
abstraction of post by post

#

I
instead of iteratively applying post, use

over-approximation post

#
such that always

post(', ⇢) |= post

#
(', ⇢)

I
decompose computation of post

#
into two steps:

first, apply post and then, over-approximate result

I
define abstraction function ↵ such that always

' |= ↵(') .

I
for a given abstraction function ↵, define post

#
:

post

#
(', ⇢) = ↵(post(', ⇢))



abstraction of '
reach

by '#

reach

I
instead of computing '

reach

,

compute over-approximation '#
reach

such that '#
reach

◆ '
reach

I
check whether '#

reach

contains any error states

if '#
reach

^ '
err

|= false

then '
reach

^ '
err

|= false, i.e., program is safe

I
compute '#

reach

by applying iteration

'#
reach

= ↵('
init

) _
post

#
(↵('

init

), ⇢R) _
post

#
(post

#
(↵('

init

), ⇢R), ⇢R) _ . . .

=

W
i�0(post

#
)

i

(↵('
init

), ⇢R)

I
consequence: '

reach

|= '#
reach



predicate abstraction

I
construct abstraction ↵(') using a given set of building

blocks, so-called predicates

I
predicate = formula over the program variables V

I
fix finite set of predicates Preds = {p1, . . . , pn}

I
over-approximation of ' by conjunction of predicates in Preds

↵(') =
V
{p 2 Preds | ' |= p}

I
computation of ↵(') requires n entailment checks

(n = number of predicates)



example: compute ↵(at `
2

^ y � z ^ x + 1  y)

I
Preds = {at `1, . . . , at `5, y � z , x � y}

1. to compute ↵('), check logical consequence between ' and

each of the predicates:

y � z x � y at `1 at `2 at `3 at `4 at `5
at `2 ^
y � z ^
x + 1  y

|= 6|= 6|= |= 6|= 6|= 6|=

2. result of abstraction = conjunction over entailed predicates

↵(
at `2 ^
y � z ^ x + 1  y

) = at `2 ^ y � z



trivial abstraction ↵(') = true

I
result of applying predicate abstraction is true if

none of the predicates is entailed by '
(“predicates are too specific”)

. . . always the case if Preds = ;



algorithm AbstReach

begin

↵ := �' .
V
{p 2 Preds | ' |= p}

post

#
:= �(', ⇢) . ↵(post(', ⇢))

ReachStates

#
:= {↵('

init

)}
Parent := ;
Worklist := ReachStates

#

while Worklist 6= ; do

' := choose from Worklist

Worklist := Worklist \ {'}
for each ⇢ 2 R do

'0
:= post

#
(', ⇢)

if '0 62 ReachStates

#
then

ReachStates

#
:= {'0} [ ReachStates

#

Parent := {(', ⇢,'0
)} [ Parent

Worklist := {'0} [Worklist

return (ReachStates

#,Parent)
end



Abstract Reachability Graph

'1 : at `1

'2 : at `2 ^ y � z

'3 : at `3 ^ y � z ^ x � y

'4 : at `4 ^ y � z ^ x � y

⇢1

⇢2

⇢3

⇢4

'1 = ↵('
init

)

'2 = post

#
('1, ⇢1)

post

#
('2, ⇢2) |= '2

'3 = post

#
('2, ⇢3)

'4 = post

#
('3, ⇢4)

I
Preds = {false, at `1, . . . , at `5, y � z , x � y}

I
nodes '1, . . . , '4 2 ReachStates

#

I
labeled edges 2 Parent

I
dotted edge : entailment relation (here, post

#
('2, ⇢2) |= '2)



example: predicate abstraction to compute '#

reach

I
Preds = {false, at `1, . . . , at `5, y � z , x � y}

I
over-approximation of the set of initial states '

init

:

'1 = ↵(at `1) = at `1

I
apply post

#
on '1 wrt. each program transition:

'2 = post

#
('1, ⇢1) = ↵(at `2 ^ y � z| {z }

post('1,⇢1)

) = at `2 ^ y � z

post

#
('1, ⇢2) = · · · = post

#
('1, ⇢5) =

V
{false, . . . } = false



apply post

#

to '
2

= (at `
2

^ y � z)

I
application of ⇢1, ⇢4, and ⇢5 on '2 results in false

(since ⇢1, ⇢4, and ⇢5 are applicable only if either at `1 or

at `3 hold)

I
for ⇢2 we obtain

post

#
('2, ⇢2) = ↵(at `2 ^ y � z ^ x  y) = at `2 ^ y � z

result is '2 which is already in ReachStates

#
: nothing to do

I
for ⇢3 we obtain

post

#
('2, ⇢3) = ↵(at `3 ^ y � z ^ x � y)

= at `3 ^ y � z ^ x � y

= '3

new node '3 in ReachStates

#
, new edge in Parent



apply post

#

to '
3

= (at `
3

^ y � z ^ x � y)

I
application of ⇢1, ⇢2, and ⇢3 on '3 results in false

I
for ⇢4 we obtain:

post

#
('3, ⇢4) = ↵(at `4 ^ y � z ^ x � y ^ x � z)

= at `4 ^ y � z ^ x � y

= '4

new node '4 in ReachStates

#
, new edge in Parent

I
for ⇢5 (assertion violation) we obtain:

post

#
('3, ⇢5) = ↵(at `5 ^ y � z ^ x � y ^ x + 1  z)

= false

I
any further application of program transitions does not

compute any additional reachable states

I
thus, '#

reach

= '1 _ . . . _ '4

I
since '#

reach

^ at `5 |= false, the program is proven safe



abstraction ↵(')

I
monotonicity

'1 |= '2 implies ↵('1) |= ↵('2)

I
idempotency

↵(↵('1)) = ↵('1)

I
extensiveness

'1 |= ↵('1)



Abstract reachability computation with

Preds = {false, at `
1

, . . . , at `
5

, y � z}

'1 : at `1

'2 : at `2 ^ y � z

'3 : at `3 ^ y � z

'4 : at `4 ^ y � z '5 : at `5 ^ y � z

⇢1

⇢2

⇢3

⇢4 ⇢5

'1 = ↵('
init

)

'2 = post

#
('1, ⇢1)

post

#
('2, ⇢2) |= '2

'3 = post

#
('2, ⇢3)

'4 = post

#
('3, ⇢4)

'5 = post

#
('3, ⇢5)



I
omitting just one predicate (in the example: x � y) may lead

to an over-approximation '#
reach

such that

'#
reach

^ '
err

6|= false

that is, AbstReach without the predicate x � y fails to

prove safety



counterexample path

I
Parent relation records sequence leading to '5

I
apply ⇢1 to '1 and obtain '2

I
apply ⇢3 to '2 and obtain '3

I
apply ⇢5 to '3 and obtain '5

I
counterexample path:

sequence of program transitions ⇢1, ⇢3, and ⇢5
I

Using this path and the functions ↵ and post

#
corresponding

to the current set of predicates we obtain

'5 = post

#
(post

#
(post

#
(↵('

init

), ⇢1), ⇢3), ⇢5)

that is, '5 is equal to the over-approximation of the

post-condition computed along the counterexample path



analysis of counterexample path

I
check if the counterexample path also leads to the error states

when no over-approximation is applied

I
compute

post(post(post('
init

, ⇢1), ⇢3), ⇢5)

= post(post(at `2 ^ y � z , ⇢3), ⇢5)

= post(at `3 ^ y � z ^ x � y , ⇢5)

= false .

I
by executing the program transitions ⇢1, ⇢3, and ⇢5 is not

possible to reach any error

I
conclude that the over-approximation is too coarse

when dealing with the above path



need for refinement of abstraction

I
need a more precise over-approximation that will prevent

'#
reach

from including error states

I
need a more precise over-approximation that will prevent ↵
from including states that lead to error states along the path

⇢1, ⇢3, and ⇢5
I

need a refined abstraction function ↵ and a corresponding

post

#
such that the execution of AbstReach along the

counterexample path does not compute a set of states that

contains some error states

post

#
(post

#
(post

#
(↵('

init

), ⇢1), ⇢3), ⇢5) ^ 'err

|= false .



need for refinement of abstraction

I
need a more precise over-approximation that will prevent

'#
reach

from including error states

I
need a more precise over-approximation that will prevent ↵
from including states that lead to error states along the path

⇢1, ⇢3, and ⇢5

I
need a refined abstraction function ↵ and a corresponding

post

#
such that the execution of AbstReach along the

counterexample path does not compute a set of states that

contains some error states

post

#
(post

#
(post

#
(↵('

init

), ⇢1), ⇢3), ⇢5) ^ 'err

|= false .



need for refinement of abstraction

I
need a more precise over-approximation that will prevent

'#
reach

from including error states

I
need a more precise over-approximation that will prevent ↵
from including states that lead to error states along the path

⇢1, ⇢3, and ⇢5
I

need a refined abstraction function ↵ and a corresponding

post

#
such that the execution of AbstReach along the

counterexample path does not compute a set of states that

contains some error states

post

#
(post

#
(post

#
(↵('

init

), ⇢1), ⇢3), ⇢5) ^ 'err

|= false .



over-approximation along counterexample path

I
goal:

post

#
(post

#
(post

#
(↵('

init

), ⇢1), ⇢3), ⇢5) ^ 'err

|= false .

I
define sets of states  1, . . . , 4 such that

'
init

|=  1

post( 1, ⇢1) |=  2

post( 2, ⇢3) |=  3

post( 3, ⇢5) |=  4

 4 ^ 'err

|= false

I
thus,  1, . . . , 4 guarantee that no error state can be reached

may approximate / still allow additional states

I
example choice for  1, . . . , 4

 1  2  3  4

at `1 at `2 ^ y � z at `3 ^ x � z false



refinement of predicate abstraction

I
given sets of states  1, . . . , 4 such that

'
init

|=  1

post( 1, ⇢1) |=  2

post( 2, ⇢3) |=  3

post( 3, ⇢5) |=  4

 4 ^ 'err

|= false

I
add  1, . . . , 4 to the set of predicates Preds

I
formal property (discussed later) guarantees:

↵('
init

) |=  1

post

#
( 1, ⇢1) |=  2

post

#
( 2, ⇢3) |=  3

post

#
( 3, ⇢5) |=  4

 4 ^ 'err

|= false

proves: no error state reachable along path ⇢1, ⇢3, and ⇢5



next . . .

I
approach for analysing counterexample computed by

AbstReach

I
algorithms MakePath, FeasiblePath, and RefinePath



path computation

1

2

3

4

5

6

function MakePath

input

 - reachable abstract state

Parent - predecessor relation

begin

path := empty sequence

'0
:=  

while exist ' and ⇢ such that (', ⇢,'0
) 2 Parent do

path := ⇢ . path
'0

:= '
return path

end



path computation

I
input: rechable abstract state  + Parent relation

I
view Parent as a tree where  occurs as a node

I
output: sequence of program transitions that labels the tree

edges on path from root to  

I
sequence is constructed iteratively by a backward traversal

starting from the input node

I
variable path keeps track of the construction

I
in example, call MakePath('5,Parent)

I
path, initially empty, is extended with transitions ⇢5, ⇢3, ⇢1

I
corresponding edges: ('3, ⇢5,'5), ('2, ⇢3,'3), ('1, ⇢1,'1)

I
output: path = ⇢1⇢3⇢5



feasibility of a path

1

2

3

4

5

function FeasiblePath

input

⇢1 . . . ⇢n - path

begin

' := post('
init

, ⇢1 � . . . � ⇢n)
if ' ^ '

err

6|= false then

return true

else

return false

end



feasibility of a path

I
input: sequence of program transitions ⇢1 . . . ⇢n

I
checks if there is a computation that produced by this

sequence

I
check uses the post-condition function and the relational

composition of transition

I
apply FeasiblePath on example path ⇢1⇢3⇢5

I
relational composition of transitions yields

⇢1 � ⇢3 � ⇢5 = false .

I
FeasiblePath sets ' to false and then returns false



counterexample-guided discovery of predicates

1

2

3

4

5

function RefinePath

input

⇢1 . . . ⇢n - path

begin

'0, . . . ,'n

:= compute such that

('
init

|= '0) ^
(post('0, ⇢1) |= '1) ^ . . . ^ (post('

n�1, ⇢n) |= '
n

) ^
('

n

^ '
err

|= false)

return {'0, . . . ,'n

}
end

I
omitted: particular algorithm for finding '0, . . . ,'n



counterexample guided discovery of predicates

I
input: sequence of program transitions ⇢1 . . . ⇢n

I
output: sets of states '0, . . . ,'n

such that

I '
init

|= '0
I

post('
i�1, ⇢i ) |= '

i

I '
n

^ '
err

|= false for i 2 1..n

I
if '0, . . . ,'n

are added to Preds

then the resulting ↵ and post

#
guarantee that

↵('
init

) |= '0

post

#
('0, ⇢1) |= '1

. . .

post

#
('

n�1, ⇢n) |= '
n

'
n

^ '
err

|= false .

I
in example, application of RefinePath on ⇢1⇢3⇢5 yields

sequence of sets of states  1, . . . , 4



next . . .

I
algorithm for counterexample-guided abstraction refinement

I
put together all building blocks into an algorithm

AbstRefineLoop that verifies safety using predicate

abstraction and counterexample guided refinement



predicate abstraction and refinement loop

1

2

3

4

5

6

7

8

9

10

11

function AbstRefineLoop

begin

Preds := ;
repeat

(ReachStates

#,Parent) := AbstReach(Preds)

if exists  2 ReachStates

#
such that  ^ '

err

6|= false

then

path := MakePath( ,Parent)
if FeasiblePath(path) then

return “counterexample path: path ”

else

Preds := RefinePath(path) [ Preds

else

return “program is correct”

end.



algorithmAbstRefineLoop

I
input: program, output: proof or counterexample

I
compute '#

reach

using an abstraction defined wrt. set of

predicates Preds (initially empty)

I
over-approximation '#

reach

: set of formulas ReachStates

#

where each formula represents a set of states

I
if set of error states disjoint from over-approximation: stop

I
otherwise, consider a formula  in ReachStates

#
that

witnesses overlap with error states

I
refinement is only possible if overlap is caused by imprecision

I
construct path, sequence of program transitions leading to  

I
analyze path using FeasiblePath

I
if path feasible: stop

I
otherwise (path is not feasible), compute a set of predicates

that refines the abstraction function



that’s it!


