with such a
sequence of statements goes from `

2

to `
err

after it has gone from `
2

to `
3

once
before. The sequence of statements on this path is infeasible for a new reason: it
is not possible to execute the assume statement n==0, the update statement n--,
and the assume statement n>=0 unless there is an (other) update of n between
n==0 and n-- or between n-- and n>=0.

We construct the automaton A
2

depicted in Figure 2 which recognizes the
set of all sequences of statements that contain the statements n==0, n--, and
n>=0 without an update of n in between (and with any statements before or
after). I.e., A

2

recognizes the set of sequences of statements that are infeasible
for the same reason as above (i.e., the inconsistency of the three conjuncts n = 0,
n0 = n� 1, and n0 � 0).

To summarize, we have twice taken a path from `
0

to `
err

, analyzed the reason
of its infeasibility, and constructed an automaton which each recognizes the set

`

0

: assume p != 0;

`

1

: while(n >= 0)
{

`

2

: assert p != 0;

if(n == 0)
{

`

3

: p := 0;
}

`

4

: n--;
}

`

0

`

1

`

2

`

3

`

4

`

5

`

err

p != 0

n >= 0

n == 0

p := 0

n != 0

p == 0n--

n < 0

Fig. 1: Example program P
ex1

Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

⋃
!
⊆

a proof does exist for every trace!
inclusion check succeeds:

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

w infeasible?

{ infeasible traces }

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces
Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

Infeasible traces Feasible traces

No corresponding executions At least one corresponding execution

Error traces

Property fails!

Proof Generalization

previous example:

automata from unsatisfiable core
(for proof of infeasibility of error trace)

add self-loop for each irrelevant statement
(does not modify variables in unsatisfiable core)

automata constructed from unsatisfiable core

are not sufficient in general

(verification algorithm not complete)

• learn correct programs from unsatisfiability proofs

• learn correct programs from Hoare triples

• learn correct programs from unsatisfiability proofs

• learn correct programs from Hoare triples

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

all behaviors of program P covered by two programs below:

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

program P :

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

 unsatisfiable core of unsatisfiability proof uses variable X
 => program constructed from unsatisfiability proof has
 no self-loop with statement X++ in

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

Hoare triples
proving infeasibility :

 infeasibility ⇔ pre/postcondition pair (true, false)

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

Hoare triples ⟼ correct program

⟼

correct program

construction of correct program from Floyd-Hoare proof
of infeasibility of trace

(remember: infeasibility ⇔ postcondition false)

control flow graph has one node for each assertion,
one edge for each Hoare triple

(“transition back” = loop, in general not self-loop)

of sequences of statements that are infeasible for the specific reason. The two
automata thus characterize a case of executions in the sense discussed above.

Can one automatically check that every possible execution of P
ex1

falls into
one of the two cases? – The corresponding decision problem is undecidable. We
can, however, check a condition which is stronger, namely that all sequences of
statements on paths from `

0

to `
err

in the control flow graph of P
ex1

fall into
one of the two cases (the condition is stronger because not every such path
corresponds to a possible execution). The set of such sequences is the language
recognized by an automaton which we also call P

ex1

(recall that an automaton
accepts a word exactly if the word labels a path from the initial state to a final
state). Thus, the check amounts to checking the inclusion between automata,
namely

P
ex1

✓ A
1

[A
2

.

To rephrase our summary in the terminology of automata, we have twice taken
a word accepted by the automaton P

ex1

, we have analyzed the reason of the
infeasibility of the word (i.e., the corresponding sequence of statements), and we
have constructed an automaton which recognizes the set of all words for which
the same reason applies.

The view of a program as an automaton over the alphabet of statements may
take some time to get used to because the view ignores the operational meaning
of the program.

Example 2: automata from sets of Hoare triples

It is “easy” to justify the construction of the automata A
1

and A
2

in Example 1:
the infeasibility of a sequence of statements (such as the sequence p!=0 p==0)
is preserved if one adds statements that do not modify any of the variables of
the statements in the sequence (here, the variable p).

The example of the program P
ex2

in Figure 3 shows that sometimes a more
involved justification is required. The sequence of the two statements x:=0 and
x==-1 (which labels a path from `

0

to `
err

) is infeasible. However, the statement
x++ does modify the variable that appears in the two statements. So how can
we account for the paths that loop in `

2

taking the edge labeled x++ one or
more times? We need to construct an automaton that covers the case of those
paths, but we cannot base the construction solely on infeasibility (as we did in
Example 1).

We must base the construction of the automaton on a more powerful form of
correctness argument: Hoare triples. The four Hoare triples below are su�cient
to prove the infeasibility of all those paths. They express that the assertion x � 0
holds after the update x:=0, that it is invariant under the updates y:=0 and
x++, and that is blocks the execution of the assume statement x==-1.

{ true } x:=0 {x � 0}
{x � 0} y:=0 {x � 0}
{x � 0} x++ {x � 0}
{x � 0} x==-1 { false }

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

Hoare triples ⟼ automaton

 sequencing of Hoare triples run of automaton

⟼

⟼

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

all behaviors of program P covered by two programs below:

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

program P :

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

covering check = automata inclusion check

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

second trace

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

automaton from unsatisfiability core
of infeasibility proof for second trace

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

Hoare proof
for infeasibility of second trace

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

automaton from Hoare proof
for infeasibility of second trace

automaton from unsatisfiable core
is a special case of

automaton from Hoare triples

proof for infeasibility of trace
⇒ Hoare triples/assertions exist

“loop invariant: any assertion will do”

of proof for infeasibility of trace

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

`

0

: x := 0;

`

1

: y := 0;

`

2

: while(nondet) {x++;}
assert(x != -1);

assert(y != -1);

`

0

`

1

`

2

`

err

x:=0 y:=0

x++

x==-1

y==-1

Fig. 3: Example program P
ex2

The automaton A
1

in Figure 4 has four transitions, one for each Hoare triple.
It has three states, one for each assertion: the initial state q

0

for true, the state
q
1

for x � 0, the (only) final state q
2

for false. The construction of such a
Floyd-Hoare automaton generalizes to any set of Hoare triples. The resulting
automaton can have arbitrary loops. In contrast, an automaton constructed as
in the preceding example can only have self-loops.

Where does the set of Hoare triples come from? In this example, it may come
from a static analysis [8] applied to the program fragment that corresponds to
one path from `

0

to `
err

; such a static analysis may assign an abstract value
corresponding to x � 0 to the location `

2

and determine that `
err

is not reachable.
In our implementation [12], the set of Hoare triples comes from an interpo-

lating SMT solver [6] which generates the assertion x � 0 from the infeasibility
proof.

The four Hoare triples below are su�cient to prove the infeasibility of all
paths that reach the error location via the edge labeled with y==-1.

{ true } x:=0 { true }
{ true } y:=0 {y = 0}
{y = 0} x++ {y = 0}
{y = 0} y==-1 { false }

We use them in the same way as above in order to construct the automaton
A

2

in Figure 4. The two automata are su�cient to prove the correctness of the
program; i.e., P

ex2

✓ A
1

[A
2

.

q

0

q

1

q

2

x:=0

y:=0

x++

x==-1

q

0

q

1

q

2

x:=0

y:=0

x++

y==-1

Fig. 4: Automata A
1

and A
2

for P
ex2

correct programs,
constructed by Hoare proof or by unsatisfiability proof,

sufficient if inclusion check succeeds

Incremental Construction A1, . . . ,An

à la CEGAR

program P

P is correct P is incorrect

AP ✓ A1 [· · · [An ? w 2 ⌃⇤\CORRECT ?

no

take w such that
w 2 AP\A1 [· · · [An

yes

construct An+1 such that
1. w 2 An+1

2. An+1 ✓ ⌃⇤\CORRECT

yes no

termination
recursion
concurrency
parametrized
proofs that count

Buchi automata
nested word automata
alternating finite automata
predicate automata
Petri net ⊆ counting automaton

automated verification

• Refinement of Trace Abstraction.
 SAS 2009

• Nested interpolants.
 POPL 2010

• Inductive data flow graphs.
 POPL 2013

• Software Model Checking for People Who Love Automata.
 CAV 2013

• Termination Analysis by Learning Terminating Programs.
 CAV 2014

• Proofs that count.
 POPL 2014

• Automated Program Verification.
 LATA 2015

• Fairness Modulo Theory: A New Approach to LTL Software Model Checking.
 CAV 2015

• Proof Spaces for Unbounded Parallelism.
 POPL 2015

• Proving Liveness of Parameterized Programs.
 LICS 2016

