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What is program verification?

“Da stelle mehr uns janz dumm und da sage merso ..."
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What is program verification?

Behavior of Behavior of

Program Specification
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Milestones

e Alan M. Turing

e Halting problem '36
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e Henry G. Rice

e Rice's theorem '51

Milestones

The question
“Program |= Specification”
is undecidable.

Even worse, it remains
undecidable for any fixed
specification different from

true and false.
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Milestones

e Robert W. Floyd
e Assertions in flow charts '67

e Turing award '78
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Milestones

e C.A.R. “Tony” Hoare
e Hoare logic '69

e Turing award '80
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Milestones

e Edsger W. Dijkstra

e Guarded commands &
weakest precondition '75

e Turing award '72
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Milestones

e Patrick & Radhia Cousot

e Abstract interpretation '77
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What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)
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What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands
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Program verification

Commands
C ::= skip

| C; C

| x:=e

| if (b) then C else C

| while (b) do C
Xxu=x1| | xn
ex=x|f(e...,e)

bi=xp|fple,...,e) 1!

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Each command is deterministic

'Here x;, are Boolean variables and f, map to the Boolean domain
5/39
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Guarded commands
C ::= skip

| C; C

| havoc x

| CllC

| assume b

| assert b
Xxu=x1| | xn
ex=x|f(e...,e)

bu=xp]| fole,...,e) 1!

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Guarded commands allow for nondeterminism

'Here x;, are Boolean variables and f, map to the Boolean domain
5/39
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What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands
e Program state transformers
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Program states
e Valuation of program variables + program counter
s : Var — Val

e Set of states symbolically described by a predicate
We often mix sets and formulas
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Program verification

Program states

Valuation of program variables + program counter

s : Var — Val

Set of states symbolically described by a predicate
We often mix sets and formulas

A command transforms a state to a state

We can lift the definition to sets of states

Example:
old states S: x=0Ay >2
command C: x:=y—x
new states S": x=y Ay >?2
£{s|(C,s)~ s',s€S}
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Predicate transformers

e Forward computation:

(C,s) ~ ¢
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(C,s) ~ s’ &5 € post({s}, C)
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Predicate transformers
e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)
AL

e Backward computation: Weakest precondition M

(C.s)~ s =secwp({s'}, C)

e Connection between wp and post:

"? < WP(@ C) = (‘f/ post(gi, Q)
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Predicate transformers
e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)

e Backward computation: Weakest precondition

(C,s)~ s =secwp({s'}, C)

e Connection between wp and post: (C is the same as =)

¢ C wp(y, C) — post(p, C) C ¥

8/39
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What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands
e Program state transformers
o Relations between program states
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Program state relations

(C,s) ~s' £ € post({s}, C)
£s¢e Wp({sl}v )
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Program state relations

(C,s) ~s' £ € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

(1>
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Program state relations

(C,s) ~ s &5 € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

>

e In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y
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Program state relations

(C,s) ~ s &5 € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

>

e In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y
p={Gcy. X, y) X =x+1ny =y}
or simply

p=x=x+1ANy =y

10/39
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What are specifications?

e Two major types of properties
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What are specifications?

e Two major types of properties

o Safety (“Something bad will never happen”)
Correctness = unreachability of error states
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What are specifications?

e Two major types of properties

o Safety (“Something bad will never happen”)
Correctness = unreachability of error states

e Liveness (“Something good will eventually happen™)
In this lecture: termination

Empty slides
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Infinity

e Can we handle finite state systems?
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e Everything is decidable, but very (really!) hard

e Can we handle infinite state systems?
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Infinity

e Can we handle finite state systems?
e Everything is decidable, but very (really!) hard

e Can we handle infinite state systems?

e Everything is undecidable except for special subclasses
o Key idea: make everything finite (— abstraction)
—

Empty slides
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Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
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Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”

< © C wp(¢, P)
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Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= » C wp(), P)
= post(cp, P) C

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions
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Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= ¢ C wp(y, P)
<= post(p, P) C 9

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

° precondition, postcondition
iy Piv} > [
-{99/}-F){:@D/} -fz, 19 N &¥/ — (l/

14/39
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Hoare logic

e (Partial) Correctness specification given as annotation with

precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= ¢ C wp(y, P)
<= post(p, P) C 9

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

e Strengthen precondition,  weaken postcondition

(Y Py e

Empty slides
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Hoare logic — Loops

e Problematic case: while loop
{6Ab}G{0}
{¢ }while bdo {6} Co{v}
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Hoare logic — Loops

e Problematic case: while loop
{O0ADb} G{0}
{¢ } while b do {0} Co{v}

e Remains to show: 6 is a loop invariant

p—0and Q A=b—
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Hoare logic — Loops

e Problematic case: while loop
{OANb}Co{0}
{ ¢ } while b do {ﬁ_} G{v}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

e Annotated loop:
wp(1), while b do {6} Cy) =
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Hoare logic — Loops

e Problematic case: while loop
{OANb}Co{0}
{¢ } while b do {0} Co{v}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

° An‘potated loop:
" wp(v, while b do {0} Go) = 6

e Non-annotated loop:
wp(1), while b do () =

15/39
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Hoare logic — Loops

e Problematic case: while loop

{07b}Go{0})
{ Y while b do {8} Co {4}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

e Annotated loop:
wp(y), while b do {0} Cy) =6

e Non-annotated loop:
wp(v), while b do Gy) =7

e Synthesis of loop invariants is a second-order problem

15/39
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

« No!  F1r.23, 5k ip S
Lﬁ#ﬁ)‘éﬂj\ ey

CT)QEJFM
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology

{ E?riu_e} P { false }
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology
{ true} P { false }

Hoare triple valid iff P does not terminate
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Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }
Hoare triple valid iff ¢ is a tautology

{ true} P { false }
Hoare triple valid iff P does not terminate

e However, we have relative completeness:

F{e}P{v} = F{p}P{v}

16 /39
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Hoare logic — Soundness & Completeness

e Soundness

F{etP{v} = FE{e}P{y}

e Completeness

F{v}tP{v} = F{v}P{¥}

“Algorithm™?
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Hoare logic — Soundness & Completeness

e Soundness

F{etP{v} = FE{e}P{y}

e Completeness

F{etP{v} = F{v}P{¥}

“Algorithm:

Systematically enumerate loop invariant(s) 6
Annotate P with 6

Compute wp(), P)

Check ¢ C wp(v, P)

——
Can be interleaved with a search for a counterexample

Empty slides
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Overview

Abstract reachability
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Reachable states

e Alternative characterization of safety/correctness
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i.e., Preach N Perr = (Z)
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e Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

® Vreach = Pinit U U,’ POSti((Pinita p)
In general not computable
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Overapproximation: Find a set ¢ O Qreach
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Reachable states

Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Preach = Yinit U U,’ pOSt’.(SOinita p)
In general not computable

e Overapproximation: Find a set © O Vreach
Nonreachability properties of ¢ transfer to @yeach
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Reachable states

Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Preach = Yinit U U,’ pOSt’.(SOinita p)
In general not computable

e Overapproximation: Find a set ¢ O Preach
Nonreachability properties of ¢ transfer to @reach

e Two questions:

1. How can we find ?
2. How can we check that ¢ O @reach if we do not know @reach?

19/39
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

e In general, we cannot check this
But we can check a sufficient condition

e Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:
* post(p,p) C ¢

Why is this sufficient?
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

e In general, we cannot check this
But we can check a sufficient condition _P1
. . - . - ~
e Check that ¢ is an inductive invariant: _Prchh Y
® Vinit @ < P <
* post(p,p) C ¢ 2
e Why is this sufficient?

©Oreach IS the strongest (i.e., smallest) inductive invariant
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?
e

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢

Why is this sufficient?
©Oreach IS the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant?
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Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢

Why is this sufficient?
©Oreach IS the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true
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Finding inductive invariants

e How can we find an inductive invariant ¢?
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e How can we find an inductive invariant ¢?

e We want to compute it, so its representation and computation
should be finite
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Finding inductive invariants

e How can we find an inductive invariant ¢?

e We want to compute it, so its representation and computation
should be finite

e Abstract interpretation
We use the instantiation predicate abstraction

21/39
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Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}

—
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Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}

e extensive: ¢ C «
e monotonic: ¢ CY = afp) C a(y)
e idempotent: a(yp) = a(a(yp))
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Dynamic building blocks: finite set of predicates Preds

Abstraction function a: ¢ — A{p € Preds| ¢ = p}

e extensive: ¢ C a(p)
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e idempotent: a(y¢) = a(a(p))

Abstract successor function post™ () := a(post(y))

Compute goiach: abstract reachability graph
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Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}
e extensive: ¢ C a(p)
e monotonic: ¢ C 1 = a(p) C a(v)
e idempotent: a(yp) = a(a(yp))
e Abstract successor function post” () := a(post(y))
e Compute goﬁach: abstract reachability graph O‘(?
. . “ni/)
e Fixpoint reached after finitely many iterations

e Overapproximation: @reach C goﬁach
gof:ach is strongest inductive invariant expressible with Preds

e "“Preds = ()"
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Predicate abstraction
e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}
e extensive: ¢ C a(p)

e monotonic: ¢ C 1 = a(p) C a(v)

e idempotent: a(yp) = a(a(yp))
e Abstract successor function post” () := a(post(y))
e Compute goﬁach: abstract reachability graph

e Fixpoint reached after finitely many iterations

e Overapproximation: @reach C goﬁach
gof:ach is strongest inductive invariant expressible with Preds

e "“Preds = ()" is the weakest inductive invariant
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(Counterexample-guided) Abstraction refinement

e |f abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

e Check feasibility of one counterexample

e |f infeasible, use it to refine abstraction
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(Counterexample-guided) Abstraction refinement

If abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

Check feasibility of one counterexample

If infeasible, use it to refine abstraction

For example, use post or wp to compute new predicates

Recompute abstraction and repeat
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Overview

Trace abstraction
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Concept

Consider program as set of traces

Show that all program traces are infeasible

e Trace 7 is infeasible if it satisfies { true } 7 { false }

Construct finite union of sets of infeasible traces and show
containment of all program traces
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Automata

e Instantiate concept using finite automata

P
@) <L)

e Alphabet = set of statements

Empty slides
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Automata

Instantiate concept using finite automata

£(P) < JL(A)

Alphabet = set of statements

Set of traces of P is in general not regular (— abstraction)

Find counterexample trace in L(P) \ |U; L(Ai)

Counterexample can be feasible or infeasible
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(Counterexample-guided) Abstraction refinement

e Abstraction refinement similar to predicate abstraction?
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(Counterexample-guided) Abstraction refinement
S"‘y)

sta
&f~
1 Z 4
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T s
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: b}f"*\‘t €L .
Abstraction refinemént similar to predicate abstraction?

Construct Floyd-Hoare automaton that generalizes infeasibility

f A A 5t

proo { qti quZZS
st

Each location is annotated with a predicate o /ﬂo

Y 9
A transition can be added if the respective Hoare triple is valid z
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(Counterexample-guided) Abstraction refinement

P‘F \Cijﬁ),’

Abstraction refinement similar to predicate abstraction

Construct Floyd-Hoare automaton that generalizes infeasibility
proof

Each location is annotated with a predicate

A transition can be added if the respective Hoare triple is valid

Output of refinement: automaton, but no predicates
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Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?
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Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata
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Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

e This annotation is a safe inductive invariant
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Ranking functions

e A program terminates iff every execution terminates

fotal

e A program terminates iff there exists a ranking function
e Maps to a well-founded set (= no infinite sequence) ')\/

o s strictly decreasing —Dy:=
A ?
e We may need to use ordinals (w) while (">0)

Arguments for several variables often use lexicographic >- -
ranking functions

In general, deciding termination is not possible
(— halting problem)
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From states to transitions

e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp
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From states to transitions

e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Empty slides
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e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

e Transition invariant T
RECT

Empty slides
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From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T

RECT

A transition invariant alone is not sufficient to prove
termination
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From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T {&,x') | Ti

RECT

A transition invariant alone is not sufficient to prove
termination

T must be a finite union of well-founded relations

\

T=TiU---UT,
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From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T

RECT

A transition invariant alone is not sufficient to prove
termination

T must be a finite union of well-founded relations

T=TiU---UT,

Combines several ranking functions
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Invariants vs. transition invariants

e Inductive (safety) invariant /
Dint CI A post(l,p

e Transition invariant /
I

PCT AR T

e p and Rp are basically the same

Conclusion

Empty slides
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Computing transition invariants

e Goal: disjunctively well-founded relation T s.t. R;,r cT

e Can we compute R,J;?
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Computing transition invariants

e Goal: disjunctively well-founded relation T s.t. ng cT

e Can we compute R;?
No, R; is usually infinite, even if it is well-founded

e As usual, we use abstraction, namely abstract transitions

a(p) = /\{p € Preds |£ = p}

Same definition as for abstract states (modulo types)
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Termination

Algorithm

e Assuming a set of predicates Preds, we can use a fixpoint
algorithm as for abstract states to compute T

e It remains to show that T = (T1 U--- U T,) is disjunctively
well-founded

We have not discussed this in detail?, but there are efficient
algorithms for checking well-foundedness of transition
relations obtained from predicate abstraction

2See slide 28 from July 19.
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Reduction to reachability

e We can reduce the question whether T is a transition
invariant for program P to the question whether a
modification P’ of the program satisfies an invariant /

RELT < P I
e We can analyze the right-hand side as usual

e If we find a feasible counterexample to P’ |= /, we know that
T is not a transition invariant for P

boc‘\h"f-\z\ﬁ(q“m o[
e Abstraction refinement: If the counterexample is terminating,

we can add another disjunct T,y1 which we can compute
from the termination argument
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Correctness

Methods to show correctness
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Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
—zq ——
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible
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Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible

Counterexample to correctness
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Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible

Counterexample to correctness

e Feasible error trace
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Termination

Methods to show termination
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Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant
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Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

38/39



Program verification Hoare logic  Abstract reachabilit Trace abstraction  Termination Conclusion  Empty slides
g g y Pty

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

o Feasible nonterminating trace
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Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination
o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop
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Conclusion

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant
Counterexample to termination

o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop
Is this complete?

38/39



Conclusion

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination
o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos
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Have you realized that we used Goto's all the time?

'68 Dijkstra:(Go

To Statemeit)
ttps://doi.org/10.1145%2F362929.362947

Considered Harmful

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE OWE LITTLE.
‘GOt INSTEAD.

o

EH, SCREW G0D PRACTICE.

How BAD CAN 1T BE?
goto main-sub3;

| %

: : ?*CDHPILE#

https://xkcd.com/292/
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