relations as formulas

- formula with free variables in V and $V^{\prime}=$ binary relation over program states
- first component of each pair assigns values to V
- second component of the pair assigns values to V^{\prime}

program $\mathbf{P}=\left(V, p c, \varphi_{i n i t}, \mathcal{R}, \varphi_{e r r}\right)$

- V - finite tuple of program variables
- pc - program counter variable (pc included in V)
- $\varphi_{\text {init }}$ - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations
- $\varphi_{\text {err }}$ - an error condition given by a formula over V
- transition relation $\rho \in \mathcal{R}$ given by formula over the variables V and their primed versions V^{\prime}
transition relation ρ expressed by logica formula

$$
\begin{aligned}
\rho_{1} & \equiv\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{2} & \equiv\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\rho_{3} & \equiv\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{4} & \equiv\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{5} & \equiv\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

abbreviations:

$$
\begin{aligned}
\operatorname{move}\left(\ell, \ell^{\prime}\right) & \equiv\left(p c=\ell \wedge p c^{\prime}=\ell^{\prime}\right) \\
\operatorname{skip}\left(v_{1}, \ldots, v_{n}\right) & \equiv\left(v_{1}^{\prime}=v_{1} \wedge \ldots \wedge v_{n}^{\prime}=v_{n}\right)
\end{aligned}
$$

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

$$
\begin{aligned}
\rho_{1} & =\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{2} & =\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\rho_{3} & =\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{4} & =\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{5} & =\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

correctness: safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in $\varphi_{\text {reach }}$,

$$
\varphi_{\text {err }} \wedge \varphi_{\text {reach }} \models \text { false }
$$

where $\varphi_{\text {reach }}=$ set of reachable program states

1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert($\mathrm{x}>=\mathrm{z}$);
4: exit
5: error

set of reachable states:

$$
\begin{aligned}
\varphi_{\text {reach }}=(p c & =\ell_{1} \vee \\
p c & =\ell_{2} \wedge y \geq z \vee \\
p c & =\ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
p c & \left.=\ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

post operator

- let φ be a formula over V and ρ a formula over V and V^{\prime}
- define a post-condition function post by:

$$
\operatorname{post}(\varphi, \rho)=(\exists V: \varphi \wedge \rho)\left[V / V^{\prime}\right]
$$

an application $\operatorname{post}(\varphi, \rho)$ computes the image of the set φ under the relation ρ

- post distributes over disjunction wrt. each argument:

$$
\begin{aligned}
& \operatorname{post}\left(\varphi, \rho_{1} \vee \rho_{2}\right)=\left(\operatorname{post}\left(\varphi, \rho_{1}\right) \vee \operatorname{post}\left(\varphi, \rho_{2}\right)\right) \\
& \operatorname{post}\left(\varphi_{1} \vee \varphi_{2}, \rho\right)=\left(\operatorname{post}\left(\varphi_{1}, \rho\right) \vee \operatorname{post}\left(\varphi_{2}, \rho\right)\right)
\end{aligned}
$$

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables

$$
\operatorname{post}(\phi, \rho)=\phi \wedge \rho
$$

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables

$$
\operatorname{post}(\phi, \rho)=\phi \wedge \rho
$$

- ρ has only primed variables

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables

$$
\operatorname{post}(\phi, \rho)=\phi \wedge \rho
$$

- ρ has only primed variables $\operatorname{post}(\phi, \rho)=\rho\left[V / V^{\prime}\right]$

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables

$$
\operatorname{post}(\phi, \rho)=\phi \wedge \rho
$$

- ρ has only primed variables $\operatorname{post}(\phi, \rho)=\rho\left[V / V^{\prime}\right]$
- ρ is an update of x by an expression e without x, say $\rho=x:=e(y, z)$

application of $\operatorname{post}(\phi, \rho)$ in examples

- ρ has no primed variables $\operatorname{post}(\phi, \rho)=\phi \wedge \rho$
- ρ has only primed variables $\operatorname{post}(\phi, \rho)=\rho\left[V / V^{\prime}\right]$
- ρ is an update of x by an expression e without x, say
$\rho=x:=e(y, z)$
$\operatorname{post}(\phi, \rho)=\exists x \phi \wedge x=e$

iteration of post

$\operatorname{post}^{n}(\varphi, \rho)=n$-fold application of post to φ under ρ

$$
\operatorname{post}^{n}(\varphi, \rho)= \begin{cases}\varphi & \text { if } n=0 \\ \operatorname{post}\left(\operatorname{post}^{n-1}(\varphi, \rho), \rho\right) & \text { otherwise }\end{cases}
$$

characterize $\varphi_{\text {reach }}$ using iterates of post:

$$
\begin{aligned}
\varphi_{\text {reach }} & =\varphi_{\text {init }} \vee \operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right) \vee \operatorname{post}\left(\operatorname{post}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \\
& =\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)
\end{aligned}
$$

n-th disjunct $=$ iterate for natural number n (disjunction $=" \omega$ iteration")
finite iteration post may suffice
"fixpoint reached in n steps" if

$$
\bigvee_{i=0}^{n} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)=\bigvee_{i=0}^{n+1} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)
$$

then $\quad \bigvee_{i=0}^{n} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)=\bigvee_{i \geq 0} \operatorname{post}^{i}\left(\varphi_{\text {init }}, \rho_{\mathcal{R}}\right)$

'distributed' iteration of $\operatorname{post}\left(\cdot, \rho_{\mathcal{R}}\right)$

- $\rho_{\mathcal{R}}$ is itself a disjunction: $\rho_{\mathcal{R}}=\rho_{1} \vee \ldots \vee \rho_{m}$
- post (ϕ, ρ) distributes over disjunction in both arguments
- in 'distributed' disjunction $\Phi=\left\{\phi_{k} \mid k \in M\right\}$, every disjunct ϕ_{k} corresponds to a sequence of transitions $\rho_{j_{1}}, \ldots, \rho_{j_{n}}$

$$
\phi_{k}=\operatorname{post}\left(\operatorname{post}\left(\ldots \operatorname{post}\left(\varphi_{i n i t}, \rho_{j_{1}}\right), \ldots\right), \rho_{j_{n}}\right)
$$

- $\phi_{k} \neq \emptyset$ only if sequence of transitions $\rho_{j_{1}}, \ldots, \rho_{j_{n}}$ corresponds to path in control flow graph of program since:

$$
\operatorname{post}\left(p c=\ell_{i} \wedge \ldots, \operatorname{move}\left(\ell_{j}, \ell_{\ldots}\right) \wedge \ldots\right)=\emptyset \text { if } i \neq j
$$

- chaotic fixpoint iteration follows paths in control flow graph

'distributed' fixpoint test: ‘local’ entailment

- "fixpoint reached in n steps" if (but not only if): every application of $\operatorname{post}(\cdot, \cdot)$ to any disjunct ϕ_{k} in Φ is contained in one of the disjuncts $\phi_{k^{\prime}}$ in Φ is

$$
\forall k \in M \forall j=1, \ldots, m \exists k^{\prime} \in M: \operatorname{post}\left(\phi_{k}, \rho_{j}\right) \subseteq \phi_{k^{\prime}}
$$

compute $\varphi_{\text {reach }}$ for example program (1)
apply post on set of initial states:

$$
\begin{aligned}
& \operatorname{post}\left(p c=\ell_{1}, \rho_{\mathcal{R}}\right) \\
& \quad=\operatorname{post}\left(p c=\ell_{1}, \rho_{1}\right) \\
& =p c=\ell_{2} \wedge y \geq z
\end{aligned}
$$

apply post on successor states:

$$
\begin{aligned}
& \operatorname{post}\left(p c=\ell_{2} \wedge y \geq z, \rho_{\mathcal{R}}\right) \\
& \quad=\operatorname{post}\left(p c=\ell_{2} \wedge y \geq z, \rho_{2}\right) \vee \operatorname{post}\left(p c=\ell_{2} \wedge y \geq z, \rho_{3}\right) \\
& \quad=p c=\ell_{2} \wedge y \geq z \wedge x \leq y \vee p c=\ell_{3} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

compute $\varphi_{\text {reach }}$ for example program (2)
repeat the application step once again:

$$
\begin{aligned}
& \operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y \vee\right. \\
& \left.\quad p c=\ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right) \\
& =\operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{\mathcal{R}}\right) \vee \\
& \quad \operatorname{post}\left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{\mathcal{R}}\right) \\
& =\operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{2}\right) \vee \\
& \operatorname{post}\left(p c=\ell_{2} \wedge y \geq z \wedge x \leq y, \rho_{3}\right) \vee \\
& \operatorname{post}\left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{4}\right) \vee \\
& \\
& \operatorname{post}\left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y, \rho_{5}\right) \\
& = \\
& p c=\ell_{2} \wedge y \geq z \wedge x \leq y \vee \\
& \\
& p c=\ell_{3} \wedge y \geq z \wedge x=y \vee \\
& \\
& p c=\ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

compute $\varphi_{\text {reach }}$ for example program
disjunction obtained by iteratively applying post to $\varphi_{\text {init }}$:

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& p c=\ell_{2} \wedge y \geq z \vee \\
& p c=\ell_{2} \wedge y \geq z \wedge x \leq y \vee p c=\ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& p c=\ell_{2} \wedge y \geq z \wedge x \leq y \vee p c=\ell_{3} \wedge y \geq z \wedge x=y \vee \\
& p c=\ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

disjunction in a logically equivalent, simplified form:

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& p c=\ell_{2} \wedge y \geq z \vee \\
& p c=\ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
& p c=\ell_{4} \wedge y \geq z \wedge x \geq y
\end{aligned}
$$

above disjunction $=\varphi_{\text {reach }}$ since any further application of post does not produce any additional disjuncts

checking safety $=$ finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ

checking safety $=$ finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
- inductive:

$$
\varphi_{\text {init }} \models \varphi \quad \text { and } \quad \operatorname{post}\left(\varphi, \rho_{\mathcal{R}}\right) \models \varphi \text {. }
$$

checking safety $=$ finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
- inductive:

$$
\varphi_{\text {init }} \models \varphi \quad \text { and } \quad \operatorname{post}\left(\varphi, \rho_{\mathcal{R}}\right) \models \varphi \text {. }
$$

- safe:

$$
\varphi \wedge \varphi_{\text {err }} \models \text { false }
$$

checking safety $=$ finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
- inductive:

$$
\varphi_{\text {init }} \models \varphi \quad \text { and } \quad \operatorname{post}\left(\varphi, \rho_{\mathcal{R}}\right) \models \varphi .
$$

- safe:

$$
\varphi \wedge \varphi_{\text {err }} \models \text { false }
$$

- justification:

1. " $\varphi_{\text {reach }}$ is the strongest inductive invariant"

$$
\varphi_{\text {reach }} \models \varphi
$$

2. program safe if $\varphi_{\text {reach }}$ does not contain an error state:

$$
\varphi_{\text {reach }} \wedge \varphi_{\text {err }} \models \text { false }
$$

inductive invariants for example program

- weakest inductive invariant:

inductive invariants for example program

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& \left(p c=\ell_{2} \wedge y \geq z\right) \vee \\
& \left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& \left(p c=\ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

inductive invariants for example program

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& \left(p c=\ell_{2} \wedge y \geq z\right) \vee \\
& \left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& \left(p c=\ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

- a slightly weaker inductive invariant also proves the safety of our examples:

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& \left(p c=\ell_{2} \wedge y \geq z\right) \vee \\
& \left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& p c=\ell_{4}
\end{aligned}
$$

inductive invariants for example program

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& \left(p c=\ell_{2} \wedge y \geq z\right) \vee \\
& \left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& \left(p c=\ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

- a slightly weaker inductive invariant also proves the safety of our examples:

$$
\begin{aligned}
& p c=\ell_{1} \vee \\
& \left(p c=\ell_{2} \wedge y \geq z\right) \vee \\
& \left(p c=\ell_{3} \wedge y \geq z \wedge x \geq y\right) \vee \\
& p c=\ell_{4}
\end{aligned}
$$

- can we drop another conjunct in one of the disjuncts?

1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

inductive invariant (strict superset of reachable states):

$$
\begin{aligned}
\varphi_{\text {reach }}=(p c & =\ell_{1} \vee \\
p c & =\ell_{2} \wedge y \geq z \vee \\
p c & =\ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
p c & \left.=\ell_{4}\right)
\end{aligned}
$$

fixpoint iteration

- computation of reachable program states $=$ iterative application of post on initial program states until a fixpoint is reached
i.e., no new program states are obtained by applying post
- in general, iteration process does not converge
i.e., does not reach fixpoint in finite number of iterations
example: fixpoint iteration diverges

$$
\begin{array}{r}
\rho_{2} \equiv\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\operatorname{post}^{\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)}=\left(a t_{-} \ell_{2} \wedge x-1 \leq z \wedge x \leq y\right) \\
\operatorname{post}^{2}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \\
\operatorname{post}^{3}\left(a t_{-} \ell_{2} \wedge x \leq z, \rho_{2}\right)=\left(a t_{-} \ell_{2} \wedge x-3 \leq z \wedge x \leq y\right) \\
\cdots
\end{array}
$$

example: fixpoint not reached after n steps, $n \geq 1$

- set of states reachable after applying post twice not included in the union of previous two sets:

$$
\begin{aligned}
& \left(\text { at- } \ell_{2} \wedge x-2 \leq z \wedge x \leq y\right) \quad \neq \\
& \text { at } \ell_{2} \wedge x \leq z \vee \\
& \text { at } \ell_{2} \wedge x-1 \leq z \wedge x \leq y
\end{aligned}
$$

- set of states reachable after n-fold application of post still contains previously unreached states:

$$
\begin{aligned}
\forall n \geq 1: & \left(a t_{-} \ell_{2} \wedge x-n \leq z \wedge x \leq y\right) \quad \neq \\
& a t_{-} \ell_{2} \wedge x \leq z \vee \\
& \vee_{1 \leq i<n}\left(a t_{-} \ell_{2} \wedge x-i \leq z \wedge x \leq y\right)
\end{aligned}
$$

abstraction of $\varphi_{\text {reach }}$ by $\varphi_{\text {reach }}^{\#}$

- instead of computing $\varphi_{\text {reach }}$,
compute over-approximation $\varphi_{\text {reach }}^{\#}$ such that $\varphi_{\text {reach }}^{\#} \supseteq \varphi_{\text {reach }}$
- check whether $\varphi_{\text {reach }}^{\#}$ contains any error states
- if $\varphi_{\text {reach }}^{\#} \wedge \varphi_{\text {err }} \models$ false holds then $\varphi_{\text {reach }} \wedge \varphi_{\text {err }} \models$ false, and hence the program is safe
- compute $\varphi_{\text {reach }}^{\#}$ by applying iteration
- instead of iteratively applying post, use over-approximation post ${ }^{\#}$ such that always

$$
\operatorname{post}(\varphi, \rho) \models \operatorname{post}^{\#}(\varphi, \rho)
$$

- decompose computation of post ${ }^{\#}$ into two steps: first, apply post and then, over-approximate result using a function α such that

$$
\forall \varphi: \varphi \models \alpha(\varphi) .
$$

abstraction of post by post ${ }^{\#}$

- given an abstraction function α, define post ${ }^{\#}$:

$$
\operatorname{post}^{\#}(\varphi, \rho)=\alpha(\operatorname{post}(\varphi, \rho))
$$

- compute $\varphi_{\text {reach }}^{\#}$:

$$
\begin{aligned}
\varphi_{\text {reach }}^{\#}= & \alpha\left(\varphi_{\text {init }}\right) \vee \\
& \operatorname{post}^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right) \vee \\
& \operatorname{post}^{\#}\left(\text { post }^{\#}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right), \rho_{\mathcal{R}}\right) \vee \ldots \\
= & \bigvee_{i \geq 0}\left(\text { post }^{\#}\right)^{i}\left(\alpha\left(\varphi_{\text {init }}\right), \rho_{\mathcal{R}}\right)
\end{aligned}
$$

- consequence: $\varphi_{\text {reach }} \models \varphi_{\text {reach }}^{\#}$

predicate abstraction

- construct abstraction using a given set of building blocks, so-called predicates
- predicate $=$ formula over the program variables V
- fix finite set of predicates Preds $=\left\{p_{1}, \ldots, p_{n}\right\}$
- over-approximation of φ by conjunction of predicates in Preds

$$
\alpha(\varphi)=\bigwedge\{p \in \text { Preds } \mid \varphi \models p\}
$$

- computation requires n entailment checks
($n=$ number of predicates)
example: compute $\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x+1 \leq y\right)$
- Preds $=\left\{a t_{-} \ell_{1}, \ldots, a t_{-} \ell_{5}, y \geq z, x \geq y\right\}$

1. check logical consequence between argument to the abstraction function and each of the predicates:

	$y \geq z$	$x \geq y$	$a t_{-} \ell_{1}$	$a t_{-} \ell_{2}$	$a t_{-} \ell_{3}$	$a t_{-} \ell_{4}$	$a t_{-} \ell_{5}$
$a t_{-} \ell_{2} \wedge$	\models	\neq	\neq	\models	\neq	\neq	\neq
$y \geq z \wedge$ $x+1 \leq y$	\vDash						

2. result of abstraction $=$ conjunction over entailed predicates

$$
\alpha\binom{a t_{-} \ell_{2} \wedge}{y \geq z \wedge x+1 \leq y}=a t_{-} \ell_{2} \wedge y \geq z
$$

trivial abstraction $\alpha(\varphi)=$ true

- result of applying predicate abstraction is true if

trivial abstraction $\alpha(\varphi)=$ true

- result of applying predicate abstraction is true if none of the predicates is entailed by φ ("predicates are too specific")

trivial abstraction $\alpha(\varphi)=$ true

- result of applying predicate abstraction is true if none of the predicates is entailed by φ
("predicates are too specific")
\ldots. always the case if Preds $=\emptyset$
example: predicate abstraction to compute $\varphi_{\text {reach }}^{\#}$
- Preds $=\left\{\right.$ false, at- ℓ_{1}, \ldots, at- $\left.\ell_{5}, y \geq z, x \geq y\right\}$
- over-approximation of the set of initial states $\varphi_{\text {init }}$:

$$
\varphi_{1}=\alpha\left(a t_{-} \ell_{1}\right)=a t_{-} \ell_{1}
$$

- apply post $\#$ on φ_{1} wrt. each program transition:

$$
\begin{gathered}
\varphi_{2}=\operatorname{post}^{\#}\left(\varphi_{1}, \rho_{1}\right)=\alpha(\underbrace{a t_{-} \ell_{2} \wedge y \geq z}_{\text {post }\left(\varphi_{1}, \rho_{1}\right)})=a t_{-} \ell_{2} \wedge y \geq z \\
\operatorname{post}^{\#}\left(\varphi_{1}, \rho_{2}\right)=\cdots=\operatorname{post}^{\#}\left(\varphi_{1}, \rho_{5}\right)=\bigwedge\{\text { false }, \ldots\}=\text { false }
\end{gathered}
$$

apply post\# to $\varphi_{2}=\left(a t_{-} \ell_{2} \wedge y \geq z\right)$

- application of ρ_{1}, ρ_{4}, and ρ_{5} on φ_{2} results in false (since ρ_{1}, ρ_{4}, and ρ_{5} are applicable only if either at- ℓ_{1} or $a t_{-} \ell_{3}$ hold)
- for ρ_{2} we obtain

$$
\operatorname{post}^{\#}\left(\varphi_{2}, \rho_{2}\right)=\alpha\left(a t_{-} \ell_{2} \wedge y \geq z \wedge x \leq y\right)=a t_{-} \ell_{2} \wedge y \geq z
$$

result is φ_{2} and, therefore, is discarded

- for ρ_{3} we obtain

$$
\begin{aligned}
\operatorname{post}^{\#}\left(\varphi_{2}, \rho_{3}\right) & =\alpha\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right) \\
& =a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y \\
& =\varphi_{3}
\end{aligned}
$$

apply post ${ }^{\#}$ to $\varphi_{3}=\left(a t_{-} \ell_{3} \wedge y \geq z \wedge x \geq y\right)$

- ρ_{1}, ρ_{2}, and ρ_{3} : inconsistency with program counter valuation in φ_{3}
- for ρ_{4} we obtain:

$$
\begin{aligned}
\operatorname{post}^{\#}\left(\varphi_{3}, \rho_{4}\right) & =\alpha\left(a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y \wedge x \geq z\right) \\
& =a t_{-} \ell_{4} \wedge y \geq z \wedge x \geq y \\
& =\varphi_{4}
\end{aligned}
$$

- for ρ_{5} (assertion violation) we obtain:

$$
\begin{aligned}
\text { post }^{\#}\left(\varphi_{3}, \rho_{5}\right) & =\alpha\left(a t_{-} \ell_{5} \wedge y \geq z \wedge x \geq y \wedge x+1 \leq z\right) \\
& =\text { false }
\end{aligned}
$$

- any further application of program transitions does not compute any additional reachable states
- thus, $\varphi_{\text {reach }}^{\#}=\varphi_{1} \vee \ldots \vee \varphi_{4}$
- since $\varphi_{\text {reach }}^{\#} \wedge a t_{-} \ell_{5} \models$ false, the program is proven safe

algorithm ABstREACH

```
begin
    \alpha:= \lambda\varphi. ^{p\inPreds | }\varphi=p
    post# := \lambda(\varphi,\rho).\alpha(post (\varphi,\rho))
    ReachStates# := {\alpha(\varphi (init ) }
    Parent := \emptyset
    Worklist := ReachStates#
    while Worklist }=\emptyset\mathrm{ do
        \varphi : = ~ c h o o s e ~ f r o m ~ W o r k l i s t
        Worklist := Worklist \{\varphi}
        for each }\rho\in\mathcal{R}\mathrm{ do
        \mp@subsup{\varphi}{}{\prime}}:= post# ( ( , \rho)
        if }\mp@subsup{\varphi}{}{\prime}\not\equiv\\ ReachStates# then
            ReachStates# := {昂}\cupReachStates#
            Parent := {(\varphi,\rho,\mp@subsup{\varphi}{}{\prime})}\cupP\mathrm{ Parent}
            Worklist := { ' '}\cup Worklist
    return (ReachStates#, Parent)
end
```

