Strongest Postcondition

Andreas Podelski and Matthias Heizmann

May 31, 2017



correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},



correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},

» construct a forwards derivation



correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},
» construct a forwards derivation

» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)



correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},
» construct a forwards derivation

» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)

» Hoare triples with 1 and strongest postcondition
for larger and larger program fragments



correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},
» construct a forwards derivation
» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)
» Hoare triples with 1 and strongest postcondition
for larger and larger program fragments
» verification condition:

strongest postcondition of ¢ under C entails ¢
(+ special treatment of while)



strongest postcondition post(C, 1))

» post(skip, ) =



strongest postcondition post(C, 1))



strongest postcondition post(C, 1))

> post(skip, @) = o
> post(x :=e, @) = ¢[Xo/X] N x = €e[xo1qd/X]
» post(Cy; G, 0) =



strongest postcondition post(C, 1))

> post(skip, ) = ¢

> post(x :=e,¢) = ¢[xow/x] A x = €e[xold/X]
» post(Cy ; Go, ) = post(Cy, post(Cy, ¢))

» post(if b then G else G5, ¢) =



strongest postcondition post(C, 1))

> post(skip, ) = ¢

> post(x :=e,¢) = P[xoi/x] A\ x = e[Xoi/x]
» post(Cy ; Go, ) = post(Cy, post(Cy, ¢))

» post(if b then G else G5, ¢) =

post(Cy, b A @) V post(Ca, =b A &)
post(while b do {0} Gy, ¢) =

v



strongest postcondition post(C, 1))

» post(skip,¢) = ¢

> post(x = e, ) = G[Xoid/x] N x = €[Xo1d/X]
» post(Cy ; Go, ) = post(Cy, post(Cy, ¢))
(

» post(if b then G else G5, ¢) =
post(Cy, b A @) V post(Ca, =b A &)

» post(while bdo {0} Co,) = 0 A—b

> next:
static analysis constructs candidate for 6 via forward analysis
“reachability analysis”



