
Ramsey’s theorem

every infinite complete

(1)
directed graph

that is edge-colored with finitely many colors

contains a monochrome

(2)
infinite complete subgraph

(1)
every node has an edge to every other node

(2)
all edges have the same color



termination

a program P with transition relation RP is terminating

I
i↵ there is no infinite computation s1!s2!s3! . . .

I
i↵ there is no sequence of states s1, s2, . . . such that the

(si , si+1)’s are contained in the transition relation RP

I
i↵ the relation RP does not have an infinite chain

I
i↵ the transition relation RP is well-founded

here, for simplification, computations can start in any state

(every state is an initial state of program P)



predicate abstraction for termination?

I
we use predicate abstraction of program P to construct a

finite abstract reachability graph, called P

#

I
every computation of P corresponds to path in P

#

(but not every path corresponds to a computation)

I
non-reachability by any path in graph P

# ) non-reachability

by any computation of program P

I
finiteness of paths in P

# ) finiteness of computations of P

I
if computations of P have unbounded length,

then paths in P

#
have unbounded length

) exists cycle in P

#

) exists infinite paths in P

#



backward computation for termination?

I
terminatingStates

= states s that do not have an infinite computation

I
program terminates i↵ initialStates ✓ terminatingStates

I
exitStates

= set of states without successor

I
weakestPrecondition(exitStates) [ exitStates

= set of states with computations of length  1

I
etc.

I
compute terminatingStates backwards, starting from

exitStates, until a fixpoint is reached

I
check of inclusion requires abstraction of fixpoint from below

I
no good techniques for underapproximation known!



transition invariant

given a program P with transition relation RP ,

relation T is a transition invariant

if it contains the transitive closure of the transition relation:

R

+
P ✓ T

I
T inductive transition invariant if

RP ✓ T and T � RP ✓ T

I
relational composition:

R1 � R2 = {(s, s 00) | (s, s 0) 2 R1, (s 0, s 00) 2 R2}



disjunctively well-founded relation

relation T is disjunctively well-founded

if it is a finite union of well-founded relations:

T = T1 [ · · · [ Tn

union of well-founded relations is itself not well-founded, in general



proof rule for termination

program P is terminating i↵ there exists a disjunctively

well-founded transition invariant T for P

I
transition invariant:

R

+
P ✓ T

validity shown via an inductive transition invariant that entails

T

I
disjunctively well-founded:

T = T1 [ · · · [ Tn where T1, . . . ,Tn well-founded

well-foundedness of simple relations T1, . . . ,Tn decidable



completeness of proof rule

I
“only if” ())

I
program P is terminating implies there exists a disjunctively

well-founded transition invariant for P

I
trivial:

I
if P is terminating, then both RP and R

+
P are well-founded

I
choose n = 1 and T1 = R

+
P



ranking function and ranking relation

given: ranking function f

for program P with transition relation RP

ranking relation rf defined by:

rf = {(s1, s2) | f (s2) < f (s1)}

I
ranking relation rf is well-founded

I
RP ✓ rf

I
R

+
P ✓ rf (since rf is transitive)



soundness of proof rule

I
“If” (():

I
a program P is terminating if there exists a disjunctively

well-founded transition invariant for P

I
contraposition:

if

R

+
P ✓ T ,

T = T1 [ · · · [ Tn, and

P is not terminating,

then

at least one of T1, . . . , Tn is not well-founded



assume R+

P

✓ T , T = T
1

[ · · · [ T
n

, P non-terminating

I
there exists an infinite computation of P :

s0 ! s1 ! s2 ! . . .

I
each pair (si , sj) lies in one of T1, . . . , Tn

I
one of T1, . . . , Tn contains infinitely many pairs (si , sj)

I
say, Tk

I
contradiction if we obtain an infinite chain in Tk

(since Tk is a well-founded relation)

I
in general, the pairs (si , sj) do not form a chain

(are not consecutive)



Ramsey’s theorem

every infinite complete

(1)
directed graph

that is edge-colored with finitely many colors

contains a monochrome

(2)
infinite complete subgraph

(1)
every node has an edge to every other node

(2)
all edges have the same color



assume R+

P

✓ T , T = T
1

[ · · · [ T
n

, P non-terminating

I
there exists an infinite computation of P :

s0 ! s1 ! s2 ! . . .

I
take infinite complete graph formed by si ’s

I
edge = pair (si , sj) in R

+
P , i.e., in one of T1, . . . , Tn

I
edges can be colored by n di↵erent colors

I
exists monochrome infinite complete subgraph

I
all edges in subgraph are colored by, say, Tk

I
infinite complete subgraph has an infinite path

I
obtain infinite chain in Tk

I
contradicition since Tk is a well-founded relation



assume R+

P

✓ T , T = T
1

[ · · · [ T
n

, P non-terminating

I
there exists an infinite computation of P :

s0 ! s1 ! s2 ! . . .

I
let a choice function f satisfy

f (k , `) 2 { Ti | (sk , s`) 2 Ti }
for k , ` 2 IN with k < `

I
condition R

+
P ✓ T1 [ · · · [ Tn implies that f exists

(but does not define it uniquely)

I
define equivalence relation ' on f ’s domain by

(k , `) ' (k

0, `0) if and only if f (k , `) = f (k

0, `0)

I
relation ' is of finite index since the set of Ti ’s is finite

I
by Ramsey’s Theorem there exists an infinite sequence of

natural numbers k1 < k2 < . . . and fixed m, n 2 IN such that

(ki , ki+1) ' (m, n) for all i 2 IN.

I
hence (ski , ski+1) 2 Tf (m,n) for all i

I
contradiction: Tf (m,n) is not well-founded



example program: Any-Y

l1: y := read_int();

l2: while (y > 0) {

y := y-1;

}

⇢1 : pc = `1 ^ pc

0
= `2

⇢1 : pc = `2 ^ pc

0
= `2 ^ y > 0 ^ y

0
= y � 1

T1 : pc = `1 ^ pc

0
= `2

T2 : y > 0 ^ y

0 < y



example program Bubble (nested loop)

l1: while (x => 0) {

y := 1;

l2: while (y < x) {

y := y+1;

}

x := x-1;

}

⇢1 : pc = `1 ^ pc

0
= `2 ^ x � 0 ^ x

0
= x ^ y

0
= 1

⇢2 : pc = `2 ^ pc

0
= `2 ^ y < x ^ x

0
= x ^ y

0
= y + 1

⇢3 : pc = `2 ^ pc

0
= `1 ^ y � x ^ x

0
= x � 1 ^ y

0
= y

T1 : pc = `1 ^ pc

0
= `2

T2 : pc = `2 ^ pc

0
= `1

T3 : x � 0 ^ x

0 < x

T4 : x � y > 0 ^ x

0 � y

0 < x � y



program Choice

l: while (x > 0 && y > 0) {

if (read_int()) {

x := x-1;

y := read_int();

} else {

y := y-1;

}

}

⇢1 : pc = pc

0
= ` ^ x > 0 ^ y > 0 ^ x

0
= x � 1

⇢2 : pc = pc

0
= ` ^ x > 0 ^ y > 0 ^ x

0
= x ^ y

0
= y � 1

T1 : x � 0 ^ x

0 < x

T2 : y > 0 ^ y

0 < y



prove termination of program P

I
compute a disjunctively well-founded superset of the transitive

closure of the transition relation of the program P , i.e.,

I
construct a finite number of well-founded relations T1, . . . ,Tn

whose union covers R

+
P



prove termination in 3 steps

1. find a finite number of relations T1, . . . ,Tn

2. show that the inclusion R

+
P ✓ T1 [ · · · [ Tn holds

3. show that each relation T1, . . . ,Tn is well-founded



transition predicate abstraction

I
transition predicate: a binary relation over program states

I
transition predicate abstraction: a method to compute

transition invariants



T #

P , domain of abstract transitions

I
given the set of transition predicates P

I
abstract transition = conjunction of transition predicates

I

T #
P = {p1 ^ . . . ^ pm | 0  m and pi 2 P for 1  i  m} .

I T #
P is closed under intersection

I T #
P contains the assertion true

empty intersection, corresponding to the case m = 0

denotes set of all pairs of program states



example

set of transition predicates:

P = {x 0 = x , x 0 < x , y 0 < y}

set of abstract transitions:

T #
P = {true, x 0 = x , x 0 < x , y 0 < y , x 0 = x^y 0 < y , x 0 < x^y 0 < y , false}

true

⇣⇣⇣⇣⇣⇣

PPPPPP
x = x

0

HHH ���
y > y

0
x > x

0

HHH
���

x = x

0 ^ y > y

0
x > x

0 ^ y > y

0

PPPP
⇣⇣⇣⇣

false

add transition predicates: x > 0 and y > 0

special case, leave the primed variables unconstrained



abstraction function ↵

set of transition predicates P defines the abstraction function

↵ : 2

⌃⇥⌃ ! T #
P

which assigns to a relation between states r the smallest abstract

transition that is a superset of r , i.e.,

↵(r) =
^

{p 2 P | r ✓ p}.

note that ↵ is extensive:

r ✓ ↵(r)



program Choice

l: while (x > 0 && y > 0) {

if (read_int()) {

x := x-1;

y := read_int();

} else {

y := y-1;

}

}

⇢1 : pc = pc

0
= ` ^ x > 0 ^ y > 0 ^ x

0
= x � 1

⇢2 : pc = pc

0
= ` ^ x > 0 ^ y > 0 ^ x

0
= x ^ y

0
= y � 1

↵(⇢1) = x > 0 ^ y > 0 ^ x

0 < x

↵(⇢2) = x > 0 ^ y > 0 ^ x

0
= x ^ y

0 < y



Algorithm (TPA)

Transition invariants via transition predicate abstraction.

Input: program P = (⌃, T , ⇢)
set of transition predicates P
abstraction ↵ defined by P

Output: set of abstract transitions P

#
= {T1, . . . ,Tn}

such that T1 [ · · · [ Tn is a transition invariant

P

#
:= {↵(⇢⌧ ) | ⌧ 2 T }

repeat
P

#
:= P

# [ {↵(T � ⇢⌧ ) | T 2 P

#, ⌧ 2 T , T � ⇢⌧ 6= ;}
until no change



correctness of algorithm TPA

let {T1, . . . ,Tn} be the set of abstract transitions computed by

Algorithm TPA

if every abstract relation T1, . . . ,Tn is well-founded, then program

P is terminating

I
union of abstract relations T1 [ · · · [ Tn is a transition

invariant

I
if every abstract relation T1, . . . ,Tn is well-founded, the union

T1[ · · ·[Tn is a disjunctively well-founded transition invariant

I
thus, the program P is terminating



example

consider program P and the set of transition predicates P
output of Algorithm TPA is

{x > x

0, x = x

0 ^ y > y

0}

both abstract transitions are well-founded

hence P is terminating



I
each abstract transition is a conjunction of transition

predicates

I
corresponds to a conjunction g ^ u of a guard formula g which

contains only unprimed variables, and an update formula u

which contains primed variables, for example x > 0 ^ x > x

0

I
thus, it denotes the transition relation of a simple while

program of the form while g { u }
I

for example, x > 0 ^ x > x

0
corresponds to

while (x > 0) { assume(x > x

0
); x := x

0 }
I

the well-foundedness of the abstract transition is thus

equivalent to the termination of the simple while program

I
we have fast and complete procedures that find ranking

functions for simple while programs

(next lecture)



conclusion

I
disjunctively well-founded transition invariants: basis of a new

proof rule for program termination

I
(next) transition predicate abstraction: basis of automation of

proof rule

I
new class of automatic methods for proving program

termination

I
combine multiple ranking functions for reasoning about

termination of complex program fragments

I
rely on abstraction techniques to make this reasoning e�cient


