abstraction of *post* by $post^{\#}$

instead of iteratively applying *post*, use over-approximation *post*[#] such that always

$$\textit{post}(arphi,
ho) \models \textit{post}^{\#}(arphi,
ho)$$

- decompose computation of post[#] into two steps: first, apply post and then, over-approximate result
- \blacktriangleright define abstraction function α such that always

$$\varphi \models \alpha(\varphi)$$
.

• for a given abstraction function α , define $post^{\#}$:

$$post^{\#}(\varphi, \rho) = \alpha(post(\varphi, \rho))$$

abstraction of φ_{reach} by $\varphi_{reach}^{\#}$

- instead of computing φ_{reach} , compute over-approximation $\varphi_{reach}^{\#}$ such that $\varphi_{reach}^{\#} \supseteq \varphi_{reach}$
- check whether φ[#]_{reach} contains any error states
 if φ[#]_{reach} ∧ φ_{err} ⊨ false
 then φ_{reach} ∧ φ_{err} ⊨ false, i.e., program is safe

 compute φ[#]_{reach} by applying iteration

$$\begin{split} \varphi_{\text{reach}}^{\#} &= \alpha(\varphi_{\text{init}}) \lor \\ & \text{post}^{\#}(\alpha(\varphi_{\text{init}}), \rho_{\mathcal{R}}) \lor \\ & \text{post}^{\#}(\text{post}^{\#}(\alpha(\varphi_{\text{init}}), \rho_{\mathcal{R}}), \rho_{\mathcal{R}}) \lor \dots \\ &= \bigvee_{i \ge 0} (\text{post}^{\#})^{i} (\alpha(\varphi_{\text{init}}), \rho_{\mathcal{R}}) \end{split}$$

• consequence:
$$\varphi_{reach} \models \varphi_{reach}^{\#}$$

predicate abstraction

- construct abstraction α(φ) using a given set of building blocks, so-called predicates
- predicate = formula over the program variables V
- ▶ fix finite set of predicates Preds = {p₁,..., p_n}
- over-approximation of φ by conjunction of predicates in *Preds*

$$\alpha(\varphi) = \bigwedge \{ p \in Preds \mid \varphi \models p \}$$

computation of α(φ) requires n entailment checks
 (n = number of predicates)

example: compute $\alpha(at_{-}\ell_{2} \land y \geq z \land x + 1 \leq y)$

• *Preds* = {
$$at_{-}\ell_{1}, ..., at_{-}\ell_{5}, y \ge z, x \ge y$$
}

1. to compute $\alpha(\varphi)$, check logical consequence between φ and each of the predicates:

	$y \ge z$	$x \ge y$	${\it at}\ell_1$	$at\ell_2$	$at\ell_3$	$at_{-}\ell_{4}$	${\it at}\ell_5$
$at_{-}\ell_{2}$ \wedge							
$y \geq z \land$		$\not\models$	$\not\models$		$\not\models$	$\not\models$	$\not\models$
$x+1 \leq y$							

2. result of abstraction = conjunction over entailed predicates

$$lpha(egin{array}{ccc} {at_-\ell_2 \land } \ y \ge z \land x+1 \le y \end{array}) \;\; = \;\; {at_-\ell_2 \land y \ge z}$$

trivial abstraction $\alpha(\varphi) = true$

result of applying predicate abstraction is *true* if none of the predicates is entailed by *φ* ("predicates are too specific")
 ... always the case if *Preds* = Ø

algorithm $\operatorname{ABSTREACH}$

begin $\alpha := \lambda \varphi . \land \{ p \in Preds \mid \varphi \models p \}$ $post^{\#} := \lambda(\varphi, \rho) \cdot \alpha(post(\varphi, \rho))$ ReachStates[#] := { $\alpha(\varphi_{init})$ } Parent := \emptyset Worklist := ReachStates[#] while *Worklist* $\neq \emptyset$ do φ := choose from *Worklist Worklist* := *Worklist* $\setminus \{\varphi\}$ for each $\rho \in \mathcal{R}$ do $\varphi' := post^{\#}(\varphi, \rho)$ if $\varphi' \notin ReachStates^{\#}$ then $ReachStates^{\#} := \{\varphi'\} \cup ReachStates^{\#}$ Parent := $\{(\varphi, \rho, \varphi')\} \cup Parent$ Worklist := $\{\varphi'\} \cup$ Worklist **return** (*ReachStates*[#], *Parent*) end

Abstract Reachability Graph

$$arphi_1 = lpha(arphi_{init})$$

 $arphi_2 = post^{\#}(arphi_1,
ho_1)$
 $post^{\#}(arphi_2,
ho_2) \models arphi_2$
 $arphi_3 = post^{\#}(arphi_2,
ho_3)$
 $arphi_4 = post^{\#}(arphi_3,
ho_4)$

- Preds = {false, $at_-\ell_1, \ldots, at_-\ell_5, y \ge z, x \ge y$ }
- ▶ nodes $\varphi_1, \ldots, \varphi_4 \in ReachStates^{\#}$
- ► labeled edges ∈ *Parent*
- dotted edge : entailment relation (here, $post^{\#}(\varphi_2, \rho_2) \models \varphi_2$)

example: predicate abstraction to compute $\varphi^{\#}_{reach}$

$$\blacktriangleright Preds = \{ false, at_-\ell_1, \dots, at_-\ell_5, y \ge z, x \ge y \}$$

• over-approximation of the set of initial states φ_{init} :

$$arphi_1=lpha({\it at}_-\ell_1)={\it at}_-\ell_1$$

• apply $post^{\#}$ on φ_1 wrt. each program transition:

$$\varphi_2 = post^{\#}(\varphi_1, \rho_1) = \alpha(\underbrace{at_-\ell_2 \land y \ge z}_{post(\varphi_1, \rho_1)}) = at_-\ell_2 \land y \ge z$$

$$post^{\#}(\varphi_1, \rho_2) = \cdots = post^{\#}(\varphi_1, \rho_5) = \bigwedge \{ false, \dots \} = false$$

apply
$$\textit{post}^{\#}$$
 to $arphi_2 \ = \ (\textit{at}_-\ell_2 \land y \ge z)$

- application of ρ₁, ρ₄, and ρ₅ on φ₂ results in *false* (since ρ₁, ρ₄, and ρ₅ are applicable only if either *at*₋ℓ₁ or *at*₋ℓ₃ hold)
- for ρ_2 we obtain

$$\textit{post}^{\#}(\varphi_2, \rho_2) = lpha(\textit{at}_-\ell_2 \land y \ge z \land x \le y) = \textit{at}_-\ell_2 \land y \ge z$$

result is φ_2 which is already in *ReachStates*[#]: nothing to do • for ρ_3 we obtain

$$post^{\#}(\varphi_2, \rho_3) = lpha(at_-\ell_3 \wedge y \ge z \wedge x \ge y)$$

 $= at_-\ell_3 \wedge y \ge z \wedge x \ge y$
 $= \varphi_3$

new node φ_3 in *ReachStates*[#], new edge in *Parent*

apply $post^{\#}$ to $\varphi_3 = (at_-\ell_3 \land y \ge z \land x \ge y)$

- ▶ application of ρ_1 , ρ_2 , and ρ_3 on φ_3 results in *false*
- for ρ_4 we obtain:

$$post^{\#}(\varphi_{3},\rho_{4}) = \alpha(at_{-}\ell_{4} \land y \ge z \land x \ge y \land x \ge z)$$
$$= at_{-}\ell_{4} \land y \ge z \land x \ge y$$
$$= \varphi_{4}$$

new node φ_4 in *ReachStates*[#], new edge in *Parent*

• for ρ_5 (assertion violation) we obtain:

$$post^{\#}(\varphi_3, \rho_5) = lpha(at_-\ell_5 \land y \ge z \land x \ge y \land x + 1 \le z)$$

= false

any further application of program transitions does not compute any additional reachable states

thus,
$$\varphi_{reach}^{\#} = \varphi_1 \lor \ldots \lor \varphi_4$$
since $\varphi_{reach}^{\#} \land at_- \ell_5 \models false$, the program is proven safe

abstraction $\alpha(\varphi)$

monotonicity

$$\varphi_1 \models \varphi_2$$
 implies $\alpha(\varphi_1) \models \alpha(\varphi_2)$

idempotency

$$\alpha(\alpha(\varphi_1)) = \alpha(\varphi_1)$$

extensiveness

$$\varphi_1 \models \alpha(\varphi_1)$$

・ロト・< =>・< =>・< =>・<>・<>・<>>・<>>・<>>・<>>・<>>・<>>・・

Abstract reachability computation with $Preds = \{ false, at_{-}\ell_{1}, \dots, at_{-}\ell_{5}, y \geq z \}$

$$arphi_1 = lpha(arphi_{init})$$
 $arphi_2 = post^{\#}(arphi_1,
ho_1)$
 $post^{\#}(arphi_2,
ho_2) \models arphi_2$
 $arphi_3 = post^{\#}(arphi_2,
ho_3)$
 $arphi_4 = post^{\#}(arphi_3,
ho_4)$
 $arphi_5 = post^{\#}(arphi_3,
ho_5)$

▶ omitting just one predicate (in the example: x ≥ y) may lead to an over-approximation φ[#]_{reach} such that

$$\varphi_{\text{reach}}^{\#} \wedge \varphi_{\text{err}} \not\models \text{false}$$

that is, ABSTREACH without the predicate $x \ge y$ fails to prove safety

counterexample path

• Parent relation records sequence leading to φ_5

- apply ρ_1 to φ_1 and obtain φ_2
- apply ρ_3 to φ_2 and obtain φ_3
- apply ho_5 to $arphi_3$ and obtain $arphi_5$
- counterexample path: sequence of program transitions ρ_1 , ρ_3 , and ρ_5
- Using this path and the functions α and post[#] corresponding to the current set of predicates we obtain

$$\varphi_5 = post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}), \rho_1), \rho_3), \rho_5))$$

that is, φ_5 is equal to the over-approximation of the post-condition computed along the counterexample path

analysis of counterexample path

- check if the counterexample path also leads to the error states when no over-approximation is applied
- compute

$$post(post(post(\varphi_{init}, \rho_1), \rho_3), \rho_5)$$

= $post(post(at_{-}\ell_2 \land y \ge z, \rho_3), \rho_5)$
= $post(at_{-}\ell_3 \land y \ge z \land x \ge y, \rho_5)$
= false .

- by executing the program transitions ρ₁, ρ₃, and ρ₅ is not possible to reach any error
- conclude that the over-approximation is too coarse when dealing with the above path

need for refinement of abstraction

• need a more precise over-approximation that will prevent $\varphi^\#_{\it reach}$ from including error states

need for refinement of abstraction

- need a more precise over-approximation that will prevent $\varphi^{\#}_{\it reach}$ from including error states
- need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ₁, ρ₃, and ρ₅

need for refinement of abstraction

- need a more precise over-approximation that will prevent $\varphi^{\#}_{\it reach}$ from including error states
- need a more precise over-approximation that will prevent α from including states that lead to error states along the path ρ₁, ρ₃, and ρ₅
- need a refined abstraction function α and a corresponding post[#] such that the execution of ABSTREACH along the counterexample path does not compute a set of states that contains some error states

 $post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}),\rho_1),\rho_3),\rho_5) \land \varphi_{err} \models false$.

over-approximation along counterexample path

► goal:

 $post^{\#}(post^{\#}(post^{\#}(\alpha(\varphi_{init}),\rho_1),\rho_3),\rho_5) \land \varphi_{err} \models false$.

• define sets of states ψ_1, \ldots, ψ_4 such that

 $\varphi_{init} \models \psi_1$ $post(\psi_1, \rho_1) \models \psi_2$ $post(\psi_2, \rho_3) \models \psi_3$ $post(\psi_3, \rho_5) \models \psi_4$ $\psi_4 \land \varphi_{err} \models false$

- ► thus, ψ₁,..., ψ₄ guarantee that no error state can be reached may approximate / still allow additional states
- example choice for ψ_1, \ldots, ψ_4

 $\mathscr{O} \mathcal{Q} \mathcal{O}$

refinement of predicate abstraction

• given sets of states ψ_1, \ldots, ψ_4 such that

$$\varphi_{init} \models \psi_1$$

$$post(\psi_1, \rho_1) \models \psi_2$$

$$post(\psi_2, \rho_3) \models \psi_3$$

$$post(\psi_3, \rho_5) \models \psi_4$$

$$\psi_4 \land \varphi_{err} \models false$$

- ▶ add ψ_1, \ldots, ψ_4 to the set of predicates *Preds*
- formal property (discussed later) guarantees:

$$\alpha(\varphi_{init}) \models \psi_1$$

$$post^{\#}(\psi_1, \rho_1) \models \psi_2$$

$$post^{\#}(\psi_2, \rho_3) \models \psi_3$$

$$post^{\#}(\psi_3, \rho_5) \models \psi_4$$

$$\psi_4 \land \varphi_{err} \models false$$

proves: no error state reachable along path ρ_1 , ρ_3 , and ρ_5

SQ P

- approach for analysing counterexample computed by ABSTREACH
- ► algorithms MAKEPATH, FEASIBLEPATH, and REFINEPATH

path computation

function MAKEPATH input ψ - reachable abstract state Parent - predecessor relation begin 1 *path* := empty sequence 2 $\varphi' := \psi$ 3 while exist φ and ρ such that $(\varphi, \rho, \varphi') \in Parent$ do path := ρ . path 4 5 $\varphi' := \varphi$ 6 return path end

path computation

- input: rechable abstract state $\psi + Parent$ relation
- \blacktriangleright view *Parent* as a tree where ψ occurs as a node
- \blacktriangleright output: sequence of program transitions that labels the tree edges on path from root to ψ
- sequence is constructed iteratively by a backward traversal starting from the input node
- variable path keeps track of the construction
- in example, call MAKEPATH(φ_5 , Parent)
- > *path*, initially empty, is extended with transitions ρ_5 , ρ_3 , ρ_1
- corresponding edges: $(\varphi_3, \rho_5, \varphi_5)$, $(\varphi_2, \rho_3, \varphi_3)$, $(\varphi_1, \rho_1, \varphi_1)$
- output: $path = \rho_1 \rho_3 \rho_5$

feasibility of a path

function FEASIBLEPATH input

 $\rho_1 \dots \rho_n$ - path **begin**

1
$$\varphi := post(\varphi_{init}, \rho_1 \circ \ldots \circ \rho_n)$$

2 if
$$\varphi \land \varphi_{err} \not\models false$$
 then

3 return true

4 else

5 return false

end

feasibility of a path

- input: sequence of program transitions $\rho_1 \dots \rho_n$
- checks if there is a computation that produced by this sequence
- check uses the post-condition function and the relational composition of transition
- apply FEASIBLEPATH on example path $\rho_1 \rho_3 \rho_5$
- relational composition of transitions yields

$$\rho_1 \circ \rho_3 \circ \rho_5 = false$$

• FEASIBLEPATH sets φ to *false* and then returns *false*

counterexample-guided discovery of predicates

function REFINEPATH
input

$$\rho_1 \dots \rho_n$$
 - path
begin
1 $\varphi_0, \dots, \varphi_n :=$ compute such that
2 $(\varphi_{init} \models \varphi_0) \land$
3 $(post(\varphi_0, \rho_1) \models \varphi_1) \land \dots \land (post(\varphi_{n-1}, \rho_n) \models \varphi_n) \land$
4 $(\varphi_n \land \varphi_{err} \models false)$
5 return $\{\varphi_0, \dots, \varphi_n\}$
end

• omitted: particular algorithm for finding $\varphi_0, \ldots, \varphi_n$

counterexample guided discovery of predicates

- input: sequence of program transitions $\rho_1 \dots \rho_n$
- output: sets of states $\varphi_0, \ldots, \varphi_n$ such that
 - $\varphi_{init} \models \varphi_0$
 - $post(\varphi_{i-1}, \rho_i) \models \varphi_i$
 - $\varphi_n \land \varphi_{err} \models false \text{ for } i \in 1..n$
- if φ₀,..., φ_n are added to *Preds* then the resulting α and *post*[#] guarantee that

. . .

 $\alpha(\varphi_{init}) \models \varphi_0$ $post^{\#}(\varphi_0, \rho_1) \models \varphi_1$

 $post^{\#}(\varphi_{n-1}, \rho_n) \models \varphi_n$ $\varphi_n \land \varphi_{err} \models false$.

• in example, application of REFINEPATH on $\rho_1 \rho_3 \rho_5$ yields sequence of sets of states ψ_1, \ldots, ψ_4

next . . .

- algorithm for counterexample-guided abstraction refinement
- put together all building blocks into an algorithm ABSTREFINELOOP that verifies safety using predicate abstraction and counterexample guided refinement

predicate abstraction and refinement loop

```
function ABSTREFINELOOP
   begin
     Preds := \emptyset
1
2
      repeat
         (ReachStates^{\#}, Parent) := ABSTREACH(Preds)
3
         if exists \psi \in ReachStates^{\#} such that \psi \wedge \varphi_{err} \not\models false
4
5
   then
6
             path := MAKEPATH(\psi, Parent)
7
             if FEASIBLEPATH(path) then
                return "counterexample path: path "
8
9
             else
10
                Preds := REFINEPATH(path) \cup Preds
11
         else
             return "program is correct"
   end.
```

algorithm ABSTREFINELOOP

- input: program, output: proof or counterexample
- compute $\varphi_{reach}^{\#}$ using an abstraction defined wrt. set of predicates *Preds* (initially empty)
- over-approximation $\varphi_{reach}^{\#}$: set of formulas $ReachStates^{\#}$ where each formula represents a set of states
- if set of error states disjoint from over-approximation: stop
- otherwise, consider a formula \u03c6 in ReachStates^{\u03c4} that witnesses overlap with error states
- refinement is only possible if overlap is caused by imprecision
- \blacktriangleright construct *path*, sequence of program transitions leading to ψ
- ► analyze *path* using FEASIBLEPATH
- ► if *path* feasible: stop
- otherwise (*path* is not feasible), compute a set of predicates that refines the abstraction function

that's it!