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correctness proof via forward derivation

» given a Hoare triple {¢} C {¢},
» construct a forwards derivation
» derivation = sequence of Hoare triples,
each Hoare triple is an axiom (skip, update)
or it is inferred by one of the inference rules (seq, cond, while)
» Hoare triples with 1 and strongest postcondition
for larger and larger program fragments
» verification condition:

strongest postcondition of ¢ under C entails ¢
(+ special treatment of while)
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strongest postcondition post(C, 1))

» post(skip,¢) = ¢

> post(x = e, ) = G[Xoid/x] N x = €[Xo1d/X]
» post(Cy ; Go, ) = post(Cy, post(Cy, ¢))
(

» post(if b then G else G5, ¢) =
post(Cy, b A @) V post(Ca, =b A &)

» post(while bdo {0} Co,) = 0 A—b

> next:
static analysis constructs candidate for 6 via forward analysis
“reachability analysis”



