relations as formulas

- formula with free variables in V and V' = binary relation over program states
 - ightharpoonup first component of each pair assigns values to V
 - ightharpoonup second component of the pair assigns values to V'

program
$$\mathbf{P} = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$$

- ► *V* finite tuple of *program variables*
- \triangleright pc program counter variable (pc included in V)
- $ightharpoonup \varphi_{init}$ initiation condition given by formula over V
- \triangleright \mathcal{R} a finite set of transition relations
- $ightharpoonup \varphi_{err}$ an error condition given by a formula over V
- ransition relation $\rho \in \mathcal{R}$ given by formula over the variables V and their primed versions V'

transition relation ρ expressed by logica formula

$$ho_1 \equiv (move(\ell_1, \ell_2) \land y \ge z \land skip(x, y, z))$$
 $ho_2 \equiv (move(\ell_2, \ell_2) \land x + 1 \le y \land x' = x + 1 \land skip(y, z))$
 $ho_3 \equiv (move(\ell_2, \ell_3) \land x \ge y \land skip(x, y, z))$
 $ho_4 \equiv (move(\ell_3, \ell_4) \land x \ge z \land skip(x, y, z))$
 $ho_5 \equiv (move(\ell_3, \ell_5) \land x + 1 \le z \land skip(x, y, z))$

abbreviations:

$$move(\ell, \ell') \equiv (pc = \ell \land pc' = \ell')$$

 $skip(v_1, \dots, v_n) \equiv (v'_1 = v_1 \land \dots \land v'_n = v_n)$

```
1: assume(y >= z);
2: while (x < y) {
         x++;
     }
3: assert(x >= z);
4: exit
5: error
```


$$ho_1 = (move(\ell_1, \ell_2) \land y \ge z \land skip(x, y, z))$$
 $ho_2 = (move(\ell_2, \ell_2) \land x + 1 \le y \land x' = x + 1 \land skip(y, z))$
 $ho_3 = (move(\ell_2, \ell_3) \land x \ge y \land skip(x, y, z))$
 $ho_4 = (move(\ell_3, \ell_4) \land x \ge z \land skip(x, y, z))$

 $\rho_5 = (move(\ell_3, \ell_5) \land x + 1 \leq z \land skip(x, y, z))$

correctness: safety

- ▶ a state is *reachable* if it occurs in some program computation
- ▶ a program is *safe* if no error state is reachable
- \blacktriangleright ... if and only if no error state lies in φ_{reach} ,

$$\varphi_{err} \wedge \varphi_{reach} \models false$$
.

where $\varphi_{reach} = \text{set of reachable program states}$

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

set of reachable states:

$$arphi_{reach} = (pc = \ell_1 \ ee$$
 $pc = \ell_2 \land y \ge z \ ee$
 $pc = \ell_3 \land y \ge z \land x \ge y \ ee$
 $pc = \ell_4 \land y \ge z \land x \ge y)$

post operator

- ▶ let φ be a formula over V and ρ a formula over V and V'
- define a post-condition function post by:

$$post(\varphi, \rho) = (\exists V : \varphi \land \rho)[V/V']$$

an application $post(\varphi,\rho)$ computes the image of the set φ under the relation ρ

post distributes over disjunction wrt. each argument:

$$post(\varphi, \rho_1 \lor \rho_2) = (post(\varphi, \rho_1) \lor post(\varphi, \rho_2))$$

 $post(\varphi_1 \lor \varphi_2, \rho) = (post(\varphi_1, \rho) \lor post(\varphi_2, \rho))$

ightharpoonup
ho has no primed variables

• ρ has no primed variables $post(\phi, \rho) = \phi \wedge \rho$

- ρ has no primed variables $post(\phi, \rho) = \phi \wedge \rho$
- ightharpoonup
 ho has only primed variables

- ▶ ρ has no primed variables post(φ, ρ) = φ ∧ ρ
- ρ has only primed variables $post(\phi, \rho) = \rho[V/V']$

- ρ has no primed variables $post(\phi, \rho) = \phi \wedge \rho$
- ρ has only primed variables $post(\phi, \rho) = \rho[V/V']$
- ρ is an update of x by an expression e without x, say $\rho = x := e(y, z)$

- ρ has no primed variables $post(\phi, \rho) = \phi \wedge \rho$
- ρ has only primed variables $post(\phi, \rho) = \rho[V/V']$
- ▶ ρ is an update of x by an expression e without x, say $\rho = x := e(y, z)$ $post(\phi, \rho) = \exists x \phi \land x = e$

iteration of post

 $post^n(\varphi, \rho) = n$ -fold application of post to φ under ρ

$$post^{n}(\varphi, \rho) = \begin{cases} \varphi & \text{if } n = 0 \\ post(post^{n-1}(\varphi, \rho), \rho) \end{cases}$$
 otherwise

characterize φ_{reach} using iterates of post:

$$\varphi_{reach} = \varphi_{init} \lor post(\varphi_{init}, \rho_{\mathcal{R}}) \lor post(post(\varphi_{init}, \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots$$

$$= \bigvee_{i>0} post^{i}(\varphi_{init}, \rho_{\mathcal{R}})$$

 \emph{n} -th disjunct = iterate for natural number \emph{n} (disjunction = " ω iteration")

finite iteration post may suffice

"fixpoint reached in *n* steps" if

$$\bigvee_{i=0}^{n} post^{i}(\varphi_{init}, \rho_{\mathcal{R}}) = \bigvee_{i=0}^{n+1} post^{i}(\varphi_{init}, \rho_{\mathcal{R}})$$

then
$$\bigvee_{i=0}^{n} post^{i}(\varphi_{init}, \rho_{\mathcal{R}}) = \bigvee_{i>0} post^{i}(\varphi_{init}, \rho_{\mathcal{R}})$$

'distributed' iteration of $post(\cdot, \rho_R)$

- $ho_{\mathcal{R}}$ is itself a disjunction: $\rho_{\mathcal{R}} = \rho_1 \vee \ldots \vee \rho_m$
- $ightharpoonup post(\phi, \rho)$ distributes over disjunction in both arguments
- in 'distributed' disjunction $\Phi = \{\phi_k \mid k \in M\}$, every disjunct ϕ_k corresponds to a sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$

$$\phi_k = post(post(\dots post(\varphi_{init}, \rho_{j_1}), \dots), \rho_{j_n})$$

• $\phi_k \neq \emptyset$ only if sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$ corresponds to path in control flow graph of program since:

$$post(pc = \ell_i \land \dots, move(\ell_j, \ell_{\dots}) \land \dots) = \emptyset \text{ if } i \neq j$$

chaotic fixpoint iteration follows paths in control flow graph

'distributed' fixpoint test: 'local' entailment

• "fixpoint reached in n steps" if (but not only if): every application of $post(\cdot, \cdot)$ to any disjunct ϕ_k in Φ is contained in one of the disjuncts $\phi_{k'}$ in Φ is

$$\forall k \in M \ \forall j = 1, \dots, m \ \exists k' \in M : post(\phi_k, \rho_j) \subseteq \phi_{k'}$$

compute φ_{reach} for example program (1)

apply post on set of initial states:

$$egin{aligned} & post(pc = \ell_1,
ho_{\mathcal{R}}) \ &= post(pc = \ell_1,
ho_1) \ &= pc = \ell_2 \land y \geq z \end{aligned}$$

apply post on successor states:

$$post(pc = \ell_2 \land y \ge z, \rho_R)$$

= $post(pc = \ell_2 \land y \ge z, \rho_2) \lor post(pc = \ell_2 \land y \ge z, \rho_3)$
= $pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y$

compute φ_{reach} for example program (2)

repeat the application step once again:

$$post(pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y, \rho_R)$$

$$= post(pc = \ell_2 \land y \ge z \land x \le y, \rho_R) \lor post(pc = \ell_3 \land y \ge z \land x \ge y, \rho_R) \lor post(pc = \ell_2 \land y \ge z \land x \le y, \rho_2) \lor post(pc = \ell_2 \land y \ge z \land x \le y, \rho_2) \lor post(pc = \ell_3 \land y \ge z \land x \le y, \rho_3) \lor post(pc = \ell_3 \land y \ge z \land x \ge y, \rho_4) \lor post(pc = \ell_3 \land y \ge z \land x \ge y, \rho_5)$$

$$= pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y$$

compute φ_{reach} for example program

disjunction obtained by iteratively applying post to φ_{init} :

$$pc = \ell_1 \lor$$
 $pc = \ell_2 \land y \ge z \lor$
 $pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x \ge y \lor$
 $pc = \ell_2 \land y \ge z \land x \le y \lor pc = \ell_3 \land y \ge z \land x = y \lor$
 $pc = \ell_4 \land y \ge z \land x \ge y$

disjunction in a logically equivalent, simplified form:

$$pc = \ell_1 \lor$$
 $pc = \ell_2 \land y \ge z \lor$
 $pc = \ell_3 \land y \ge z \land x \ge y \lor$
 $pc = \ell_4 \land y \ge z \land x \ge y$

above disjunction $= \varphi_{reach}$ since any further application of post does not produce any additional disjuncts

 \blacktriangleright program is safe if there exists a safe inductive invariant φ

- ightharpoonup program is safe if there exists a safe inductive invariant arphi
- ► inductive:

$$\varphi_{\mathit{init}} \models \varphi \quad \mathsf{and} \quad \mathit{post}(\varphi, \rho_{\mathcal{R}}) \models \varphi \; .$$

- ightharpoonup program is safe if there exists a safe inductive invariant arphi
- inductive:

$$\varphi_{\mathit{init}} \models \varphi \quad \mathsf{and} \quad \mathit{post}(\varphi, \rho_{\mathcal{R}}) \models \varphi \; .$$

safe:

$$\varphi \wedge \varphi_{err} \models false$$

- ightharpoonup program is safe if there exists a safe inductive invariant arphi
- ▶ inductive:

$$\varphi_{\mathit{init}} \models \varphi \quad \mathsf{and} \quad \mathit{post}(\varphi, \rho_{\mathcal{R}}) \models \varphi \; .$$

safe:

$$\varphi \wedge \varphi_{err} \models false$$

- justification:
 - 1. " φ_{reach} is the strongest inductive invariant"

$$\varphi_{\mathit{reach}} \models \varphi$$

2. program safe if φ_{reach} does not contain an error state:

$$\varphi_{reach} \wedge \varphi_{err} \models false$$

weakest inductive invariant:

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$egin{align} egin{align} eg$$

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$egin{align} egin{align} eg$$

a slightly weaker inductive invariant also proves the safety of our examples:

$$egin{aligned} egin{aligned} egin{aligned} eta c &= \ell_1 \lor \ egin{aligned} egin{aligned} eta c &= \ell_2 \land y \geq z \end{pmatrix} \lor \ egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$$

- weakest inductive invariant: true (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

$$egin{align} egin{align} eg$$

a slightly weaker inductive invariant also proves the safety of our examples:

$$egin{align} egin{align} eg$$

► can we drop another conjunct in one of the disjuncts?

inductive invariant (strict superset of reachable states):

$$arphi_{reach}=(
ho c=\ell_1ee$$
 $pc=\ell_2\wedge y\geq zee$
 $pc=\ell_3\wedge y\geq z\wedge x\geq yee$
 $pc=\ell_4)$

fixpoint iteration

- computation of reachable program states = iterative application of post on initial program states until a fixpoint is reached i.e., no new program states are obtained by applying post
- ▶ in general, iteration process does not converge i.e., does not reach fixpoint in finite number of iterations

example: fixpoint iteration diverges

$$ho_2 \equiv (move(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land skip(y, z))$$

$$post(at_-\ell_2 \land x \leq z, \rho_2) = (at_-\ell_2 \land x - 1 \leq z \land x \leq y)$$

$$post^2(at_-\ell_2 \land x \leq z, \rho_2) = (at_-\ell_2 \land x - 2 \leq z \land x \leq y)$$

$$post^3(at_-\ell_2 \land x \leq z, \rho_2) = (at_-\ell_2 \land x - 3 \leq z \land x \leq y)$$

$$\dots$$

$$post^n(at_-\ell_2 \land x \leq z, \rho_2) = (at_-\ell_2 \land x - n \leq z \land x \leq y)$$

example: fixpoint not reached after n steps, $n \geq 1$

set of states reachable after applying post twice not included in the union of previous two sets:

$$(at_{-}\ell_{2} \land x - 2 \leq z \land x \leq y) \not\models$$

$$at_{-}\ell_{2} \land x \leq z \lor$$

$$at_{-}\ell_{2} \land x - 1 \leq z \land x \leq y$$

set of states reachable after n-fold application of post still contains previously unreached states:

$$\forall n \geq 1 : (at_{-}\ell_{2} \land x - n \leq z \land x \leq y) \not\models$$

$$at_{-}\ell_{2} \land x \leq z \lor$$

$$\bigvee_{1 \leq i \leq n} (at_{-}\ell_{2} \land x - i \leq z \land x \leq y)$$

abstraction of φ_{reach} by $\varphi_{reach}^{\#}$

- instead of computing φ_{reach} , compute over-approximation $\varphi_{reach}^{\#}$ such that $\varphi_{reach}^{\#} \supseteq \varphi_{reach}$
- check whether $\varphi_{reach}^{\#}$ contains any error states
- if $\varphi_{reach}^{\#} \wedge \varphi_{err} \models false$ holds then $\varphi_{reach} \wedge \varphi_{err} \models false$, and hence the program is safe
- ightharpoonup compute $\varphi_{reach}^{\#}$ by applying iteration
- ▶ instead of iteratively applying post, use over-approximation post[#] such that always

$$post(\varphi, \rho) \models post^{\#}(\varphi, \rho)$$

• decompose computation of $post^{\#}$ into two steps: first, apply post and then, over-approximate result using a function α such that

$$\forall \varphi : \varphi \models \alpha(\varphi) .$$

abstraction of post by post#

▶ given an abstraction function α , define $post^{\#}$:

$$post^{\#}(\varphi,\rho) = \alpha(post(\varphi,\rho))$$

• compute $\varphi_{reach}^{\#}$:

$$\varphi_{reach}^{\#} = \alpha(\varphi_{init}) \vee \\ post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}) \vee \\ post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \vee \dots \\ = \bigvee_{i>0} (post^{\#})^{i}(\alpha(\varphi_{init}), \rho_{\mathcal{R}})$$

ightharpoonup consequence: $\varphi_{reach} \models \varphi_{reach}^{\#}$

predicate abstraction

- construct abstraction using a given set of building blocks, so-called predicates
- ightharpoonup predicate = formula over the program variables V
- fix finite set of predicates $Preds = \{p_1, \dots, p_n\}$
- ightharpoonup over-approximation of φ by conjunction of predicates in *Preds*

$$\alpha(\varphi) = \bigwedge \{ p \in Preds \mid \varphi \models p \}$$

ightharpoonup computation requires n entailment checks (n = number of predicates)

example: compute $\alpha(at_{-}\ell_{2} \wedge y \geq z \wedge x + 1 \leq y)$

▶
$$Preds = \{at_{-}\ell_{1}, ..., at_{-}\ell_{5}, y \geq z, x \geq y\}$$

1. check logical consequence between argument to the abstraction function and each of the predicates:

	$y \geq z$	$x \ge y$	\mid at_ ℓ_1	$at_{-}\ell_{2}$	$at_{-}\ell_{3}$	$at_{-}\ell_{4}$	$at_{-}\ell_{5}$
$at_{-}\ell_{2} \wedge$							
$y \ge z \land$	=	$\not\models$	$\not\models$	=	$\not\models$	$\not\models$	$\not\models$
$x + 1 \le y$							

2. result of abstraction = conjunction over entailed predicates

$$\alpha(\frac{at_{-}\ell_{2} \wedge y}{y \geq z \wedge x + 1 \leq y}) = at_{-}\ell_{2} \wedge y \geq z$$

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is *true* if

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is true if none of the predicates is entailed by φ ("predicates are too specific")

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is *true* if none of the predicates is entailed by φ ("predicates are too specific") ... always the case if $Preds = \emptyset$

example: predicate abstraction to compute $\varphi_{reach}^{\#}$

▶
$$Preds = \{false, at_{-}\ell_{1}, ..., at_{-}\ell_{5}, y \geq z, x \geq y\}$$

• over-approximation of the set of initial states φ_{init} :

$$arphi_1=lpha(\mathsf{at}_-\ell_1)=\mathsf{at}_-\ell_1$$

▶ apply $post^{\#}$ on φ_1 wrt. each program transition:

$$\varphi_2 = post^{\#}(\varphi_1, \rho_1) = \alpha(\underbrace{at_{-}\ell_2 \land y \ge z}) = at_{-}\ell_2 \land y \ge z$$

$$\underbrace{post(\varphi_1, \rho_1)}$$

$$post^{\#}(\varphi_1, \rho_2) = \cdots = post^{\#}(\varphi_1, \rho_5) = \bigwedge \{false, \ldots\} = false$$

apply $post^{\#}$ to $\varphi_2 = (at_{-}\ell_2 \land y \geq z)$

- ▶ application of ρ_1 , ρ_4 , and ρ_5 on φ_2 results in *false* (since ρ_1 , ρ_4 , and ρ_5 are applicable only if either $at_-\ell_1$ or $at_-\ell_3$ hold)
- for ρ_2 we obtain

$$post^{\#}(\varphi_2, \rho_2) = \alpha(at_{-}\ell_2 \land y \ge z \land x \le y) = at_{-}\ell_2 \land y \ge z$$

result is φ_2 and, therefore, is discarded

• for ρ_3 we obtain

$$post^{\#}(\varphi_2, \rho_3) = \alpha(at_{-}\ell_3 \land y \ge z \land x \ge y)$$

$$= at_{-}\ell_3 \land y \ge z \land x \ge y$$

$$= \varphi_3$$

apply
$$post^{\#}$$
 to $\varphi_3 = (at_{-}\ell_3 \land y \ge z \land x \ge y)$

- ho_1 , ho_2 , and ho_3 : inconsistency with program counter valuation in ho_3
- for ρ_4 we obtain:

$$post^{\#}(\varphi_{3}, \rho_{4}) = \alpha(at_{-}\ell_{4} \land y \geq z \land x \geq y \land x \geq z)$$
$$= at_{-}\ell_{4} \land y \geq z \land x \geq y$$
$$= \varphi_{4}$$

• for ρ_5 (assertion violation) we obtain:

$$post^{\#}(\varphi_3, \rho_5) = \alpha(at_{-}\ell_5 \land y \ge z \land x \ge y \land x + 1 \le z)$$

= false

- any further application of program transitions does not compute any additional reachable states
- ▶ thus, $\varphi_{reach}^{\#} = \varphi_1 \vee \ldots \vee \varphi_4$
- ▶ since $\varphi_{reach}^{\#} \wedge at_{-}\ell_{5} \models false$, the program is proven safe

algorithm ABSTREACH

begin

```
\alpha := \lambda \varphi . \land \{ p \in Preds \mid \varphi \models p \}
   post^{\#} := \lambda(\varphi, \rho) \cdot \alpha(post(\varphi, \rho))
   ReachStates^{\#} := \{\alpha(\varphi_{init})\}
    Parent := \emptyset
    Worklist := ReachStates^{\#}
   while Worklist \neq \emptyset do
        \varphi := \text{choose from } \textit{Worklist}
         Worklist := Worklist \ \{\varphi\}
        for each \rho \in \mathcal{R} do
             \varphi' := post^{\#}(\varphi, \rho)
             if \varphi' \not\models \bigvee ReachStates^{\#} then
                  ReachStates^{\#} := \{\varphi'\} \cup ReachStates^{\#}
                  Parent := \{(\varphi, \rho, \varphi')\} \cup Parent
                   Worklist := \{\varphi'\} \cup Worklist
   return (ReachStates#, Parent)
end
```