abstraction of post by post?

» instead of iteratively applying post, use
over-approximation post” such that always

post(p, p) k= post™ (g, p)

» decompose computation of post™ into two steps:
first, apply post and then, over-approximate result

» define abstraction function o such that always

» FE a(p) -

» for a given abstraction function «, define post™:

post™ (¢, p) = a(post(e, p))

abstraction of ©,esch by sﬁﬁach

» instead of computing ©,each,
compute over-approximation gof;ch such that gpfzach 2 Qreach

i

reach

if gpfzach N perr = false
then Y each A Yerr = false, i.e., program is safe

#

reach

» check whether ¢ contains any error states

» compute ¢ by applying iteration

P leach = (@init) V
post™ (a(pinit), pr) V
post™ (post™ (a(pinit), PR), PR) V - .-
— \/I.Zo(post#)i(a(sﬁinit)a PR)

#

> consequence: Yreach ‘: ¥ reach

predicate abstraction

» construct abstraction a(y) using a given set of building
blocks, so-called predicates

» predicate = formula over the program variables V
» fix finite set of predicates Preds = {p1,...,pn}

» over-approximation of ¢ by conjunction of predicates in Preds

a(e) = \{p € Preds | p = p}

» computation of a() requires n entailment checks
(n = number of predicates)

example: compute a(at b ANy >zAx+1<y)

» Preds = {at_{1,...,at_l5,y > z,x >y}

1. to compute (), check logical consequence between ¢ and
each of the predicates:

y>z | x>y |at_ b1 | at_ly | at_l3 | at_l4 | at_ts
at_t» N
y>zA = a a = 7 7 7
x+1<y

2. result of abstraction = conjunction over entailed predicates

at_t> N

— >
yZzAx+1§y) at_ Uy Ny > z

af

trivial abstraction a(p) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

... always the case if Preds = ()

algorithm ABSTREACH

begin

a = Ap. \{p € Preds | ¢ = p}

post® = A(p,p) . a(post(p,p))
ReachStates™ = {a(pinit)}

Parent = ()
Worklist ‘= ReachStates?
while Worklist # () do

@ = choose from Worklist
Worklist := Worklist \ {p}
for each p € R do

/

¢ = post? (g, p)
if ' ¢ ReachStates™ then

ReachStates” := {'} U ReachStates™

Parent = {(yp,p, ')} U Parent
Worklist = {¢'} U Worklist
return (ReachStates™ | Parent)
end

Abstract Reachability Graph

[901 : at_ﬁlJ
lpl 1 = a(Pinit)
[9"2 at Lo Ny Z;Zj o P2 p2 = post™ (i1, p1)
lﬂ3 - post™ (2, p2) = 2
— 7#
[903 1 3t—€3/\y22/\x2y] p3 = post” (2, p3)
l,04 P4 = post™ (3, p4)

[904:at_€4/\y22/\><2y]

» Preds = {false,at_{1,...,at U5,y > z,x >y}

> nodes 1, ..., wa € ReachStates™

» |labeled edges € Parent

» dotted edge : entailment relation (here, post™ (o, po) = o)

example: predicate abstraction to compute gpf;ch

> Preds = {false,at_{1,...,at_ {5,y > z,x > y}

» over-approximation of the set of initial states jp;:
1 = oz(at_él) — at_¥q
> apply post™ on @1 wrt. each program transition:

Y2 = Post#(901,,01) =afat_. b ANy >z)=at b ANy >z

POSt(gO]_ 701)

post™ (o1, p2) = - -+ = post™ (p1, ps) = N\{false, ...} = false

apply post™ to v, = (at_ly Ny > z)

» application of p1, pa, and ps on > results in false
(since p1, pa, and ps are applicable only if either at_/¢; or

at_¢3 hold)

» for po» we obtain
post™ (o, po) = alat_lo Ny >zAx<y)=at lo ANy >z

result is > which is already in ReachStates™: nothing to do

» for p3 we obtain

post#(goz,m) —afat_ 3Ny >zAx2>y)
=at 3Ny >zAx>y

new node 3 in ReachStates™, new edge in Parent

apply post™ to p3 = (at_ 3Ny >zAXx>y)

» application of p1, p2, and p3 on 3 results in false
» for ps we obtain:

post#(g03,p4) =aat_ by Ny >ZAXx>yAx > 2z)
—=at_ a Ny >zAXx>y

new node ¢, in ReachStates™ , new edge in Parent

» for ps (assertion violation) we obtain:

post™ (g3, p5) = alat_ls Ay > zAx >y Ax+1<z)

= false

» any further application of program transitions does not

compute any additional reachable states
#

> thus, o, =pP1V... Vs
> since Wﬁach A at_Us = false, the program is proven safe

abstraction a(y)

» monotonicity

©1 = @2 implies a(p1) E al(ps)
» idempotency
a(a(p1)) = a(e1)

» extensiveness
1 = afp1)

Abstract reachability computation with
Preds = {false,at_(1,...,at_ls,y > z}

[gpl:at_él]
W
[902 cat_lh Ny Zf_] \/\, P2
lp3 o
[@3 cat_ U3 Ny > ZJ
N\

[904 cat_ly Ny > Z] [g05 cat_ls Ny > z]

01 = o Pinit)

p2 = post™ (1, p1)

post™ (2, p2) = 2

p3 = post™ (w2, p3)
= post™ (3, pa)

ps = post™ (3, ps)

» omitting just one predicate (in the example: x > y) may lead

to an over-approximation gpﬁach such that

gpfiach A perr = false

that is, ABSTREACH without the predicate x > y fails to
prove safety

counterexample path

» Parent relation records sequence leading to s

» apply p1 to ¢1 and obtain ¢,
» apply p3 to ¢, and obtain 3
» apply ps to ¢3 and obtain s

» counterexample path:
sequence of program transitions p1, p3, and ps

» Using this path and the functions o and post™ corresponding
to the current set of predicates we obtain

o5 = post™ (post™ (post™ (ainit), P1), P3), P5)

that is, 5 is equal to the over-approximation of the
post-condition computed along the counterexample path

analysis of counterexample path

» check if the counterexample path also leads to the error states
when no over-approximation is applied

» compute

post(post(post(pinit, p1), P3): P5)
= post(post(at_la Ny > z,p3), p5)
= post(at_ {3 ANy > zAx >y, ps)

= false .

» by executing the program transitions p1, p3, and ps is not
possible to reach any error

» conclude that the over-approximation is too coarse
when dealing with the above path

need for refinement of abstraction

» need a more precise over-approximation that will prevent

4 . .
P reach from including error states

need for refinement of abstraction

» need a more precise over-approximation that will prevent

4 . .
P reach from including error states

» need a more precise over-approximation that will prevent o
from including states that lead to error states along the path

p1, p3, and ps

need for refinement of abstraction

» need a more precise over-approximation that will prevent

4 . .
P reach from including error states

» need a more precise over-approximation that will prevent «
from including states that lead to error states along the path
p1, p3, and ps

» need a refined abstraction function o and a corresponding
post™ such that the execution of ABSTREACH along the
counterexample path does not compute a set of states that
contains some error states

post™ (post™ (post™ (a(init), p1), P3), P5) A Perr = false .

over-approximation along counterexample path

> goal:

post™ (post™ (post™ (a(init), p1), P3), P5) A Perr = false .

» define sets of states 1, ...,14 such that

Pinit = V1

post(y1, p1) F V2
post(y2, p3) FE V3
post(3, ps) = 4
Y4 N\ perr = false

» thus, ¥1,...,14 guarantee that no error state can be reached
may approximate / still allow additional states
» example choice for ¢1, ...,y
1| (05! | V3 Y

at_/tq ‘ at_lr Ny > z ‘ at_l3 AN x > z ‘ false

refinement of predicate abstraction

» given sets of states 11,...,14 such that

Pinit = Y1

post(y1, p1) F V2
post(y2, p3) F V3
post(3, ps) = 4
Y4 N\ perr = false

» add ¥1,...,14 to the set of predicates Preds
» formal property (discussed later) guarantees:
a(@init) F Y1

post™ (i1, p1) |= 12
post™ (ih2, p3) |= 13
post™ (13, ps) = 4
Y4 N\ perr = false

proves: no error state reachable along path p1, p3, and ps

next ...

» approach for analysing counterexample computed by
ABSTREACH

» algorithms MAKEPATH, FEASIBLEPATH, and REFINEPATH

path computation

function MAKEPATH
input
1) - reachable abstract state
Parent - predecessor relation
begin
path := empty sequence
P =
while exist ¢ and p such that (¢, p, ') € Parent do
path := p . path
P =
return path
end

SO 01 B~ W N

path computation

» input: rechable abstract state v + Parent relation
» view Parent as a tree where 1) occurs as a node

» output: sequence of program transitions that labels the tree
edges on path from root to ¥

» sequence is constructed iteratively by a backward traversal
starting from the input node

» variable path keeps track of the construction
> in example, call MAKEPATH(ys, Parent)
» path, initially empty, is extended with transitions ps, p3, p1

> Corresponding edgeS: (9037 P5, 905)' (802, P3, 903)' (9017 P1, 901)
» output: path = p1p3ps5

feasibility of a path

cr A GWODN =

function FEASIBLEPATH
input
P1...Pn - path
begin
Y = pOSt(Sainita P1L©...0 pn)
if © A perr = false then
return true
else
return false
end

feasibility of a path

» input: sequence of program transitions pi ... p,

» checks if there is a computation that produced by this
sequence

» check uses the post-condition function and the relational
composition of transition

» apply FEASIBLEPATH on example path p1p3p5

» relational composition of transitions yields

p1 0 p3 o ps = false .

» FEASIBLEPATH sets ¢ to false and then returns false

counterexample-guided discovery of predicates

function REFINEPATH

input
P1.-..pPn - path
begin
0o, ---,Pn = compute such that
(Spinit |: 900) A

(pOSt(SOOMOI) ‘: QO]-) ARERWA (POSt(gOn_]_“On) ‘: SOn) A
(©n A Qerr = false)

return {©g, ..., ¥n}
end

cT A W N =

» omitted: particular algorithm for finding g, ..., v,

counterexample guided discovery of predicates

» input: sequence of program transitions pi ... pj,
» output: sets of states g, ..., ©, such that

> Pinit ’: ol
> post(pi—1,pi) E @i
> On N\ Perr |= false for i € 1..n

» if ©vg,...,p, are added to Preds
then the resulting o and post? guarantee that

O‘(Spinit) }: ¥0
POSt#(SOO, p1) o1

POSt#(SDn—la Pn) ‘: Yn
©n N\ perr = false .

» in example, application of REFINEPATH on p1p3ps5 yields
sequence of sets of states v1,..., Y4

next ...

» algorithm for counterexample-guided abstraction refinement

» put together all building blocks into an algorithm
ABSTREFINELOOP that verifies safety using predicate
abstraction and counterexample guided refinement

predicate abstraction and refinement loop

function ABSTREFINELOOP
begin
Preds = ()
repeat
(ReachStates™ | Parent) := ABSTREACH(Preds)
if exists 1 € ReachStates™ such that Y N perr = false
then
path := MAKEPATH(1), Parent)
if FEASIBLEPATH(path) then
return “counterexample path: path "
else
0 Preds := REFINEPATH(path) U Preds
1 else
return “program is correct”

—H = O 00 NO O & WDN K

end.

algorithm ABSTREFINELOOP

>

Input: program, output: proof or counterexample

compute gpf;ch using an abstraction defined wrt. set of

predicates Preds (initially empty)

over-approximation gpﬁach . set of formulas ReachStates™

where each formula represents a set of states
iIf set of error states disjoint from over-approximation: stop

otherwise, consider a formula) in ReachStates™ that
witnesses overlap with error states

refinement is only possible if overlap is caused by imprecision
construct path, sequence of program transitions leading to v
analyze path using FEASIBLEPATH

If path feasible: stop

otherwise (path is not feasible), compute a set of predicates
that refines the abstraction function

that's it!

