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Example 1: automata from infeasibility proofs

The program P
ex1

in Figure 1 is the adaptation of an example in [17] to our
setting. In our setting we use assert statements to define the correctness of the
program executions. In the example of P

ex1

, an incorrect execution would start
with a non-zero value for the variable p and, at some point, enter the body of the
while loop when the value of p is 0 (and the execution of the assert statement
fails).

We can argue the correctness of P
ex1

rather directly if we split the executions
into two cases, namely according to whether the then branch of the conditional
gets executed at least once during the execution or it does not. If not, then
the value of p is never changed and remains non-zero (and the assert statement
cannot fail). If the then branch of the conditional is executed, then the value of
n is 0, the statement n-- decrements the value of n from 0 to �1, and the while
loop will exit directly, without executing the assert statement.

We can infer a case split like the one above automatically. The key is to
use automata. For one thing, we can use automata as an expressive means to
characterize di↵erent cases of execution paths. For another, instead of first fixing
the case split and then constructing the corresponding correctness arguments,
we can construct an automaton for a given correctness argument so that the
automaton characterizes the case of exactly the executions for which the cor-
rectness argument applies. We will next illustrate this in the example of P

ex1

.
We will describe an execution of P

ex1

through the sequence of statements
on the corresponding path in the control flow graph of P

ex1

; see Figure 1. The
shortest path from `

0

to `
err

goes via `
1

and `
2

. The sequence of statements on
this path is infeasible (it does not have a possible execution) because it is not

no execution violates assertion    =    no execution reaches error location
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automaton

alphabet:  {statements} 



if program is not correct 
then 
set of correct control flow traces is non-regular

if program is correct 
then 
set of correct control flow traces is regular

set of correct traces is non-regular
set of execution traces is non-regular
set of correct execution traces is non-regular



fixed set of statements ⌃

trace ⌧ = sequence of statements = word over ⌃

⌧ = st1 . . . stn

{traces} = ⌃?



for trace ⌧ = st1 . . . stn

{'} ⌧ { }

if

{'} st1 {'1}, {'1} st2 {'2}, . . . , {'n�1} st { }

{correct traces} = {⌧ 2 ⌃? | {'
pre

} ⌧ {'
post

} is valid}



program = control flow graph

nodes (“locations”)
edges labeled by statements

initial location
exit locations



program = control flow graph = automaton

nodes (“locations”)
edges labeled by statements

initial location
exit locations

In order to define correctness, we assume a fixed pair of assertions which we
call the pre/postcondition pair,

('
pre

,'
post

).

The trace ⌧ is defined to be correct if the Hoare triple {'
pre

} ⌧ {'
post

} is valid.

{correct traces} = {⌧ 2 ⌃? | {'
pre

} ⌧ {'
post

} is valid}

The notion of a trace and the correctness of a trace are independent of a
given program. We will next introduce the notion of a program and define the
set of its control flow traces. We can then define the correctness of the program:
the program is correct if all its control flow traces are correct.

Program. We formalize a program P as a special kind of graph which we call
a control flow graph. The vertices of the control flow graph are called locations.
The set of locations Loc contains a distinguished initial location `

0

and a subset
F of distinguished final locations. The edges of the control flow graph are labeled
with statements. We use � for the labeled edge relation; i.e.,

� ✓ Loc⇥⌃ ⇥ Loc.

The edge between the two locations ` and `0 is labeled by the statement st if �
contains the triple (`, st, `0).

Given a program P, we say that the trace ⌧ is a control flow trace if ⌧ labels
a path in the control flow graph between the initial location and a final location
(the path need not be simple, i.e., it may repeat locations and edges).

Since a statement st is a letter of the alphabet ⌃, the program

P = (Loc, �, `
0

, F )

is an automaton over the alphabet ⌃. Since a trace ⌧ is a word (i.e., ⌧ 2 ⌃?),
the automaton P recognizes a set of traces. We write L(P) for the language
recognized by P, which is a language of words over the alphabet ⌃, i.e.,

L(P) ✓ ⌃?.

The condition that a trace ⌧ is a control flow trace translates to the fact that
the word ⌧ is accepted by the automaton P. Thus, the set of control flow traces
is the language over the alphabet ⌃ which is recognized by P, i.e.,

{control flow traces} = L(P).

Correctness of a program P. We define that the program P is correct and write
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correctness of program P via inclusion
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pre
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post

}

if
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program correct

if

{control flow traces} ✓ L(A) ✓ {correct traces}



program correct

if

{control flow traces} ✓ L(A) ✓ {correct traces}

proof rule:
find a regular subset of correct traces

that is large enough to contain all control flow traces



x==0. x==1

x:=0. x==1

infeasible traces



infeasibility =) correctness

trace ⌧ infeasible: {true} ⌧ {false}



execution trace:   feasible control flow trace

 abstraction does not introduce incorrect traces 

regular set of control flow traces = 
abstraction of non-regular set of execution traces



if program is correct 
then 
set of correct control flow traces is regular



because ...
if program is correct 
then 
set of correct control flow traces = set of all control flow traces

if program is correct 
then 
set of correct control flow traces is regular



if program is not correct 
then 
set of correct control flow traces is in general non-regular

if program is correct 
then 
set of correct control flow traces is regular


