every infinite complete⁽¹⁾ directed graph that is edge-colored with finitely many colors contains a monochrome⁽²⁾ infinite complete subgraph

(1) every node has an edge to every other node
 (2) all edges have the same color

termination

a program P with transition relation R_P is *terminating*

- ▶ iff there is no infinite computation $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow \ldots$
- iff there is no sequence of states s_1, s_2, \ldots such that the (s_i, s_{i+1}) 's are contained in the transition relation R_P
- iff the relation R_P does not have an infinite chain
- iff the transition relation R_P is well-founded

here, for simplification, computations can start in any state (every state is an initial state of program P)

predicate abstraction for termination?

- we use predicate abstraction of program P to construct a finite abstract reachability graph, called P[#]
- every computation of P corresponds to path in P[#]
 (but not every path corresponds to a computation)
- ▶ non-reachability by any path in graph $P^{\#} \Rightarrow$ non-reachability by any computation of program P
- finiteness of paths in $P^{\#} \Rightarrow$ finiteness of computations of P
- ▶ if computations of P have unbounded length, then paths in P[#] have unbounded length ⇒ exists cycle in P[#]
 - \Rightarrow exists infinite paths in $P^{\#}$

backward computation for termination?

- terminatingStates
 - = states *s* that do not have an infinite computation
- ► program terminates iff initialStates ⊆ terminatingStates
- exitStates
 - = set of states without successor
- weakestPrecondition(exitStates) U exitStates
 - = set of states with computations of length ≤ 1
- ► etc.
- compute terminatingStates backwards, starting from exitStates, until a fixpoint is reached
- check of inclusion requires abstraction of fixpoint from below
- no good techniques for underapproximation known!

transition invariant

given a program P with transition relation R_P ,

relation T is a *transition invariant* if it contains the transitive closure of the transition relation:

$$R_P^+ \subseteq T$$

► T inductive transition invariant if

$$R_P \subseteq T$$
 and $T \circ R_P \subseteq T$

relational composition:

$$R_1 \circ R_2 = \{(s,s'') \mid (s,s') \in R_1, \ (s',s'') \in R_2\}$$

disjunctively well-founded relation

relation *T* is *disjunctively well-founded* if it is a finite union of well-founded relations:

 $T = T_1 \cup \cdots \cup T_n$

union of well-founded relations is itself not well-founded, in general

proof rule for termination

program P is terminating iff there exists a disjunctively well-founded transition invariant T for P

transition invariant:

$$R_P^+ \subseteq T$$

validity shown via an inductive transition invariant that entails $\ensuremath{\mathcal{T}}$

disjunctively well-founded:

 $T = T_1 \cup \cdots \cup T_n$ where T_1, \ldots, T_n well-founded

well-foundedness of simple relations T_1, \ldots, T_n decidable

completeness of proof rule

- "only if" (\Rightarrow)
- program P is terminating *implies* there exists a disjunctively well-founded transition invariant for P
- trivial:
- ▶ if P is terminating, then both R_P and R_P^+ are well-founded
- choose n = 1 and $T_1 = R_P^+$

ranking function and ranking relation

given: ranking function ffor program P with transition relation R_P ranking relation r_f defined by:

$$r_f = \{(s_1, s_2) \mid f(s_2) < f(s_1)\}$$

- ranking relation r_f is well-founded
- $R_P \subseteq r_f$
- ▶ $R_P^+ \subseteq r_f$ (since r_f is transitive)

soundness of proof rule

► "If" (⇐):

- a program P is terminating *if* there exists a disjunctively well-founded transition invariant for P
- contraposition:

if $R_P^+ \subseteq T$, $T = T_1 \cup \cdots \cup T_n$, and P is *not* terminating, then

at least one of T_1, \ldots, T_n is not well-founded

assume $R_P^+ \subseteq T$, $T = T_1 \cup \cdots \cup T_n$, P non-terminating

► there exists an infinite computation of *P*:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \dots$$

- each pair (s_i, s_j) lies in one of T_1, \ldots, T_n
- one of T_1, \ldots, T_n contains infinitely many pairs (s_i, s_j)
- ► say, T_k
- contradiction if we obtain an infinite chain in T_k (since T_k is a well-founded relation)
- in general, the pairs (s_i, s_j) do not form a chain (are not consecutive)

every infinite complete⁽¹⁾ directed graph that is edge-colored with finitely many colors contains a monochrome⁽²⁾ infinite complete subgraph

(1) every node has an edge to every other node
 (2) all edges have the same color

assume $R_P^+ \subseteq T$, $T = T_1 \cup \cdots \cup T_n$, P non-terminating

▶ there exists an infinite computation of *P*:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$$

- take infinite complete graph formed by s_i 's
- edge = pair (s_i, s_j) in R_P^+ , i.e., in one of T_1, \ldots, T_n
- edges can be colored by n different colors
- exists monochrome infinite complete subgraph
- ▶ all edges in subgraph are colored by, say, T_k
- infinite complete subgraph has an infinite path
- obtain infinite chain in T_k
- contradicition since T_k is a well-founded relation

assume $R_P^+ \subseteq T$, $T = T_1 \cup \cdots \cup T_n$, P non-terminating

there exists an infinite computation of P:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$$

let a choice function f satisfy

$$f(k,\ell) \in \{ T_i \mid (s_k,s_\ell) \in T_i \}$$

for $k, \ell \in \mathbb{N}$ with $k < \ell$

 condition R⁺_P ⊆ T₁ ∪ · · · ∪ T_n implies that f exists (but does not define it uniquely)

• define equivalence relation \simeq on f's domain by

 $(k,\ell)\simeq (k',\ell')$ if and only if $f(k,\ell)=f(k',\ell')$

- relation \simeq is of finite index since the set of T_i 's is finite
- by Ramsey's Theorem there exists an infinite sequence of natural numbers k₁ < k₂ < . . . and fixed m, n ∈ IN such that</p>

$$(k_i, k_{i+1}) \simeq (m, n)$$
 for all $i \in \mathbb{N}$.

example program: ANY-Y

$$\rho_1 : pc = \ell_1 \land pc' = \ell_2$$

$$\rho_1 : pc = \ell_2 \land pc' = \ell_2 \land y > 0 \land y' = y - 1$$

$$T_1 : pc = \ell_1 \land pc' = \ell_2$$

$$T_2 : y > 0 \land y' < y$$

example program BUBBLE (nested loop)

$$\rho_{1}: pc = \ell_{1} \land pc' = \ell_{2} \land x \ge 0 \land x' = x \land y' = 1$$

$$\rho_{2}: pc = \ell_{2} \land pc' = \ell_{2} \land y < x \land x' = x \land y' = y + 1$$

$$\rho_{3}: pc = \ell_{2} \land pc' = \ell_{1} \land y \ge x \land x' = x - 1 \land y' = y$$

$$T_1 : pc = \ell_1 \land pc' = \ell_2$$

$$T_2 : pc = \ell_2 \land pc' = \ell_1$$

$$T_3 : x \ge 0 \land x' < x$$

$$T_4 : x - y > 0 \land x' - y' < x - y$$

program CHOICE

```
l: while (x > 0 && y > 0) {
    if (read_int()) {
        x := x-1;
        y := read_int();
    } else {
        y := y-1;
    }
}
```

$$\rho_1: pc = pc' = \ell \land x > 0 \land y > 0 \land x' = x - 1$$

$$\rho_2: pc = pc' = \ell \land x > 0 \land y > 0 \land x' = x \land y' = y - 1$$

$$T_1: x \ge 0 \land x' < x$$
$$T_2: y > 0 \land y' < y$$

prove termination of program P

- compute a disjunctively well-founded superset of the transitive closure of the transition relation of the program P, i.e.,
- construct a finite number of well-founded relations T₁,..., T_n whose union covers R⁺_P

- 1. find a finite number of relations T_1, \ldots, T_n
- 2. show that the inclusion $R_P^+ \subseteq T_1 \cup \cdots \cup T_n$ holds
- 3. show that each relation T_1, \ldots, T_n is well-founded

transition predicate abstraction

- transition predicate: a binary relation over program states
- transition predicate abstraction: a method to compute transition invariants

$\mathcal{T}_{\mathcal{P}}^{\#}$, domain of abstract transitions

- \blacktriangleright given the set of transition predicates ${\cal P}$
- abstract transition = conjunction of transition predicates
 - $\mathcal{T}_{\mathcal{P}}^{\#} = \{p_1 \wedge \ldots \wedge p_m \mid 0 \leq m \text{ and } p_i \in \mathcal{P} \text{ for } 1 \leq i \leq m\}$.
- $\mathcal{T}_{\mathcal{P}}^{\#}$ is closed under intersection
- \$\mathcal{T}_P^\#\$ contains the assertion true empty intersection, corresponding to the case m = 0 denotes set of all pairs of program states

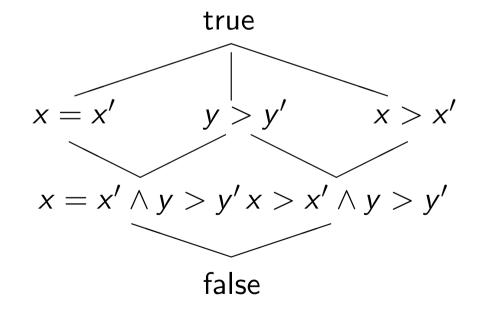
example

set of transition predicates:

$$\mathcal{P} = \{ x' = x, x' < x, y' < y \}$$

set of abstract transitions:

$$\mathcal{T}_{\mathcal{P}}^{\#} = \{\mathsf{true}, x' = x, x' < x, y' < y, x' = x \land y' < y, x' < x \land y' < y, \mathsf{false}\}$$



add transition predicates: x > 0 and y > 0special case, leave the primed variables unconstrained

abstraction function $\boldsymbol{\alpha}$

set of transition predicates ${\mathcal{P}}$ defines the abstraction function

$$\alpha: 2^{\Sigma \times \Sigma} \to \mathcal{T}_{\mathcal{P}}^{\#}$$

which assigns to a relation between states r the smallest abstract transition that is a superset of r, i.e.,

$$\alpha(r) = \bigwedge \{ p \in \mathcal{P} \mid r \subseteq p \}.$$

note that α is extensive:

 $r \subseteq \alpha(r)$

program CHOICE

$$\rho_1: pc = pc' = \ell \land x > 0 \land y > 0 \land x' = x - 1$$

$$\rho_2: pc = pc' = \ell \land x > 0 \land y > 0 \land x' = x \land y' = y - 1$$

$$\alpha(\rho_1) = x > 0 \land y > 0 \land x' < x$$

$$\alpha(\rho_2) = x > 0 \land y > 0 \land x' = x \land y' < y$$

Algorithm (TPA)

Transition invariants via transition predicate abstraction.

Input: program $P = (\Sigma, \mathcal{T}, \rho)$ set of transition predicates \mathcal{P} abstraction α defined by \mathcal{P} **Output:** set of abstract transitions $P^{\#} = \{T_1, \ldots, T_n\}$ such that $T_1 \cup \cdots \cup T_n$ is a transition invariant $P^{\#} := \{ \alpha(\rho_{\tau}) \mid \tau \in \mathcal{T} \}$ repeat $P^{\#} := P^{\#} \cup \{ \alpha(T \circ \rho_{\tau}) \mid T \in P^{\#}, \ \tau \in \mathcal{T}, \ T \circ \rho_{\tau} \neq \emptyset \}$ until no change

correctness of algorithm $\ensuremath{\mathrm{TPA}}$

let $\{T_1, \ldots, T_n\}$ be the set of abstract transitions computed by Algorithm TPA

if every abstract relation T_1, \ldots, T_n is well-founded, then program P is terminating

- union of abstract relations $T_1 \cup \cdots \cup T_n$ is a transition invariant
- if every abstract relation T_1, \ldots, T_n is well-founded, the union $T_1 \cup \cdots \cup T_n$ is a disjunctively well-founded transition invariant
- thus, the program P is terminating

consider program P and the set of transition predicates $\mathcal P$ output of Algorithm TPA is

$$\{x > x', \quad x = x' \land y > y'\}$$

both abstract transitions are well-founded hence P is terminating

- each abstract transition is a conjunction of transition predicates
- ► corresponds to a conjunction g ∧ u of a guard formula g which contains only unprimed variables, and an update formula u which contains primed variables, for example x > 0 ∧ x > x'
- thus, it denotes the transition relation of a simple while program of the form while g { u }
- for example, $x > 0 \land x > x'$ corresponds to while (x > 0) { assume(x > x'); x := x' }
- the well-foundedness of the abstract transition is thus equivalent to the termination of the simple while program
- we have fast and complete procedures that find ranking functions for simple while programs (next lecture)

conclusion

- disjunctively well-founded transition invariants: basis of a new proof rule for program termination
- (next) transition predicate abstraction: basis of automation of proof rule
- new class of automatic methods for proving program termination
 - combine multiple ranking functions for reasoning about termination of complex program fragments
 - rely on abstraction techniques to make this reasoning efficient