relations as formulas

» formula with free variables in V and V' =
binary relation over program states

» first component of each pair assigns values to V
» second component of the pair assigns values to V'

program P = (V7 PC, Pinit, Ra @el’f)

» V - finite tuple of program variables
> pc - program counter variable (pc included in V)
> ©init - Initiation condition given by formula over V
» R - a finite set of transition relations

> err - an error condition given by a formula over V

» transition relation p € ‘R given by
formula over the variables V' and their primed versions V’

transition relation p expressed by logica formula

p1 = (move(l1,02) Ny > z A skip(x,y, z))

p2 = (move(ly, o) ANx+1<yAx"=x+4+1Askip(y,
p3 = (move(la,l3) A x >y A skip(x,y,Zz))

ps = (move(l3,l4) N x > z A skip(x,y, z))

ps = (move(l3,l5) AN x4+ 1 < zAskip(x,y,Zz))

abbreviations:

move((,0') = (pc =LA pc =1)

skip(vi,...,vp) = (vy = vi A... AV, = vp)

N

: exit
: error

assume(y >= z);
while (x < y) {
y

X++;

} @ x<yAx =x+1
assert(x >= z); X >y

(s
X:i!ir‘llkiiiiz

p1 = (move(l1,02) Ny > z N\ skip(x,y, z))

p2 = (move(la,) Ax+1<yAx"=x+1Askip(y, z))

(41, ¢2)

(42, €2)

p3 = (move(l,03) N x > y A skip(x, y, z))

pa = (move(l3,€4) N x > z N\ skip(x,y, z))
(43,¢5)

ps = (move(l3,05) A x + 1 < z A skip(x,y, z))

correctness: safety

» a state is reachable if it occurs in some program computation
» a program is safe if no error state is reachable

» ... if and only if no error state lies in ©reach,

Perr A Lreach }: false .

where ©,esch = Set of reachable program states

1: assume(y >= z);
2: while (x < y) {
PLY

X++;

} @ prx <yAx =x+1
3: assert(x >= z); P03 X >y

4: exit @
O: error p4x>i iix<z

> Z

set of reachable states:

Preach = (pc = {1 V
pc=Ul ANy >zV
pc=U03ANy>zAx>yV
pc=Lla Ny >zAXx>y)

POSt operator

» let ¢ be a formula over V and p a formula over V and V'

» define a post-condition function post by:

post(p,p) = 3V :pAp)[V/V]

an application post(y, p) computes the image of the set ¢
under the relation p

» post distributes over disjunction wrt. each argument:

post(p, p1V p2) = (post(p, p1) V post(p, p2))
post(p1 V w2, p) = (post(p1, p) V post(¢2, p))

application of post(¢, p) in examples

» p has no primed variables

application of post(¢, p) in examples

» p has no primed variables
post(p,p) = A p

application of post(¢, p) in examples

» p has no primed variables
post(p,p) = A p
» p has only primed variables

application of post(¢, p) in examples

» p has no primed variables
post(p,p) = A p

» p has only primed variables
post(¢, p) = p[V/V']

application of post(¢, p) in examples

» p has no primed variables
post(p,p) = A p
» p has only primed variables
post(¢, p) = p[V/V']
» pis an update of x by an expression e without x, say

p = x:=e(y,2z)

application of post(¢, p) in examples

» p has no primed variables
post(p,p) = A p
» p has only primed variables
post(¢, p) = p[V/V']
» pis an update of x by an expression e without x, say
p = x:=¢e(y,2)
post(¢,p) = Ixp Ax =e€

iteration of post

post”(p, p) = n-fold application of post to ¢ under p

n © f n=20
post”(p, p) =

post(post™ (¢, p), p) otherwise

characterize @ e;5ch USINg iterates of post:

Preach = Pinit ¥V POSt(Pinit, prR) V post(post(Linit; PR), PR) V - - -
= Visq Post' (init, PR)

n-th disjunct = iterate for natural number n (disjunction = “w
iteration”)

finite iteration post may suffice

“fixpoint reached in n steps’ if

V7o post’ (@init, pr) = V124 POst' (@init, pr)

then \/720 POSti(SDinita PR) = \/iZO pOSti(Spinita ,OR)

'distributed’ iteration of post(-, pr)

» pr is itself a disjunction: pr = p1 V...V pm
» post(¢, p) distributes over disjunction in both arguments

» in ‘distributed’ disjunction ® = {¢, | k € M}, every disjunct
¢k corresponds to a sequence of transitions p;, ..., p;j,

¢k — pOSt(pOSt(. .. pOSt(SDinita pj1)7 <. ')7 IOJn)

> ¢ # 0 only if sequence of transitions pj,, ..., pj, corresponds
to path in control flow graph of program
since:

post(pc =C;i A ..., move({j, 0 YN...) = 0 if i#]

» chaotic fixpoint iteration follows paths in control flow graph

‘distributed’ fixpoint test: ‘local’ entailment

» “fixpoint reached in n steps” if (but not only if):
every application of post(-,-) to any disjunct ¢, in @ is
contained in one of the disjuncts ¢,/ in ® is

VkeMVj=1,....m3Kk € M: post(¢r,p;) C b

compute Qesch for example program (1)

apply post on set of initial states:

post(pc = {1, pr)
= post(pc = {1, p1)
=pc=U0bANy>z

apply pOSt on successor states:

post(pc =la Ny > z, pRr)
= post(pc =l ANy > z,p2) V post(pc =l Ny > z, p3)
=pc =l ANy>zAXx<yVpc=I0bLANy>zAX>y

compute Qesch for example program (2)

repeat the application step once again:

post(pc =l Ny > zAx<yV
pc=U03ANy>zAX>Yy, pRr)
= post(pc =l ANy >zAx<y,pr)V
post(pc =l3 ANy >zAX>Y,pR)
= post(pc =l ANy >zAx<y,p2)V
post(pc =l ANy > zAx<y,p3)V
post(pc =l3 Ny > zAX>y,ps)V
post(pc ={l3 ANy >zAXx>y,ps)
=pc=UbANy>zAx<yV
pc =l3 ANy >zAx=yV
pc =Uly Ny >zAXx>y

compute ©,escn for example program
disjunction obtained by iteratively applying post to iz

pc =41V

pc=Ub ANy >2zV

pc = ANy >zAx<yVpc=U3ANy>zAx>yV
pc=Ub ANy >zAx<yVpc=U3Ny>zAx=yV
pc =la Ny >zAX>y

disjunction in a logically equivalent, simplified form:

pc =¥1V
pc=Ub ANy >2zV

pc =03 ANy >zAx>yV
pc=Lls Ny =>zAx2=y

above disjunction = @,esch Since any further application of post
does not produce any additional disjuncts

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» Iinductive:

Pinit F ¢ and POSt(SO,PR) \: Y .

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» Iinductive:

Pinit F ¢ and POSt(SO,PR) \: Y .

» safe:
© N perr = false

checking safety = finding safe inductive invariant

» program is safe if there exists a safe inductive invariant ¢

» inductive:

Pinit !I ¢ and POSt(%,OR) \: Y .

» safe:
© N perr = false

» justification:
1. “reach 1s the strongest inductive invariant”

Preach): 2

2. program safe if ©,e;cp does not contain an error state:

Preach /\ Perr ‘: false

inductive invariants for example program

» weakest inductive invariant:

inductive invariants for example program

» weakest inductive invariant: true (set of all states)
contains error states

» strongest inductive invariant (does not contain error states)

pc =41V
(pc=lb Ny >2z)V
(pc=l3Ny>zAXx>y)V
(pc=laNy>zAXx2>y)

inductive invariants for example program

» weakest inductive invariant: true (set of all states)
contains error states

» strongest inductive invariant (does not contain error states)

pc =¥1V
(pc=laNy>2Z)V
(pc=l3Ny>zAXx>y)V
(pc=laNy>zAXx2>y)

» a slightly weaker inductive invariant also proves the safety of

our examples:

pc =41V
(pc=VlaNy >2Z)V
(pc=l3Ny>zAXx>y)V
pc =ty

inductive invariants for example program

>

weakest inductive invariant: true (set of all states)
contains error states

strongest inductive invariant (does not contain error states)

pc =¥1V
(pc=lb Ny >2z)V
(pc=l3Ny>zAXx>y)V
(pc=laNy>zAXx2>y)
a slightly weaker inductive invariant also proves the safety of
our examples:
pc =41V
(pc=VlaNy >2Z)V
(pc=l3Ny>zAXx>y)V
pc =ty

can we drop another conjunct in one of the disjuncts?

4.
5:

assume(y >= z);
while (x < y) {
X++;

)

}

assert(x >= z);
exit

error

pLy = Z

‘?’E} px<yAx =x+1
p3 X 2>y

(s
/'\

inductive invariant (strict superset of reachable states):

Preach — (pC — gl V

pc =0 ANy >zV
pc=U03A\Ny>zAx>yV
pc = {y)

fixpoint iteration

» computation of reachable program states =

iterative application of post on initial program states until
a fixpoint is reached

I.e., no new program states are obtained by applying post

> in general, iteration process does not converge
I.e., does not reach fixpoint in finite number of iterations

example: fixpoint iteration diverges

p2 = (move(lo, L) Ax+1<yAx =x+1Askip(y,z))

post(at lo ANx < z,pp)=(at_. b Ax—1<zAx<y)
postz(at_ég Ax<zp)=(atloAx—2<zAx<y)
post3(at_lo ANx < z,p2) = (at_lo Ax —3<zAx<y)

post"(at_lo Ax < z,pp) =(at o Ax—n<zAx<y)

example: fixpoint not reached after n steps, n > 1

» set of states reachable after applying post twice not included
in the union of previous two sets:

(at_ o Ax—2<zAx<y)
at_ o ANx<zV
at_lh ANx—1<zAx<y

» set of states reachable after n-fold application of post still
contains previously unreached states:

Vn>1:(atloAx—n<zAx<y)
at_lr AN x < zV
\/1§i<n(at_€2/\X—i§Z/\X§)/)

abstraction of L reach by Sﬁﬁach

» instead of computing ¥ each,
compute over-approximation gpﬁach such that gpfzach 2 Qreach

#

reach contains any error states

» check whether ¢

> if gpﬁach A @err = false holds then @each A werr = false,

and hence the program is safe
#

reach

» compute @ by applying iteration

» instead of iteratively applying post, use
over-approximation post? such that always

post(p, p) = post™ (g, p)

» decompose computation of post? into two steps:
first, apply post and
then, over-approximate result using a function « such that

Voo = alp) .

abstraction of post by post?

> given an abstraction function «, define post™:

post™ (¢, p) = a(post(e, p))
#

> compute @, . 4

Spsréiach — a(sp"”it) \

post™ (a(init), pr) V

pOSt#(pOSt#(Oz(goin,'t), ,OR), pR) V...

— \/I.Zo(post#)i(oé(sﬁinit)a PR)

#

> CONSEqUENCE: Yreach = Prr.

predicate abstraction

» construct abstraction using a given set of building blocks,
so-called predicates

» predicate = formula over the program variables V
» fix finite set of predicates Preds = {p1,...,pn}

» over-approximation of ¢ by conjunction of predicates in Preds

a(e) = \{p € Preds | p = p}

» computation requires n entailment checks
(n = number of predicates)

example: compute a(at b ANy >zAx+1<y)

» Preds = {at_{1,...,at_l5,y > z,x >y}

1. check logical consequence between argument to the
abstraction function and each of the predicates:

y>z | x>y |at_ b1 | at_ly | at_l3 | at_l4 | at_ts
at_t» N
y>zA = a a = 7 7 7
x+1<y

2. result of abstraction = conjunction over entailed predicates

at_t> N

— >
yZzAx+1§y) at_ Uy Ny > z

af

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

... always the case if Preds = ()

example: predicate abstraction to compute gpf;ch

> Preds = {false,at_{1,...,at_ {5,y > z,x > y}

» over-approximation of the set of initial states jp;:
1 = oz(at_él) — at_¥q
> apply post™ on @1 wrt. each program transition:

Y2 = Post#(901,,01) =afat_. b ANy >z)=at b ANy >z

POSt(gO]_ 701)

post™ (o1, p2) = - -+ = post™ (p1, ps) = N\{false, ...} = false

apply post™ to v, = (at_ly Ny > z)

» application of p1, pa, and ps on 5 results in false
(since p1, pa, and ps are applicable only if either at_¢; or

at_¢3 hold)

» for pr we obtain
post™ (o, pp) = a(at_ bo ANy > zAx<y)=at loANy >z

result is o and, therefore, is discarded

» for p3 we obtain

post™ (2, p3) = aat_ L3 Ny > zAx>y)
=at l3ANy>zAx>y

apply post™ to p3 = (at_ 3Ny >zAXx>y)

>

p1, p2, and p3: inconsistency with program counter valuation
in @3
for ps we obtain:
post#(gpg,m) =aat by Ny >zZAX>yAx> 2)
—at_ by Ny >zAXx>y
— ¥4

for ps (assertion violation) we obtain:

post™ (3, ps) = alat_ ls Ay > zAx>yAx+1<2z)

= false

any further application of program transitions does not
compute any additional reachable states

thus, gpfiach =1 V...V
since gpfzach A at_Us = false, the program is proven safe

algorithm ABSTREACH

begin

a = Ap. \{p € Preds | ¢ = p}

post® = A(p,p) . a(post(p,p))
ReachStates™ = {a(pinit)}

Parent = ()
Worklist ‘= ReachStates?
while Worklist # () do

@ = choose from Worklist
Worklist := Worklist \ {p}
for each p € R do

/

¢ = post? (g, p)
if o' = \/ ReachStates™ then
ReachStates” := {'} U ReachStates™

Parent = {(p, p, ')} U Parent
Worklist = {¢'} U Worklist
return (ReachStates™ | Parent)
end

