Program Verification
Recap

Christian Schilling

July 25/26, 2017

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Overview

Program verification

1/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

What is program verification?

“Da stelle mehr uns janz dumm und da sage merso ..."

2/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

What is program verification?

Program Specification

Empty slides

2/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

What is program verification?

Behavior of Behavior of

Program Specification

Empty slides

2/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Milestones

e Alan M. Turing

e Halting problem '36

3/39

Program verification Hoare logic ~ Abstract reachability =~ Trace abstraction Termination Conclusion Empty slides

e Henry G. Rice

e Rice's theorem '51

Milestones

The question
“Program |= Specification”
is undecidable.

Even worse, it remains
undecidable for any fixed
specification different from

true and false.

3/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Milestones

e Robert W. Floyd
e Assertions in flow charts '67

e Turing award '78

3/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Milestones

e C.A.R. “Tony” Hoare
e Hoare logic '69

e Turing award '80

3/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Milestones

e Edsger W. Dijkstra

e Guarded commands &
weakest precondition '75

e Turing award '72

3/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Milestones

e Patrick & Radhia Cousot

e Abstract interpretation '77

3/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

4/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

4/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands

4/39

Program verification

Commands
C ::= skip

| C; C

| x:=e

| if (b) then C else C

| while (b) do C
Xxu=x1| | xn
ex=x|f(e...,e)

bi=xp|fple,...,e) 1!

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Each command is deterministic

'Here x;, are Boolean variables and f, map to the Boolean domain
5/39

Program verification Hoare logic ~ Abstract reachability =~ Trace abstraction Termination Conclusion Empty slides

Guarded commands
C ::= skip

| C; C

| havoc x

| CllC

| assume b

| assert b
Xxu=x1| | xn
ex=x|f(e...,e)

bu=xp]| fole,...,e) 1!

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Guarded commands allow for nondeterminism

'Here x;, are Boolean variables and f, map to the Boolean domain
5/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands
e Program state transformers

6/39

Program states

7/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Program states
e Valuation of program variables + program counter
s : Var — Val

e Set of states symbolically described by a predicate
We often mix sets and formulas

Empty slides

7/39

Program verification

Program states

Valuation of program variables + program counter

s : Var — Val

Set of states symbolically described by a predicate
We often mix sets and formulas

A command transforms a state to a state

We can lift the definition to sets of states

Example:
old states S: x=0Ay >2
command C: x:=y—x
new states S": x=y Ay >?2
£{s|(C,s)~ s',s€S}

7/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate transformers

e Forward computation:

(C,s) ~ ¢

8/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate transformers

e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)

8/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Predicate transformers
e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)

e Backward computation:

(C,s) ~ ¢

Empty slides

8/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate transformers
e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)
AL

e Backward computation: Weakest precondition M

(C.s)~ s =secwp({s'}, C)

e Connection between wp and post:

"? < WP(@ C) = (‘f/ post(gi, Q)

8/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

Predicate transformers
e Forward computation: Strongest postcondition

(C,s) ~ s’ &5 € post({s}, C)

e Backward computation: Weakest precondition

(C,s)~ s =secwp({s'}, C)

e Connection between wp and post: (C is the same as =)

¢ C wp(y, C) — post(p, C) C ¥

8/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

What are programs?

e Semantics

e Axiomatic (transition = effect on assertions)
o Operational (transition = set of pairs of states)
e Denotational (program = mathematical object, e.g., function)

e Different views & aspects

e Sequence of commands
e Program state transformers
o Relations between program states

9/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Program state relations

(C,s) ~s' £ € post({s}, C)
£s¢e Wp({sl}v)

10/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Program state relations

(C,s) ~s' £ € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

(1>

10/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion Empty slides

Program state relations

(C,s) ~ s &5 € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

>

e In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y

10/39

Program verification Hoare logic ~ Abstract reachability =~ Trace abstraction Termination Conclusion Empty slides

Program state relations

(C,s) ~ s &5 € post({s}, C)
s € wp({s'}, C)
(s,s) €p

lI>

>

e In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y
p={Gcy. X, y) X =x+1ny =y}
or simply

p=x=x+1ANy =y

10/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

What are specifications?

e Two major types of properties

11/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

What are specifications?

e Two major types of properties

o Safety (“Something bad will never happen”)
Correctness = unreachability of error states

Empty slides

11/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

What are specifications?

e Two major types of properties

o Safety (“Something bad will never happen”)
Correctness = unreachability of error states

e Liveness (“Something good will eventually happen™)
In this lecture: termination

Empty slides

11/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Infinity

e Can we handle finite state systems?

12/39

Program verification Hoare logic Abstract reachability — Trace abstraction = Termination Conclusion Empty slides

Infinity

e Can we handle finite state systems?
e Everything is decidable, but very (really!) hard

12/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Infinity

e Can we handle finite state systems?
e Everything is decidable, but very (really!) hard

e Can we handle infinite state systems?

12/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Infinity

e Can we handle finite state systems?
e Everything is decidable, but very (really!) hard

e Can we handle infinite state systems?
e Everything is undecidable except for special subclasses

Empty slides

12/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Infinity

e Can we handle finite state systems?
e Everything is decidable, but very (really!) hard

e Can we handle infinite state systems?

e Everything is undecidable except for special subclasses
o Key idea: make everything finite (— abstraction)
—

Empty slides

12/39

schillic
Bleistift

Overview

Program verification
Hoare logic
Abstract reachability
Trace abstraction
Termination

Conclusion

13/39

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”

< © C wp(¢, P)

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= » C wp(), P)
= post(cp, P) C

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

14/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic

e (Partial) Correctness specification given as annotation with
precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= ¢ C wp(y, P)
<= post(p, P) C 9

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

° precondition, postcondition
iy Piv} > [
-{99/}-F){:@D/} -fz, 19 N &¥/ — (l/

14/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Hoare logic

e (Partial) Correctness specification given as annotation with

precondition and postcondition

{e}P{v}

<= “assume ¢, execute P, assert v)”
= ¢ C wp(y, P)
<= post(p, P) C 9

e Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

e Strengthen precondition, weaken postcondition

(Y Py e

Empty slides

14/39

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Loops

e Problematic case: while loop
{6Ab}G{0}
{¢ }while bdo {6} Co{v}

15/39

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Loops

e Problematic case: while loop
{O0ADb} G{0}
{¢ } while b do {0} Co{v}

e Remains to show: 6 is a loop invariant

p—0and Q A=b—

15/39

schillic
Bleistift

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Loops

e Problematic case: while loop
{OANb}Co{0}
{ ¢ } while b do {ﬁ_} G{v}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

e Annotated loop:
wp(1), while b do {6} Cy) =

15/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Loops

e Problematic case: while loop
{OANb}Co{0}
{¢ } while b do {0} Co{v}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

° An‘potated loop:
" wp(v, while b do {0} Go) = 6

e Non-annotated loop:
wp(1), while b do () =

15/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Hoare logic — Loops

e Problematic case: while loop

{07b}Go{0})
{ Y while b do {8} Co {4}

e Remains to show: 6 is a loop invariant

p—0and O A—=b—

e Annotated loop:
wp(y), while b do {0} Cy) =6

e Non-annotated loop:
wp(v), while b do Gy) =7

e Synthesis of loop invariants is a second-order problem

15/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

16 /39

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

« No! F1r.23, 5k ip S
Lﬁ#ﬁ)‘éﬂj\ ey

CT)QEJFM

16 /39

schillic
Bleistift

schillic
Bleistift

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology

Empty slides

16 /39

Program verification Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology

{ E?riu_e} P { false }

16 /39

schillic
Bleistift

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }

Hoare triple valid iff ¢ is a tautology
{ true} P { false }

Hoare triple valid iff P does not terminate

16 /39

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Relative completeness

e Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{e}P{v}

e No!

{ true}skip{v }
Hoare triple valid iff ¢ is a tautology

{ true} P { false }
Hoare triple valid iff P does not terminate

e However, we have relative completeness:

F{e}P{v} = F{p}P{v}

16 /39

Program verification ~ Hoare logic Abstract reachability ~ Trace abstraction Termination Conclusion Empty slides

Hoare logic — Soundness & Completeness

e Soundness

F{etP{v} = FE{e}P{y}

e Completeness

F{v}tP{v} = F{v}P{¥}

“Algorithm™?

17/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion

Hoare logic — Soundness & Completeness

e Soundness

F{etP{v} = FE{e}P{y}

e Completeness

F{etP{v} = F{v}P{¥}

“Algorithm:

Systematically enumerate loop invariant(s) 6
Annotate P with 6

Compute wp(), P)

Check ¢ C wp(v, P)

——
Can be interleaved with a search for a counterexample

Empty slides

17/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Overview

Abstract reachability

18/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Reachable states

e Alternative characterization of safety/correctness

19/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

e Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Empty slides

19/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

e Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

® Vreach = Pinit U U,’ POSti((Pinita p)
In general not computable

Empty slides

19/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Reachable states

Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Preach = Yinit U U,’ POSt’.(@inita p)
In general not computable

Overapproximation: Find a set ¢ O Qreach

19/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Reachable states

Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Preach = Yinit U U,’ pOSt’.(SOinita p)
In general not computable

e Overapproximation: Find a set © O Vreach
Nonreachability properties of ¢ transfer to @yeach

19/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Reachable states

Alternative characterization of safety/correctness

e No error state is reachable
i.e., Preach N Perr = (Z)

Preach = Yinit U U,’ pOSt’.(SOinita p)
In general not computable

e Overapproximation: Find a set ¢ O Preach
Nonreachability properties of ¢ transfer to @reach

e Two questions:

1. How can we find ?
2. How can we check that ¢ O @reach if we do not know @reach?

19/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

20/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

e In general, we cannot check this
But we can check a sufficient condition

20/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

e In general, we cannot check this
But we can check a sufficient condition

e Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢

20/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:
* post(p,p) C ¢

Why is this sufficient?

20/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

e In general, we cannot check this
But we can check a sufficient condition _P1
. . - . - ~
e Check that ¢ is an inductive invariant: _Prchh Y
® Vinit @ < P <
* post(p,p) C ¢ 2
e Why is this sufficient?

©Oreach IS the strongest (i.e., smallest) inductive invariant

20/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?
e

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢

Why is this sufficient?
©Oreach IS the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant?

20/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Inductive invariants

e How can we check that ¢ O @reach if we do not know @reach?

In general, we cannot check this
But we can check a sufficient condition

Check that ¢ is an inductive invariant:

® Vinit © @
* post(p,p) C ¢

Why is this sufficient?
©Oreach IS the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20/39

Program verification Hoare logic Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Finding inductive invariants

e How can we find an inductive invariant ¢?

21/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Finding inductive invariants

e How can we find an inductive invariant ¢?

e We want to compute it, so its representation and computation
should be finite

21/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Finding inductive invariants

e How can we find an inductive invariant ¢?

e We want to compute it, so its representation and computation
should be finite

e Abstract interpretation
We use the instantiation predicate abstraction

21/39

Program verification Hoare logic Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

22/39

Program verification Hoare logic Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

22/39

Program verification Hoare logic Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}

—

5

]

fexes
b yes
P'gi x’ryzg

(f)u Kl

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}

e extensive: ¢ C «
e monotonic: ¢ CY = afp) C a(y)
e idempotent: a(yp) = a(a(yp))

22/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}

e extensive: ¢ C a(p)
e monotonic: ¢ C ¥ = a(p) C a(v)
e idempotent: a(y¢) = a(a(p))

e Abstract successor function post” () := a(post(y))

22/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Predicate abstraction

Dynamic building blocks: finite set of predicates Preds

Abstraction function a: ¢ — A{p € Preds| ¢ = p}

e extensive: ¢ C a(p)
e monotonic: ¢ C ¥ = a(p) C a(v)
e idempotent: a(y¢) = a(a(p))

Abstract successor function post™ () := a(post(y))

Compute goiach: abstract reachability graph

22/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

Dynamic building blocks: finite set of predicates Preds

Abstraction function a: ¢ — A{p € Preds| ¢ = p}

e extensive: ¢ C a(p)
e monotonic: ¢ C ¥ = a(p) C a(v)
e idempotent: a(y¢) = a(a(p))

Abstract successor function post™ () := a(post(y))

Compute goﬁach: abstract reachability graph

Fixpoint reached after finitely many iterations

22/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

Dynamic building blocks: finite set of predicates Preds

Abstraction function a: ¢ — A{p € Preds| ¢ = p}

e extensive: ¢ C a(p)
e monotonic: ¢ C ¥ = a(p) C a(v)
e idempotent: a(y¢) = a(a(p))

Abstract successor function post™ () := a(post(y))

Compute goﬁach: abstract reachability graph

Fixpoint reached after finitely many iterations

e Overapproximation: @reach C goﬁach
gof:ach is strongest inductive invariant expressible with Preds

22/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Predicate abstraction

e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}
e extensive: ¢ C a(p)
e monotonic: ¢ C 1 = a(p) C a(v)
e idempotent: a(yp) = a(a(yp))
e Abstract successor function post” () := a(post(y))
e Compute goﬁach: abstract reachability graph O‘(?
. . “ni/)
e Fixpoint reached after finitely many iterations

e Overapproximation: @reach C goﬁach
gof:ach is strongest inductive invariant expressible with Preds

e "“Preds = ()"

22/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides
Predicate abstraction
e Dynamic building blocks: finite set of predicates Preds

e Abstraction function v : ¢ — A{p € Preds | ¢ = p}
e extensive: ¢ C a(p)

e monotonic: ¢ C 1 = a(p) C a(v)

e idempotent: a(yp) = a(a(yp))
e Abstract successor function post” () := a(post(y))
e Compute goﬁach: abstract reachability graph

e Fixpoint reached after finitely many iterations

e Overapproximation: @reach C goﬁach
gof:ach is strongest inductive invariant expressible with Preds

e "“Preds = ()" is the weakest inductive invariant

22/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

(Counterexample-guided) Abstraction refinement

e |f abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

e Check feasibility of one counterexample

e |f infeasible, use it to refine abstraction

23/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

(Counterexample-guided) Abstraction refinement

If abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

Check feasibility of one counterexample

If infeasible, use it to refine abstraction

For example, use post or wp to compute new predicates

Recompute abstraction and repeat

23/39

Program verification Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Overview

Trace abstraction

24/39

Program verification Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Concept

Jx:r4

K x
no

-7

25/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Concept

Consider program as set of traces

Show that all program traces are infeasible

e Trace 7 is infeasible if it satisfies { true } 7 { false }

Construct finite union of sets of infeasible traces and show
containment of all program traces

25/39

Program verification Hoare logic Abstract reachability = Trace abstraction = Termination Conclusion

Automata

e Instantiate concept using finite automata

P
@) <L)

e Alphabet = set of statements

Empty slides

26 /39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Automata

Instantiate concept using finite automata

£(P) < JL(A)

Alphabet = set of statements

Set of traces of P is in general not regular (— abstraction)

Find counterexample trace in L(P) \ |U; L(Ai)

Counterexample can be feasible or infeasible

26 /39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

(Counterexample-guided) Abstraction refinement

e Abstraction refinement similar to predicate abstraction?

27/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

(Counterexample-guided) Abstraction refinement
S"‘y)

sta
&f~
1 Z 4
N5 St Qﬁ, _ st
T s

- O t*)
: b}f"*\‘t €L .
Abstraction refinemént similar to predicate abstraction?

Construct Floyd-Hoare automaton that generalizes infeasibility

f A A 5t

proo { qti quZZS
st

Each location is annotated with a predicate o /ﬂo

Y 9
A transition can be added if the respective Hoare triple is valid z

27/39

schillic
Bleistift

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

(Counterexample-guided) Abstraction refinement

P‘F \Cijﬁ),’

Abstraction refinement similar to predicate abstraction

Construct Floyd-Hoare automaton that generalizes infeasibility
proof

Each location is annotated with a predicate

A transition can be added if the respective Hoare triple is valid

Output of refinement: automaton, but no predicates

27/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction = Termination Conclusion Empty slides

Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?

28/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

28/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Trace abstraction vs. inductive invariants

e Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

e This annotation is a safe inductive invariant

28/39

Program verification ~ Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Overview

\J@’f’i%?

L Y+

x ¢ 716 b
9 XC’(aiK#;
x4+ c | x2%;

o lo\ag

x 210

Termination x:=0 ;Xe 40,' 1t)é X4] j K4+ 6210,

T vz
<0 X3 = ~ Xg

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Ranking functions

e A program terminates iff every execution terminates

fotal

e A program terminates iff there exists a ranking function
e Maps to a well-founded set (= no infinite sequence) ')\/

o s strictly decreasing —Dy:=
A ?
e We may need to use ordinals (w) while (">0)

Arguments for several variables often use lexicographic >- -
ranking functions

In general, deciding termination is not possible
(— halting problem)

30/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

From states to transitions

e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp

31/39

Program verification Hoare logic ~ Abstract reachability ~ Trace abstraction Termination Conclusion

From states to transitions

e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Empty slides

31/39

Program verification Hoare logic Abstract reachability = Trace abstraction Termination Conclusion
From states to transitions

e Correctness — safe reachable states ©reach
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

e Transition invariant T
RECT

Empty slides

31/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T

RECT

A transition invariant alone is not sufficient to prove
termination

31/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T {&,x') | Ti

RECT

A transition invariant alone is not sufficient to prove
termination

T must be a finite union of well-founded relations

\

T=TiU---UT,

31/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction Termination Conclusion Empty slides

From states to transitions

Correctness — safe reachable states @ each
Termination — well-founded transition relation Rp

e We cannot directly show well-foundedness of Rp

Transition invariant T

RECT

A transition invariant alone is not sufficient to prove
termination

T must be a finite union of well-founded relations

T=TiU---UT,

Combines several ranking functions

31/39

schillic
Bleistift

Program verification =~ Hoare logic Abstract reachability =~ Trace abstraction Termination

Invariants vs. transition invariants

e Inductive (safety) invariant /
Dint CI A post(l,p

e Transition invariant /
I

PCT AR T

e p and Rp are basically the same

Conclusion

Empty slides

32/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction Termination Conclusion Empty slides

Computing transition invariants

e Goal: disjunctively well-founded relation T s.t. R;,r cT

e Can we compute R,J;?

33/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction Termination Conclusion Empty slides

Computing transition invariants

e Goal: disjunctively well-founded relation T s.t. ng cT

e Can we compute R;?
No, R; is usually infinite, even if it is well-founded

e As usual, we use abstraction, namely abstract transitions

a(p) = /\{p € Preds |£ = p}

Same definition as for abstract states (modulo types)

33/39

schillic
Bleistift

Termination

Algorithm

e Assuming a set of predicates Preds, we can use a fixpoint
algorithm as for abstract states to compute T

e It remains to show that T = (T1 U--- U T,) is disjunctively
well-founded

We have not discussed this in detail?, but there are efficient
algorithms for checking well-foundedness of transition
relations obtained from predicate abstraction

2See slide 28 from July 19.
34/39

schillic
Bleistift

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Reduction to reachability

e We can reduce the question whether T is a transition
invariant for program P to the question whether a
modification P’ of the program satisfies an invariant /

RELT < P I
e We can analyze the right-hand side as usual

e If we find a feasible counterexample to P’ |= /, we know that
T is not a transition invariant for P

boc‘\h"f-\z\ﬁ(q“m o[
e Abstraction refinement: If the counterexample is terminating,

we can add another disjunct T,y1 which we can compute
from the termination argument

35/39

schillic
Bleistift

Overview

Program verification
Hoare logic
Abstract reachability
Trace abstraction
Termination

Conclusion

36/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction Termination Conclusion Empty slides

Correctness

Methods to show correctness

37/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
—zq ——
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible

37/39

schillic
Bleistift

Program verification Hoare logic Abstract reachabilit Trace abstraction Termination Conclusion Empty slides
g g y Pty

Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible

Counterexample to correctness

37/39

Program verification Hoare logic Abstract reachabilit Trace abstraction Termination Conclusion Empty slides
g g y Pty

Correctness

Methods to show correctness

e Find loop invariants and prove that ¢ C wp(v, P)
e Find a safe inductive invariant

e Show that every trace of the program automaton is infeasible

Counterexample to correctness

e Feasible error trace

37/39

Program verification ~ Hoare logic ~ Abstract reachability Trace abstraction Termination Conclusion Empty slides

Termination

Methods to show termination

38/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

38/39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

38/39

Program verification Hoare logic Abstract reachabilit Trace abstraction Termination Conclusion Empty slides
g g y Pty

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

o Feasible nonterminating trace

38/39

Program verification Hoare logic Abstract reachabilit Trace abstraction Termination Conclusion Empty slides
g g y Pty

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination
o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop

38/39

schillic
Bleistift

Conclusion

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant
Counterexample to termination

o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop
Is this complete?

38/39

Conclusion

Termination

Methods to show termination

e Find ranking function

e Find a disjunctively well-founded inductive transition invariant

Counterexample to termination
o Feasible nonterminating trace

e Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38/39

Program verification

Hoare logic

Abstract reachability

Trace abstraction Termination Conclusion

Have you realized that we used Goto's all the time?

'68 Dijkstra:(Go

To Statemeit)
ttps://doi.org/10.1145%2F362929.362947

Considered Harmful

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE OWE LITTLE.
‘GOt INSTEAD.

o

EH, SCREW G0D PRACTICE.

How BAD CAN 1T BE?
goto main-sub3;

| %

: : ?*CDHPILE#

https://xkcd.com/292/

Empty slides

39/39

https://doi.org/10.1145%2F362929.362947
https://xkcd.com/292/
schillic
Bleistift

40/39

41/39

42/39

43/39

44/39

45/39

46/39

47/39

Program verification Hoare logic

-

(3

(

pi

Abstract reachability Trace abstraction

A SCmng. %%Qrﬂ(

ALvma o %u.a,ro(

Termination Conclusion Empty slides

; 190':1»7

N r?s‘lL

]

48/39

schillic
Bleistift

Program verification ~ Hoare logic ~ Abstract reachability =~ Trace abstraction Termination Conclusion Empty slides

- x¢d xib xd yd yedo 1 |
X'TD x40 x4e xc10 x+4 x> A0 x=9
Yc/lc) X"’G =)
" "" 210, =2
<< 1o /\@
2o

49 /39

schillic
Bleistift

	Program verification
	Hoare logic
	Abstract reachability
	Trace abstraction
	Termination
	Conclusion

