Program Verification Recap

Christian Schilling

July 25/26, 2017

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

What is program verification?

"Da stelle mehr uns janz dumm und da sage mer so ..."

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

What is program verification?

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slides

What is program verification?

- Alan M. Turing
- Halting problem '36

- Henry G. Rice
- Rice's theorem '51

The question
"Program ⊨ Specification"
is undecidable.

Even worse, it remains undecidable for any fixed specification different from true and false.

- Robert W. Floyd
- Assertions in flow charts '67
- Turing award '78

- C.A.R. "Tony" Hoare
- Hoare logic '69
- Turing award '80

- Edsger W. Dijkstra
- Guarded commands & weakest precondition '75
- Turing award '72

- Patrick & Radhia Cousot
- Abstract interpretation '77

- Semantics
 - Axiomatic (transition = effect on assertions)
 - Operational (transition = set of pairs of states)
 - Denotational (program = mathematical object, e.g., function)

- Semantics
 - Axiomatic (transition = effect on assertions)
 - Operational (transition = set of pairs of states)
 - Denotational (program = mathematical object, e.g., function)
- Different views & aspects

- Semantics
 - Axiomatic (transition = effect on assertions)
 - Operational (transition = set of pairs of states)
 - Denotational (program = mathematical object, e.g., function)
- Different views & aspects
 - Sequence of commands

Commands

$$C ::=$$
 skip
 $| C; C$
 $| x :=$ e
 $|$ **if** (b) **then** C **else** C
 $|$ **while** (b) **do** C
 $x ::= x_1 | \cdots | x_n$
 $e ::= x | f(e, \dots, e)$
 $b ::= x_b | f_b(e, \dots, e)$

For simplicity we ignore type errors and restrict ourselves to one variable domain, usually the integers $\mathbb Z$

Each command is deterministic

¹Here x_b are Boolean variables and f_b map to the Boolean domain

Guarded commands

For simplicity we ignore type errors and restrict ourselves to one variable domain, usually the integers $\mathbb Z$

Guarded commands allow for nondeterminism

¹Here x_b are Boolean variables and f_b map to the Boolean domain

- Semantics
 - Axiomatic (transition = effect on assertions)
 - Operational (transition = set of pairs of states)
 - Denotational (program = mathematical object, e.g., function)
- Different views & aspects
 - Sequence of commands
 - Program state transformers

Program states

Program states

• Valuation of program variables + program counter

$$s: \mathsf{Var} \to \mathsf{Val}$$

 Set of states symbolically described by a predicate We often mix sets and formulas

Program states

Valuation of program variables + program counter

$$s: \mathsf{Var} \to \mathsf{Val}$$

- Set of states symbolically described by a predicate We often mix sets and formulas
- A command transforms a state to a state
- We can lift the definition to sets of states Example:

old states
$$S$$
: $x = 0 \land y > 2$
command C : $x := y - x$
new states S' : $x = y \land y > 2$
 $\triangleq \{s' \mid (C, s) \leadsto s', s \in S\}$

Predicate transformers

Forward computation:

$$(C,s) \leadsto s'$$

Predicate transformers

• Forward computation: Strongest postcondition

$$(C,s) \leadsto s' \triangleq s' \in post(\{s\},C)$$

Forward computation: Strongest postcondition

$$(C,s) \leadsto s' \triangleq s' \in post(\{s\},C)$$

Backward computation:

$$(C,s) \leadsto s'$$

Predicate transformers

Forward computation: Strongest postcondition

$$(C,s) \leadsto s' \triangleq s' \in post(\{s\},C)$$

Backward computation: Weakest precondition

$$(\underline{C},\underline{s}) \leadsto \underline{s}' \triangleq \underline{s} \in wp(\{\underline{s}'\},C)$$

• Connection between wp and post:

Predicate transformers

Forward computation: Strongest postcondition

$$(C,s) \rightsquigarrow s' \triangleq s' \in post(\{s\},C)$$

Backward computation: Weakest precondition

$$(C,s) \rightsquigarrow s' \triangleq s \in wp(\{s'\},C)$$

Connection between wp and post: (⊆ is the same as ⇒)

$$\varphi \subseteq wp(\psi, C) \iff post(\varphi, C) \subseteq \psi$$

- Semantics
 - Axiomatic (transition = effect on assertions)
 - Operational (transition = set of pairs of states)
 - Denotational (program = mathematical object, e.g., function)
- Different views & aspects
 - Sequence of commands
 - Program state transformers
 - Relations between program states

$$(C,s) \leadsto s' \triangleq s' \in post(\{s\},C)$$

 $\triangleq s \in wp(\{s'\},C)$

Hoare logic

$$(C,s) \leadsto s' \triangleq s' \in post(\{s\},C)$$

$$\triangleq s \in wp(\{s'\},C)$$

$$\triangleq (s,s') \in \rho$$

Hoare logic

$$(C,s) \rightsquigarrow s' \triangleq s' \in post(\{s\}, C)$$

 $\triangleq s \in wp(\{s'\}, C)$
 $\triangleq (s,s') \in \rho$

 In logical characterization: predicates over unprimed and primed variables

Example: x := x + 1 for variables x and y

Hoare logic

Program state relations

$$(C,s) \rightsquigarrow s' \triangleq s' \in post(\{s\}, C)$$

 $\triangleq s \in wp(\{s'\}, C)$
 $\triangleq (s,s') \in \rho$

 In logical characterization: predicates over unprimed and primed variables

Example:
$$x := x + 1$$
 for variables x and y
$$\rho = \{(x, y, x', y') \mid x' = x + 1 \land y' = y\}$$

or simply

$$\rho \equiv x' = x + 1 \land y' = y$$

What are specifications?

• Two major types of properties

What are specifications?

- Two major types of properties
 - Safety ("Something bad will never happen")
 Correctness = unreachability of error states

What are specifications?

- Two major types of properties
 - Safety ("Something bad will never happen")
 Correctness = unreachability of error states
 - Liveness ("Something good will eventually happen")
 In this lecture: termination

Infinity

• Can we handle finite state systems?

Infinity

- Can we handle finite state systems?
 - Everything is decidable, but very (really!) hard

Infinity

- Can we handle finite state systems?
 - Everything is decidable, but very (really!) hard
- Can we handle infinite state systems?

Infinity

- Can we handle finite state systems?
 - Everything is decidable, but very (really!) hard
- Can we handle infinite state systems?
 - Everything is undecidable except for special subclasses

Infinity

- Can we handle finite state systems?
 - Everything is decidable, but very (really!) hard
- Can we handle infinite state systems?
 - Everything is undecidable except for special subclasses
 - Key idea: make everything finite (→ abstraction)

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

Hoare logic

 (Partial) Correctness specification given as annotation with precondition and postcondition

$$\{\varphi\}P\{\psi\}$$
 \iff "assume φ , execute P , assert ψ "

Hoare logic

 (Partial) Correctness specification given as annotation with precondition and postcondition

$$\left\{ \varphi \right\} P \left\{ \psi \right\}$$
 \iff "assume φ , execute P , assert ψ "
$$\iff \varphi \subseteq wp(\psi, P)$$

• (Partial) Correctness specification given as annotation with precondition and postcondition

$$\left\{ \begin{array}{l} \varphi \right\} P \left\{ \psi \right\} \\ \Longleftrightarrow \text{ "assume } \varphi \text{, execute } P \text{, assert } \psi'' \\ \Longleftrightarrow \varphi \subseteq wp(\psi,P) \\ \Longleftrightarrow post(\varphi,P) \subseteq \psi \\ \end{array}$$

 Calculus (e.g., wp) to automatically derive correctness Generates verification conditions

Hoare logic

• (Partial) Correctness specification given as annotation with precondition and postcondition

$$\left\{ \begin{array}{l} \varphi \right\} P \left\{ \begin{array}{l} \psi \right\} \\ \Longleftrightarrow \text{ "assume } \varphi, \text{ execute } P, \text{ assert } \psi'' \\ \Longleftrightarrow \varphi \subseteq wp(\psi, P) \\ \Longleftrightarrow post(\varphi, P) \subseteq \psi \end{array}$$

- Calculus (e.g., wp) to automatically derive correctness Generates verification conditions
- precondition, postcondition

$$\frac{\{\varphi\}P\{\psi\}}{\{\varphi'\}P\{\psi'\}} \quad \underline{P}^{1} \longrightarrow P \qquad \qquad \psi \longrightarrow \psi I$$

Hoare logic

• (Partial) Correctness specification given as annotation with precondition and postcondition

$$\left\{ \varphi \right\} P \left\{ \psi \right\} \\ \iff \text{``assume } \varphi \text{, execute } P \text{, assert } \psi'' \\ \iff \varphi \subseteq wp(\psi, P) \\ \iff post(\varphi, P) \subseteq \psi$$

- Calculus (e.g., wp) to automatically derive correctness Generates verification conditions
- Strengthen precondition, weaken postcondition

$$\frac{\{\varphi\}P\{\psi\}}{\{\varphi'\}P\{\psi'\}}\varphi'\to\varphi \text{ and } \psi\to\psi'$$

Hoare logic - Loops

Problematic case: while loop

$$\frac{\{\theta \wedge b\} C_0 \{\theta\}}{\{\varphi\} \text{ while } b \text{ do } \{\theta\} C_0 \{\psi\}}$$

Hoare logic - Loops

Problematic case: while loop

$$\frac{ \left\{ \left. \theta \wedge b \right\} C_0 \left\{ \right. \theta \right\} }{ \left\{ \left. \varphi \right\} \right. \text{while } b \text{ do } \left\{ \theta \right\} C_0 \left\{ \left. \psi \right. \right\} } \varphi \rightarrow \theta \text{ and } \theta \wedge \neg b \rightarrow \psi$$

• Remains to show: θ is a loop invariant

• Problematic case: while loop

$$\frac{ \left\{ \left. \theta \wedge b \right. \right\} C_0 \left\{ \left. \theta \right. \right\} }{ \left\{ \left. \varphi \right. \right\} \text{ while } b \text{ do } \left\{ \theta \right\} C_0 \left\{ \left. \psi \right. \right\} } \varphi \to \theta \text{ and } \theta \wedge \neg b \to \psi$$

- Remains to show: θ is a loop invariant
- Annotated loop: $wp(\psi, \mathbf{while} \ b \ \mathbf{do} \ \{\theta\} \ C_0) =$

Hoare logic - Loops

• Problematic case: while loop

$$\frac{ \left\{ \left. \theta \wedge b \right. \right\} C_0 \left\{ \left. \theta \right. \right\} }{ \left\{ \left. \varphi \right. \right\} \text{ while } b \text{ do } \left\{ \theta \right\} \ C_0 \left\{ \left. \psi \right. \right\} } \ \varphi \rightarrow \theta \text{ and } \theta \wedge \neg b \rightarrow \psi$$

- Remains to show: θ is a loop invariant
- Annotated loop: $wp(\psi, \mathbf{while} \ b \ \mathbf{do} \ \{\theta\} \ C_0) = \theta$
- Non-annotated loop: $wp(\psi, \mathbf{while} \ b \ \mathbf{do} \ C_0) =$

Hoare logic - Loops

Problematic case: while loop

$$\frac{\left\{\theta \wedge b\right\} C_0 \left\{\theta\right\}}{\left\{\varphi\right\} \text{ while } b \text{ do } \left\{\theta\right\} C_0 \left\{\psi\right\}} \varphi \to \theta \text{ and } \theta \wedge \neg b \to \psi$$

- Remains to show: θ is a loop invariant
- Annotated loop: $wp(\psi, \text{while } b \text{ do } \{\theta\} \ C_0) = \theta$
- Non-annotated loop: $wp(\psi, \mathbf{while}\ b\ \mathbf{do}\ C_0) = ?$
- Synthesis of loop invariants is a second-order problem

• Can we derive any valid partial correctness specification in Hoare calculus automatically?

$$\{\,\varphi\,\}\,P\,\{\,\psi\,\}$$

Hoare logic

Hoare logic – Relative completeness

 Can we derive any valid partial correctness specification in Hoare calculus automatically?

• Can we derive any valid partial correctness specification in Hoare calculus automatically?

$$\{\varphi\}P\{\psi\}$$

No!

$$\{ \ true \} \ \mathbf{skip} \ \{ \ \psi \ \}$$

Hoare triple valid iff ψ is a tautology

• Can we derive any valid partial correctness specification in Hoare calculus automatically?

$$\{\varphi\}P\{\psi\}$$

No!

$$\{ true \} skip \{ \psi \}$$

Hoare triple valid iff ψ is a tautology

 Can we derive any valid partial correctness specification in Hoare calculus automatically?

$$\{\,\varphi\,\}\,P\,\{\,\psi\,\}$$

No!

$$\{ \ true \} \ \mathbf{skip} \ \{ \ \psi \ \}$$

Hoare triple valid iff ψ is a tautology

Hoare triple valid iff P does not terminate

 Can we derive any valid partial correctness specification in Hoare calculus automatically?

$$\{\,\varphi\,\}\,P\,\{\,\psi\,\}$$

No!

$$\{ true \}$$
 skip $\{ \psi \}$

Hoare triple valid iff ψ is a tautology

Hoare triple valid iff P does not terminate

However, we have relative completeness:

$$\models \{\varphi\}P\{\psi\} \implies \vdash \{\varphi\}P\{\psi\}$$

Hoare logic – Soundness & Completeness

Soundness

$$\vdash \{\varphi\} P \{\psi\} \implies \models \{\varphi\} P \{\psi\}$$

Completeness

$$\models \{\varphi\} P \{\psi\} \implies \vdash \{\varphi\} P \{\psi\}$$

"Algorithm"?

Hoare logic – Soundness & Completeness

Soundness

$$\vdash \{\varphi\} P \{\psi\} \implies \models \{\varphi\} P \{\psi\}$$

Completeness

$$\models \{\varphi\} P \{\psi\} \implies \vdash \{\varphi\} P \{\psi\}$$

"Algorithm":

- Systematically enumerate loop invariant(s) θ
- Annotate P with θ
- Compute $wp(\psi, P)$
- Check $\varphi \subseteq wp(\psi, P)$

Can be interleaved with a search for a counterexample

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

Alternative characterization of safety/correctness

- Alternative characterization of safety/correctness
- No error state is reachable i.e., $\varphi_{\text{reach}} \cap \varphi_{\text{err}} = \emptyset$

- Alternative characterization of safety/correctness
- No error state is reachable i.e., $\varphi_{\text{reach}} \cap \varphi_{\text{err}} = \emptyset$
- $\varphi_{\mathsf{reach}} = \varphi_{\mathsf{init}} \cup \bigcup_i \mathsf{post}^i(\varphi_{\mathsf{init}}, \rho)$ In general not computable

- Alternative characterization of safety/correctness
- No error state is reachable i.e., $\varphi_{\text{reach}} \cap \varphi_{\text{err}} = \emptyset$
- $\varphi_{\mathsf{reach}} = \varphi_{\mathsf{init}} \cup \bigcup_i \mathit{post}^i(\varphi_{\mathsf{init}}, \rho)$ In general not computable
- Overapproximation: Find a set $\varphi \supseteq \varphi_{reach}$

- Alternative characterization of safety/correctness
- No error state is reachable i.e., $\varphi_{\text{reach}} \cap \varphi_{\text{err}} = \emptyset$
- $\varphi_{\mathsf{reach}} = \varphi_{\mathsf{init}} \cup \bigcup_i \mathit{post}^i(\varphi_{\mathsf{init}}, \rho)$ In general not computable
- Overapproximation: Find a set $\varphi\supseteq \varphi_{\mathsf{reach}}$ Nonreachability properties of φ transfer to φ_{reach}

- Alternative characterization of safety/correctness
- No error state is reachable
 i.e., φ_{reach} ∩ φ_{err} = ∅
- $\varphi_{\text{reach}} = \varphi_{\text{init}} \cup \bigcup_i post^i(\varphi_{\text{init}}, \rho)$ In general not computable
- Overapproximation: Find a set $\varphi \supseteq \varphi_{\mathsf{reach}}$ Nonreachability properties of φ transfer to φ_{reach}
- Two questions:
 - 1. How can we find φ ?
 - 2. How can we check that $\varphi \supseteq \varphi_{\text{reach}}$ if we do not know φ_{reach} ?

• How can we check that $\varphi \supseteq \varphi_{\mathsf{reach}}$ if we do not know φ_{reach} ?

- How can we check that $\varphi \supseteq \varphi_{\mathsf{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this
 But we can check a sufficient condition

- How can we check that $\varphi \supseteq \varphi_{\text{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this But we can check a sufficient condition
- Check that φ is an inductive invariant:

 - $\varphi_{\mathsf{init}} \subseteq \varphi$ $\mathsf{post}(\varphi, \rho) \subseteq \varphi$

- How can we check that $\varphi \supseteq \varphi_{\mathsf{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this
 But we can check a sufficient condition
- Check that φ is an inductive invariant:
 - $\varphi_{\mathsf{init}} \subseteq \varphi$
 - $post(\varphi, \rho) \subseteq \varphi$
- Why is this sufficient?

- How can we check that $\varphi \supseteq \varphi_{\text{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this But we can check a sufficient condition
- Check that φ is an inductive invariant:
 - $\varphi_{\mathsf{init}} \subseteq \varphi$
 - $post(\varphi, \rho) \subseteq \varphi$

• Why is this sufficient? $\varphi_{\rm reach}$ is the strongest (i.e., smallest) inductive invariant

- How can we check that $\varphi\supseteq\varphi_{\mathsf{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this But we can check a sufficient condition
- Check that φ is an inductive invariant:
 - $\varphi_{\text{init}} \subseteq \varphi$ • $post(\varphi, \rho) \subseteq \varphi$
- Why is this sufficient? φ_{reach} is the strongest (i.e., smallest) inductive invariant What is the weakest inductive invariant?

- How can we check that $\varphi \supseteq \varphi_{\mathsf{reach}}$ if we do not know φ_{reach} ?
- In general, we cannot check this But we can check a sufficient condition
- Check that φ is an inductive invariant:
 - $\varphi_{\mathsf{init}} \subseteq \varphi$
 - $post(\varphi, \rho) \subseteq \varphi$
- Why is this sufficient? φ_{reach} is the strongest (i.e., smallest) inductive invariant What is the weakest inductive invariant? *true*

Finding inductive invariants

• How can we find an inductive invariant φ ?

Finding inductive invariants

- How can we find an inductive invariant φ ?
- We want to compute it, so its representation and computation should be finite

Finding inductive invariants

- How can we find an inductive invariant φ ?
- We want to compute it, so its representation and computation should be finite
- Abstract interpretation
 We use the instantiation predicate abstraction

• Dynamic building blocks: finite set of predicates *Preds*

- Dynamic building blocks: finite set of predicates *Preds*
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$
- Compute $\varphi_{\text{reach}}^{\#}$: abstract reachability graph

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$
- Compute $\varphi_{\text{reach}}^{\#}$: abstract reachability graph
- Fixpoint reached after finitely many iterations

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha : \varphi \mapsto \bigwedge \{ p \in Preds \mid \varphi \models p \}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$
- Compute $\varphi_{\text{reach}}^{\#}$: abstract reachability graph
- Fixpoint reached after finitely many iterations
- Overapproximation: $\varphi_{\text{reach}} \subseteq \varphi_{\text{reach}}^{\#}$ $\varphi_{\mathrm{reach}}^{\#}$ is strongest inductive invariant expressible with *Preds*

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$
- Compute $\varphi_{\text{reach}}^{\#}$: abstract reachability graph

- a (Pinit)
- Fixpoint reached after finitely many iterations
- Overapproximation: $\varphi_{\mathsf{reach}} \subseteq \varphi_{\mathsf{reach}}^\#$ $\varphi_{\mathsf{reach}}^\#$ is strongest inductive invariant expressible with *Preds*
- "Preds = \emptyset "

- Dynamic building blocks: finite set of predicates Preds
- Abstraction function $\alpha: \varphi \mapsto \bigwedge \{p \in Preds \mid \varphi \models p\}$
 - extensive: $\varphi \subseteq \alpha(\varphi)$
 - monotonic: $\varphi \subseteq \psi \implies \alpha(\varphi) \subseteq \alpha(\psi)$
 - idempotent: $\alpha(\varphi) = \alpha(\alpha(\varphi))$
- Abstract successor function $post^{\#}(\varphi) := \alpha(post(\varphi))$
- Compute $\varphi_{\text{reach}}^{\#}$: abstract reachability graph
- Fixpoint reached after finitely many iterations
- Overapproximation: $\varphi_{\mathsf{reach}} \subseteq \varphi_{\mathsf{reach}}^\#$ $\varphi_{\mathsf{reach}}^\#$ is strongest inductive invariant expressible with *Preds*
- " $Preds = \emptyset$ " is the weakest inductive invariant

(Counterexample-guided) Abstraction refinement

- If abstraction is too coarse, we get spurious counterexamples, i.e., error traces in abstract reachability graph
- Check feasibility of one counterexample
- If infeasible, use it to refine abstraction

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion Empty slide

(Counterexample-guided) Abstraction refinement

- If abstraction is too coarse, we get spurious counterexamples, i.e., error traces in abstract reachability graph
- Check feasibility of one counterexample
- If infeasible, use it to refine abstraction
- For example, use *post* or *wp* to compute new predicates
- Recompute abstraction and repeat

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

Concept

Concept

- Consider program as set of traces
- Show that all program traces are infeasible
- Trace τ is infeasible if it satisfies $\{ true \} \tau \{ false \}$
- Construct finite union of sets of infeasible traces and show containment of all program traces

Automata

Instantiate concept using finite automata

$$\mathcal{L}(P) \subseteq \bigcup_{i} \mathcal{L}(A_{i})$$

• Alphabet = set of statements

Automata

Instantiate concept using finite automata

$$\mathcal{L}(P)\subseteq\bigcup_{i}\mathcal{L}(A_{i})$$

- Alphabet = set of statements
- Set of traces of P is in general not regular (\rightarrow abstraction)
- Find counterexample trace in $\mathcal{L}(P) \setminus \bigcup_i \mathcal{L}(A_i)$
- Counterexample can be feasible or infeasible

(Counterexample-guided) Abstraction refinement

• Abstraction refinement similar to predicate abstraction?

(Counterexample-guided) Abstraction refinement

- Abstraction refinement similar to predicate abstraction?
- Construct Floyd-Hoare automaton that generalizes infeasibility proof
- Each location is annotated with a predicate

(Counterexample-guided) Abstraction refinement $A \sim U A$;

- Abstraction refinement similar to predicate abstraction
- Construct Floyd-Hoare automaton that generalizes infeasibility proof
- Each location is annotated with a predicate
- A transition can be added if the respective Hoare triple is valid
- Output of refinement: automaton, but no predicates

Trace abstraction vs. inductive invariants

Can we obtain a Hoare annotation of the original program?

Trace abstraction vs. inductive invariants

Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the predicates used in the Floyd-Hoare automata

Trace abstraction vs. inductive invariants

- Can we obtain a Hoare annotation of the original program?
 Yes: The annotation for a location is the disjunction of the predicates used in the Floyd-Hoare automata
- This annotation is a safe inductive invariant

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

Ranking functions

- A program terminates iff every execution terminates
- A program terminates iff there exists a ranking function
 - Maps to a well-founded set (= no infinite sequence) \mathcal{N}
 - Is strictly decreasing $\longrightarrow y:=1$
- We may need to use ordinals (ω)

- Arguments for several variables often use lexicographic
 \(\sigma \cdot \) - ranking functions
- In general, deciding termination is not possible (→ halting problem)

• Correctness – safe reachable states φ_{reach} Termination – well-founded transition relation R_P

- Correctness safe reachable states φ_{reach} Termination – well-founded transition relation R_P
- We cannot directly show well-foundedness of R_P

- Correctness safe reachable states φ_{reach} Termination – well-founded transition relation R_P
- We cannot directly show well-foundedness of R_P
- Transition invariant *T*

$$R_P^+ \subseteq T$$

- Correctness safe reachable states φ_{reach} Termination – well-founded transition relation R_P
- We cannot directly show well-foundedness of R_P
- Transition invariant T

$$R_P^+ \subseteq T$$

 A transition invariant alone is not sufficient to prove termination

- Correctness safe reachable states φ_{reach} Termination – well-founded transition relation R_P
- We cannot directly show well-foundedness of R_P
- ullet Transition invariant ${\cal T}$

$$R_P^+ \subseteq T$$

- A transition invariant alone is not sufficient to prove termination
- T must be a finite union of well-founded relations

$$T = T_1 \cup \cdots \cup T_n$$

- Correctness safe reachable states φ_{reach} Termination – well-founded transition relation R_P
- We cannot directly show well-foundedness of R_P
- Transition invariant T

$$R_P^+ \subseteq T$$

- A transition invariant alone is not sufficient to prove termination
- T must be a finite union of well-founded relations

$$T = T_1 \cup \cdots \cup T_n$$

Combines several ranking functions

Inductive (safety) invariant I

$$\varphi_{\mathsf{injt}} \subseteq I \ \land \ \mathsf{post}(I,\rho) \subseteq I$$
 • Transition invariant T
$$R_P \subseteq T \ \land \ R_P \circ T \subseteq T$$

• ρ and R_P are basically the same

Computing transition invariants

- Goal: disjunctively well-founded relation T s.t. $R_P^+ \subseteq T$
- Can we compute R_P^+ ?

Hoare logic

- Goal: disjunctively well-founded relation T s.t. $R_P^+ \subseteq T$
- Can we compute R_P^+ ? No. R_D^+ is usually infinite, even if it is well-founded
- As usual, we use abstraction, namely abstract transitions

$$\alpha(\underline{\rho}) = \bigwedge \{ p \in Preds \mid \rho \models p \}$$

Same definition as for abstract states (modulo types)

Algorithm

- Assuming a set of predicates *Preds*, we can use a fixpoint algorithm as for abstract states to compute *T*
- It remains to show that $T = (T_1 \cup \cdots \cup T_n)$ is disjunctively well-founded

We have not discussed this in detail², but there are efficient algorithms for checking well-foundedness of transition relations obtained from predicate abstraction

²See slide 28 from July 19.

Reduction to reachability

 We can reduce the question whether T is a transition invariant for program P to the question whether a modification P' of the program satisfies an invariant I

$$R_P^+ \not\subseteq T \iff P' \not\models I$$

- We can analyze the right-hand side as usual
- If we find a feasible counterexample to $P' \models I$, we know that T is not a transition invariant for P
- Abstraction refinement: If the counterexample is terminating, we can add another disjunct T_{n+1} which we can compute from the termination argument

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

Methods to show correctness

Methods to show correctness

- Find loop invariants and prove that $\varphi \subseteq wp(\psi, P)$
- Find a safe inductive invariant
- Show that every trace of the program automaton is infeasible

Methods to show correctness

- Find loop invariants and prove that $\varphi \subseteq wp(\psi, P)$
- Find a safe inductive invariant.
- Show that every trace of the program automaton is infeasible

Counterexample to correctness

Methods to show correctness

- Find loop invariants and prove that $\varphi \subseteq wp(\psi, P)$
- Find a safe inductive invariant.
- Show that every trace of the program automaton is infeasible

Counterexample to correctness

• Feasible error trace

Methods to show termination

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

- Feasible nonterminating trace
 - Example: lasso form, i.e., finite stem & finite loop

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

- Feasible nonterminating trace
 - Example: lasso form, i.e., finite stem & finite loop Is this complete?

Methods to show termination

- Find ranking function
- Find a disjunctively well-founded inductive transition invariant

- Feasible nonterminating trace
 - Example: lasso form, i.e., finite stem & finite loop
 Is this complete? No, there are nonterminating programs with
 only terminating lassos

Have you realized that we used Goto's all the time?

'68 Dijkstra: Go To Statement Considered Harmful ttps://doi.org/10.1145%2F362929.362947

https://xkcd.com/292/

Program verification	Hoare logic	Abstract reachability	Trace abstraction	Termination	Conclusion	Empty slides

Program verification	Hoare logic	Abstract reachability	Trace abstraction	Termination	Conclusion	Empty slides

Program verification	Hoare logic	Abstract reachability	Trace abstraction	Termination	Conclusion	Empty slides