
Program Verification

Recap

Christian Schilling

July 25/26, 2017

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

1 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What is program verification?

“Da stelle mehr uns janz dumm und da sage mer so . . . ”

2 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What is program verification?

Behavior of Behavior of

`0 `1

`2
|=

Program Specification

2 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What is program verification?

Behavior of Behavior of

`0 `1

`2
⊆

Program Specification

2 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• Alan M. Turing

• Halting problem ’36

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• Henry G. Rice

• Rice’s theorem ’51

The question
“Program |= Specification”

is undecidable.

Even worse, it remains
undecidable for any fixed

specification different from
true and false.

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• Robert W. Floyd

• Assertions in flow charts ’67

• Turing award ’78

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• C.A.R. “Tony” Hoare

• Hoare logic ’69

• Turing award ’80

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• Edsger W. Dijkstra

• Guarded commands &
weakest precondition ’75

• Turing award ’72

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Milestones

• Patrick & Radhia Cousot

• Abstract interpretation ’77

3 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are programs?

• Semantics
• Axiomatic (transition = effect on assertions)
• Operational (transition = set of pairs of states)
• Denotational (program = mathematical object, e.g., function)

• Different views & aspects

• Sequence of commands
• Program state transformers
• Relations between program states

4 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are programs?

• Semantics
• Axiomatic (transition = effect on assertions)
• Operational (transition = set of pairs of states)
• Denotational (program = mathematical object, e.g., function)

• Different views & aspects

• Sequence of commands
• Program state transformers
• Relations between program states

4 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are programs?

• Semantics
• Axiomatic (transition = effect on assertions)
• Operational (transition = set of pairs of states)
• Denotational (program = mathematical object, e.g., function)

• Different views & aspects

• Sequence of commands

• Program state transformers
• Relations between program states

4 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Commands
C ::= skip

| C ;C

| x := e

| if (b) then C else C

| while (b) do C

x ::= x1 | · · · | xn
e ::= x | f (e, . . . , e)

b ::= xb | fb(e, . . . , e) 1

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Each command is deterministic

1Here xb are Boolean variables and fb map to the Boolean domain
5 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Guarded commands
C ::= skip

| C ;C

| havoc x

| C []C

| assume b

| assert b

x ::= x1 | · · · | xn
e ::= x | f (e, . . . , e)

b ::= xb | fb(e, . . . , e) 1

For simplicity we ignore type errors and restrict ourselves to one
variable domain, usually the integers Z

Guarded commands allow for nondeterminism

1Here xb are Boolean variables and fb map to the Boolean domain
5 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are programs?

• Semantics
• Axiomatic (transition = effect on assertions)
• Operational (transition = set of pairs of states)
• Denotational (program = mathematical object, e.g., function)

• Different views & aspects

• Sequence of commands
• Program state transformers

• Relations between program states

6 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program states

• Valuation of program variables + program counter

s : Var→ Val

• Set of states symbolically described by a predicate
We often mix sets and formulas

• A command transforms a state to a state

• We can lift the definition to sets of states

Example:

old states S : x = 0 ∧ y > 2
command C : x := y − x

new states S ′: x = y ∧ y > 2

, {s ′ | (C , s) s ′, s ∈ S}

7 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program states

• Valuation of program variables + program counter

s : Var→ Val

• Set of states symbolically described by a predicate
We often mix sets and formulas

• A command transforms a state to a state

• We can lift the definition to sets of states

Example:

old states S : x = 0 ∧ y > 2
command C : x := y − x

new states S ′: x = y ∧ y > 2

, {s ′ | (C , s) s ′, s ∈ S}

7 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program states

• Valuation of program variables + program counter

s : Var→ Val

• Set of states symbolically described by a predicate
We often mix sets and formulas

• A command transforms a state to a state

• We can lift the definition to sets of states

Example:

old states S : x = 0 ∧ y > 2
command C : x := y − x

new states S ′: x = y ∧ y > 2

, {s ′ | (C , s) s ′, s ∈ S}

7 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate transformers

• Forward computation:

Strongest postcondition

(C , s) s ′

, s ′ ∈ post({s},C)

• Backward computation:

Weakest precondition

(C , s) s ′

, s ∈ wp({s ′},C)

• Connection between wp and post:

(⊆ is the same as =⇒)

ϕ ⊆

wp(ψ,C) ⇐⇒ post(ϕ,C)

⊆ ψ

8 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate transformers

• Forward computation: Strongest postcondition

(C , s) s ′ , s ′ ∈ post({s},C)

• Backward computation:

Weakest precondition

(C , s) s ′

, s ∈ wp({s ′},C)

• Connection between wp and post:

(⊆ is the same as =⇒)

ϕ ⊆

wp(ψ,C) ⇐⇒ post(ϕ,C)

⊆ ψ

8 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate transformers

• Forward computation: Strongest postcondition

(C , s) s ′ , s ′ ∈ post({s},C)

• Backward computation:

Weakest precondition

(C , s) s ′

, s ∈ wp({s ′},C)

• Connection between wp and post:

(⊆ is the same as =⇒)

ϕ ⊆

wp(ψ,C) ⇐⇒ post(ϕ,C)

⊆ ψ

8 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate transformers

• Forward computation: Strongest postcondition

(C , s) s ′ , s ′ ∈ post({s},C)

• Backward computation: Weakest precondition

(C , s) s ′ , s ∈ wp({s ′},C)

• Connection between wp and post:

(⊆ is the same as =⇒)

ϕ ⊆

wp(ψ,C) ⇐⇒ post(ϕ,C)

⊆ ψ

8 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate transformers

• Forward computation: Strongest postcondition

(C , s) s ′ , s ′ ∈ post({s},C)

• Backward computation: Weakest precondition

(C , s) s ′ , s ∈ wp({s ′},C)

• Connection between wp and post: (⊆ is the same as =⇒)

ϕ ⊆ wp(ψ,C) ⇐⇒ post(ϕ,C) ⊆ ψ

8 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are programs?

• Semantics
• Axiomatic (transition = effect on assertions)
• Operational (transition = set of pairs of states)
• Denotational (program = mathematical object, e.g., function)

• Different views & aspects

• Sequence of commands
• Program state transformers
• Relations between program states

9 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program state relations

(C , s) s ′ , s ′ ∈ post({s},C)

, s ∈ wp({s ′},C)

, (s, s ′) ∈ ρ

• In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y

ρ = {(x , y , x ′, y ′) | x ′ = x + 1 ∧ y ′ = y}

or simply

ρ ≡ x ′ = x + 1 ∧ y ′ = y

10 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program state relations

(C , s) s ′ , s ′ ∈ post({s},C)

, s ∈ wp({s ′},C)

, (s, s ′) ∈ ρ

• In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y

ρ = {(x , y , x ′, y ′) | x ′ = x + 1 ∧ y ′ = y}

or simply

ρ ≡ x ′ = x + 1 ∧ y ′ = y

10 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program state relations

(C , s) s ′ , s ′ ∈ post({s},C)

, s ∈ wp({s ′},C)

, (s, s ′) ∈ ρ

• In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y

ρ = {(x , y , x ′, y ′) | x ′ = x + 1 ∧ y ′ = y}

or simply

ρ ≡ x ′ = x + 1 ∧ y ′ = y

10 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Program state relations

(C , s) s ′ , s ′ ∈ post({s},C)

, s ∈ wp({s ′},C)

, (s, s ′) ∈ ρ

• In logical characterization: predicates over unprimed and
primed variables

Example: x := x + 1 for variables x and y

ρ = {(x , y , x ′, y ′) | x ′ = x + 1 ∧ y ′ = y}

or simply

ρ ≡ x ′ = x + 1 ∧ y ′ = y

10 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are specifications?

• Two major types of properties

• Safety (“Something bad will never happen”)
Correctness = unreachability of error states

• Liveness (“Something good will eventually happen”)
In this lecture: termination

11 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are specifications?

• Two major types of properties

• Safety (“Something bad will never happen”)
Correctness = unreachability of error states

• Liveness (“Something good will eventually happen”)
In this lecture: termination

11 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

What are specifications?

• Two major types of properties

• Safety (“Something bad will never happen”)
Correctness = unreachability of error states

• Liveness (“Something good will eventually happen”)
In this lecture: termination

11 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Infinity

• Can we handle finite state systems?

• Everything is decidable, but very (really!) hard

• Can we handle infinite state systems?

• Everything is undecidable except for special subclasses
• Key idea: make everything finite (→ abstraction)

12 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Infinity

• Can we handle finite state systems?
• Everything is decidable, but very (really!) hard

• Can we handle infinite state systems?

• Everything is undecidable except for special subclasses
• Key idea: make everything finite (→ abstraction)

12 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Infinity

• Can we handle finite state systems?
• Everything is decidable, but very (really!) hard

• Can we handle infinite state systems?

• Everything is undecidable except for special subclasses
• Key idea: make everything finite (→ abstraction)

12 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Infinity

• Can we handle finite state systems?
• Everything is decidable, but very (really!) hard

• Can we handle infinite state systems?
• Everything is undecidable except for special subclasses

• Key idea: make everything finite (→ abstraction)

12 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Infinity

• Can we handle finite state systems?
• Everything is decidable, but very (really!) hard

• Can we handle infinite state systems?
• Everything is undecidable except for special subclasses
• Key idea: make everything finite (→ abstraction)

12 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

13 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic

• (Partial) Correctness specification given as annotation with
precondition and postcondition

{ϕ }P {ψ }
⇐⇒ “assume ϕ, execute P, assert ψ′′

⇐⇒ ϕ ⊆ wp(ψ,P)

⇐⇒ post(ϕ,P) ⊆ ψ

• Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

•

Strengthen

precondition,

weaken

postcondition

{ϕ }P {ψ }

ϕ′ → ϕ and ψ → ψ′

{ϕ′ }P {ψ′ }

14 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic

• (Partial) Correctness specification given as annotation with
precondition and postcondition

{ϕ }P {ψ }
⇐⇒ “assume ϕ, execute P, assert ψ′′

⇐⇒ ϕ ⊆ wp(ψ,P)

⇐⇒ post(ϕ,P) ⊆ ψ

• Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

•

Strengthen

precondition,

weaken

postcondition

{ϕ }P {ψ }

ϕ′ → ϕ and ψ → ψ′

{ϕ′ }P {ψ′ }

14 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic

• (Partial) Correctness specification given as annotation with
precondition and postcondition

{ϕ }P {ψ }
⇐⇒ “assume ϕ, execute P, assert ψ′′

⇐⇒ ϕ ⊆ wp(ψ,P)

⇐⇒ post(ϕ,P) ⊆ ψ

• Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

•

Strengthen

precondition,

weaken

postcondition

{ϕ }P {ψ }

ϕ′ → ϕ and ψ → ψ′

{ϕ′ }P {ψ′ }

14 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic

• (Partial) Correctness specification given as annotation with
precondition and postcondition

{ϕ }P {ψ }
⇐⇒ “assume ϕ, execute P, assert ψ′′

⇐⇒ ϕ ⊆ wp(ψ,P)

⇐⇒ post(ϕ,P) ⊆ ψ

• Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

•

Strengthen

precondition,

weaken

postcondition

{ϕ }P {ψ }

ϕ′ → ϕ and ψ → ψ′

{ϕ′ }P {ψ′ }

14 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic

• (Partial) Correctness specification given as annotation with
precondition and postcondition

{ϕ }P {ψ }
⇐⇒ “assume ϕ, execute P, assert ψ′′

⇐⇒ ϕ ⊆ wp(ψ,P)

⇐⇒ post(ϕ,P) ⊆ ψ

• Calculus (e.g., wp) to automatically derive correctness
Generates verification conditions

• Strengthen precondition, weaken postcondition

{ϕ }P {ψ }
ϕ′ → ϕ and ψ → ψ′

{ϕ′ }P {ψ′ }

14 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Loops

• Problematic case: while loop

{ θ ∧ b }C0 { θ }

ϕ→ θ and θ ∧ ¬b → ψ

{ϕ }while b do {θ} C0 {ψ }

• Remains to show: θ is a loop invariant

• Annotated loop:
wp(ψ,while b do {θ} C0) =

θ

• Non-annotated loop:
wp(ψ,while b do C0) =

?

• Synthesis of loop invariants is a second-order problem

15 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Loops

• Problematic case: while loop

{ θ ∧ b }C0 { θ }
ϕ→ θ and θ ∧ ¬b → ψ

{ϕ }while b do {θ} C0 {ψ }

• Remains to show: θ is a loop invariant

• Annotated loop:
wp(ψ,while b do {θ} C0) =

θ

• Non-annotated loop:
wp(ψ,while b do C0) =

?

• Synthesis of loop invariants is a second-order problem

15 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Loops

• Problematic case: while loop

{ θ ∧ b }C0 { θ }
ϕ→ θ and θ ∧ ¬b → ψ

{ϕ }while b do {θ} C0 {ψ }

• Remains to show: θ is a loop invariant

• Annotated loop:
wp(ψ,while b do {θ} C0) =

θ

• Non-annotated loop:
wp(ψ,while b do C0) =

?

• Synthesis of loop invariants is a second-order problem

15 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Loops

• Problematic case: while loop

{ θ ∧ b }C0 { θ }
ϕ→ θ and θ ∧ ¬b → ψ

{ϕ }while b do {θ} C0 {ψ }

• Remains to show: θ is a loop invariant

• Annotated loop:
wp(ψ,while b do {θ} C0) = θ

• Non-annotated loop:
wp(ψ,while b do C0) =

?

• Synthesis of loop invariants is a second-order problem

15 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Loops

• Problematic case: while loop

{ θ ∧ b }C0 { θ }
ϕ→ θ and θ ∧ ¬b → ψ

{ϕ }while b do {θ} C0 {ψ }

• Remains to show: θ is a loop invariant

• Annotated loop:
wp(ψ,while b do {θ} C0) = θ

• Non-annotated loop:
wp(ψ,while b do C0) = ?

• Synthesis of loop invariants is a second-order problem

15 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Relative completeness

• Can we derive any valid partial correctness specification in
Hoare calculus automatically?

{ϕ }P {ψ }

• No!
{ true } skip {ψ }

Hoare triple valid iff ψ is a tautology

{ true }P { false }

Hoare triple valid iff P does not terminate

• However, we have relative completeness:

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

16 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Soundness & Completeness

• Soundness

` {ϕ }P {ψ } =⇒ |= {ϕ }P {ψ }

• Relative completeness

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

“Algorithm”?

• Systematically enumerate loop invariant(s) θ
• Annotate P with θ
• Compute wp(ψ,P)
• Check ϕ ⊆ wp(ψ,P)

Can be interleaved with a search for a counterexample

17 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Hoare logic – Soundness & Completeness

• Soundness

` {ϕ }P {ψ } =⇒ |= {ϕ }P {ψ }

• Relative completeness

|= {ϕ }P {ψ } ∧ ` ϕ ⊆ wp(ψ,P) =⇒ ` {ϕ }P {ψ }

“Algorithm”:
• Systematically enumerate loop invariant(s) θ
• Annotate P with θ
• Compute wp(ψ,P)
• Check ϕ ⊆ wp(ψ,P)

Can be interleaved with a search for a counterexample

17 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

18 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reachable states

• Alternative characterization of safety/correctness

• No error state is reachable
i.e., ϕreach ∩ ϕerr = ∅

• ϕreach = ϕinit ∪
⋃

i post
i (ϕinit, ρ)

In general not computable

• Overapproximation: Find a set ϕ ⊇ ϕreach

Nonreachability properties of ϕ transfer to ϕreach

• Two questions:

1. How can we find ϕ?
2. How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

19 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?

ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant?

true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Inductive invariants

• How can we check that ϕ ⊇ ϕreach if we do not know ϕreach?

• In general, we cannot check this
But we can check a sufficient condition

• Check that ϕ is an inductive invariant:
• ϕinit ⊆ ϕ
• post(ϕ, ρ) ⊆ ϕ

• Why is this sufficient?
ϕreach is the strongest (i.e., smallest) inductive invariant

What is the weakest inductive invariant? true

20 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Finding inductive invariants

• How can we find an inductive invariant ϕ?

• We want to compute it, so its representation and computation
should be finite

• Abstract interpretation
We use the instantiation predicate abstraction

21 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Finding inductive invariants

• How can we find an inductive invariant ϕ?

• We want to compute it, so its representation and computation
should be finite

• Abstract interpretation
We use the instantiation predicate abstraction

21 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Finding inductive invariants

• How can we find an inductive invariant ϕ?

• We want to compute it, so its representation and computation
should be finite

• Abstract interpretation
We use the instantiation predicate abstraction

21 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅”

is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Predicate abstraction

• Dynamic building blocks: finite set of predicates Preds

• Abstraction function α : ϕ 7→
∧
{p ∈ Preds | ϕ |= p}

• extensive: ϕ ⊆ α(ϕ)
• monotonic: ϕ ⊆ ψ =⇒ α(ϕ) ⊆ α(ψ)
• idempotent: α(ϕ) = α(α(ϕ))

• Abstract successor function post#(ϕ) := α(post(ϕ))

• Compute ϕ#
reach: abstract reachability graph

• Fixpoint reached after finitely many iterations

• Overapproximation: ϕreach ⊆ ϕ#
reach

ϕ#
reach is strongest inductive invariant expressible with Preds

• “Preds = ∅” is the weakest inductive invariant

22 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

(Counterexample-guided) Abstraction refinement

• If abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

• Check feasibility of one counterexample

• If infeasible, use it to refine abstraction

• For example, use post or wp to compute new predicates

• Recompute abstraction and repeat

23 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

(Counterexample-guided) Abstraction refinement

• If abstraction is too coarse, we get spurious counterexamples,
i.e., error traces in abstract reachability graph

• Check feasibility of one counterexample

• If infeasible, use it to refine abstraction

• For example, use post or wp to compute new predicates

• Recompute abstraction and repeat

23 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

24 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Concept

• Consider program as set of traces

• Show that all program traces are infeasible

• Trace τ is infeasible if it satisfies { true } τ { false }

• Construct finite union of sets of infeasible traces and show
containment of all program traces

25 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Concept

• Consider program as set of traces

• Show that all program traces are infeasible

• Trace τ is infeasible if it satisfies { true } τ { false }

• Construct finite union of sets of infeasible traces and show
containment of all program traces

25 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Automata

• Instantiate concept using finite automata

L(P) ⊆
⋃
i

L(Ai)

• Alphabet = set of statements

• Set of traces of P is in general not regular (→ abstraction)

• Find counterexample trace in L(P) \
⋃

i L(Ai)

• Counterexample can be feasible or infeasible

26 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Automata

• Instantiate concept using finite automata

L(P) ⊆
⋃
i

L(Ai)

• Alphabet = set of statements

• Set of traces of P is in general not regular (→ abstraction)

• Find counterexample trace in L(P) \
⋃

i L(Ai)

• Counterexample can be feasible or infeasible

26 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

(Counterexample-guided) Abstraction refinement

• Abstraction refinement similar to predicate abstraction?

• Construct Floyd-Hoare automaton that generalizes infeasibility
proof

• Each location is annotated with a predicate

• A transition can be added if the respective Hoare triple is valid

• Output of refinement: automaton, but no predicates

27 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

(Counterexample-guided) Abstraction refinement

• Abstraction refinement similar to predicate abstraction?

• Construct Floyd-Hoare automaton that generalizes infeasibility
proof

• Each location is annotated with a predicate

• A transition can be added if the respective Hoare triple is valid

• Output of refinement: automaton, but no predicates

27 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

(Counterexample-guided) Abstraction refinement

• Abstraction refinement similar to predicate abstraction

• Construct Floyd-Hoare automaton that generalizes infeasibility
proof

• Each location is annotated with a predicate

• A transition can be added if the respective Hoare triple is valid

• Output of refinement: automaton, but no predicates

27 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Trace abstraction vs. inductive invariants

• Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

• This annotation is a safe inductive invariant

28 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Trace abstraction vs. inductive invariants

• Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

• This annotation is a safe inductive invariant

28 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Trace abstraction vs. inductive invariants

• Can we obtain a Hoare annotation of the original program?

Yes: The annotation for a location is the disjunction of the
predicates used in the Floyd-Hoare automata

• This annotation is a safe inductive invariant

28 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

29 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Ranking functions

• A program terminates iff every execution terminates

• A program terminates iff there exists a ranking function
• Maps to a well-founded set (= no infinite sequence)
• Is strictly decreasing

• We may need to use ordinals (ω)

• Arguments for several variables often use lexicographic
ranking functions

• In general, deciding termination is not possible
(→ halting problem)

30 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

From states to transitions

• Correctness – safe reachable states ϕreach

Termination – well-founded transition relation RP

• We cannot directly show well-foundedness of RP

• Transition invariant T
R+
P ⊆ T

• A transition invariant alone is not sufficient to prove
termination

• T must be a finite union of well-founded relations

T = T1 ∪ · · · ∪ Tn

• Combines several ranking functions

31 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Invariants vs. transition invariants

• Inductive (safety) invariant I

ϕinit ⊆ I ∧ post(I , ρ) ⊆ I

• Transition invariant T

RP ⊆ T ∧ RP ◦ T ⊆ T

• ρ and RP are basically the same

32 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Computing transition invariants

• Goal: disjunctively well-founded relation T s.t. R+
P ⊆ T

• Can we compute R+
P ?

No, R+
P is usually infinite, even if it is well-founded

• As usual, we use abstraction, namely abstract transitions

α(ρ) =
∧
{p ∈ Preds | ρ |= p}

Same definition as for abstract states (modulo types)

33 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Computing transition invariants

• Goal: disjunctively well-founded relation T s.t. R+
P ⊆ T

• Can we compute R+
P ?

No, R+
P is usually infinite, even if it is well-founded

• As usual, we use abstraction, namely abstract transitions

α(ρ) =
∧
{p ∈ Preds | ρ |= p}

Same definition as for abstract states (modulo types)

33 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Algorithm

• Assuming a set of predicates Preds, we can use a fixpoint
algorithm as for abstract states to compute T

• It remains to show that T = (T1 ∪ · · · ∪ Tn) is disjunctively
well-founded

We have not discussed this in detail2, but there are efficient
algorithms for checking well-foundedness of transition
relations obtained from predicate abstraction

2See slide 28 from July 19.
34 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Reduction to reachability

• We can reduce the question whether T is a transition
invariant for program P to the question whether a
modification P ′ of the program satisfies an invariant I

R+
P ⊆ T ⇐⇒ P ′ |= I

• We can analyze the right-hand side as usual

• If we find a feasible counterexample to P ′ |= I , we know that
T is not a transition invariant for P

• Abstraction refinement: If the counterexample is terminating,
we can add another disjunct Tn+1 which we can compute
from the termination argument

35 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Overview

Program verification

Hoare logic

Abstract reachability

Trace abstraction

Termination

Conclusion

36 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Correctness

Methods to show correctness

• Find loop invariants and prove that ϕ ⊆ wp(ψ,P)

• Find a safe inductive invariant

• Show that every trace of the program automaton is infeasible

Counterexample to correctness

• Feasible error trace

37 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Correctness

Methods to show correctness

• Find loop invariants and prove that ϕ ⊆ wp(ψ,P)

• Find a safe inductive invariant

• Show that every trace of the program automaton is infeasible

Counterexample to correctness

• Feasible error trace

37 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Correctness

Methods to show correctness

• Find loop invariants and prove that ϕ ⊆ wp(ψ,P)

• Find a safe inductive invariant

• Show that every trace of the program automaton is infeasible

Counterexample to correctness

• Feasible error trace

37 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Correctness

Methods to show correctness

• Find loop invariants and prove that ϕ ⊆ wp(ψ,P)

• Find a safe inductive invariant

• Show that every trace of the program automaton is infeasible

Counterexample to correctness

• Feasible error trace

37 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop

Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete?

No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Termination

Methods to show termination

• Find ranking function

• Find a disjunctively well-founded inductive transition invariant

Counterexample to termination

• Feasible nonterminating trace

• Example: lasso form, i.e., finite stem & finite loop
Is this complete? No, there are nonterminating programs with
only terminating lassos

38 / 39

Program verification Hoare logic Abstract reachability Trace abstraction Termination Conclusion

Have you realized that we used Goto’s all the time?

’68 Dijkstra: Go To Statement Considered Harmful
https://doi.org/10.1145%2F362929.362947

https://xkcd.com/292/

39 / 39

https://doi.org/10.1145%2F362929.362947
https://xkcd.com/292/

	Program verification
	Hoare logic
	Abstract reachability
	Trace abstraction
	Termination
	Conclusion

