Reachability Analysis

Andreas Podelski and Matthias Heizmann

May 31, 2017

program code for specifications

validity of Hoare triple:

$$
\begin{aligned}
& \{y>=z\} \\
& \text { while }(x<y)\{ \\
& \quad x++; \\
& \} \\
& \{x>=z\}
\end{aligned}
$$

\equiv safety of program:

```
assume(y >= z);
while (x < y) {
        x++;
}
assert(x >= z);
```

program with assume () and assert ()

- assume $(e) \equiv$ if e then skip else halt
program with assume () and assert ()
- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error

program with assume () and assert ()

- assume (e) \equiv if e then skip else halt
- assert $(e) \equiv$ if e then skip else error
- generalize partial correctness:

program with assume () and assert ()

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error
- generalize partial correctness: correctness of program wrt. Hoare triple:

$$
\{\phi\} \subset\{\psi\}
$$

$$
\equiv
$$

program with assume () and assert ()

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error
- generalize partial correctness: correctness of program wrt. Hoare triple:

$$
\{\phi\} \subset\{\psi\}
$$

\equiv safety of program: assume $(\phi) ; C$; assert (ψ)

- safety $=$ non-reachability of error (no execution of error branch)

control flow graph

source code control flow graph

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

control flow graph

source code
1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error control flow graph

encode transition as logical formula assume (y >= z) \rightsquigarrow

control flow graph

source code
1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error control flow graph

encode transition as logical formula

$$
\text { assume }(\mathrm{y}>=\mathrm{z}) \rightsquigarrow y>=z
$$

control flow graph

source code
1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error control flow graph

encode transition as logical formula

$$
\begin{aligned}
\text { assume }\left(\begin{array}{cc}
y & >= \\
z
\end{array}\right) & \rightsquigarrow y>=z \\
x++ & \rightsquigarrow
\end{aligned}
$$

control flow graph

source code
1: assume ($\mathrm{y}>=\mathrm{z}$);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error control flow graph

encode transition as logical formula

$$
\begin{array}{rlr}
\text { assume }\left(\begin{array}{rl}
\mathrm{y} & >= \\
\mathrm{z}) & \rightsquigarrow \\
\mathrm{x}++ & \rightsquigarrow \\
& \mathrm{x}^{\prime}=\mathrm{x}+1
\end{array}\right.
\end{array}
$$

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

$$
\begin{aligned}
\rho_{1} & =\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{2} & =\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
\rho_{3} & =\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{4} & =\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
\rho_{5} & =\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

transition relation ρ expressed by logica formula

$$
\begin{aligned}
& \rho_{1} \equiv\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{2} \equiv\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
& \rho_{3} \equiv\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{4} \equiv\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{5} \equiv\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

abbreviations:

$$
\begin{aligned}
\operatorname{move}\left(\ell, \ell^{\prime}\right) & \equiv\left(p c=\ell \wedge p c^{\prime}=\ell^{\prime}\right) \\
\operatorname{skip}\left(v_{1}, \ldots, v_{n}\right) & \equiv\left(v_{1}^{\prime}=v_{1} \wedge \ldots \wedge v_{n}^{\prime}=v_{n}\right)
\end{aligned}
$$

$\operatorname{program} \mathbf{P}=\left(V, p c, \varphi_{\text {init }}, \mathcal{R}, \varphi_{\text {err }}\right)$

- V - finite tuple of program variables
- pc-program counter variable ($p c$ included in V)
- $\varphi_{\text {init }}$ - initiation condition given by formula over V
- \mathcal{R} - a finite set of transition relations
- $\varphi_{\text {err }}$ - an error condition given by a formula over V
- transition relation $\rho \in \mathcal{R}$ given by formula over the variables V and their primed versions V^{\prime}

states, sets, and relations

- each program variable is assigned a domain of values

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states
- formula with free variables in $V=$ set of program states

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states
- formula with free variables in $V=$ set of program states
- formula with free variables in V and $V^{\prime}=$ binary relation over program states
- first component of each pair assigns values to V
- second component of the pair assigns values to V^{\prime}

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states
- formula with free variables in $V=$ set of program states
- formula with free variables in V and $V^{\prime}=$ binary relation over program states
- first component of each pair assigns values to V
- second component of the pair assigns values to V^{\prime}
- identify formulas with sets and relations that they represent

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states
- formula with free variables in $V=$ set of program states
- formula with free variables in V and $V^{\prime}=$ binary relation over program states
- first component of each pair assigns values to V
- second component of the pair assigns values to V^{\prime}
- identify formulas with sets and relations that they represent
- identify the logical consequence relation between formulas \models with set inclusion \subseteq

states, sets, and relations

- each program variable is assigned a domain of values
- program state $=$ function that assigns each program variable a value from its respective domain
- $\Sigma=$ set of program states
- formula with free variables in $V=$ set of program states
- formula with free variables in V and $V^{\prime}=$ binary relation over program states
- first component of each pair assigns values to V
- second component of the pair assigns values to V^{\prime}
- identify formulas with sets and relations that they represent
- identify the logical consequence relation between formulas \models with set inclusion \subseteq
- identify the satisfaction relation \models between valuations and formulas, with the membership relation \in

example: states, sets, and relations

- formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z

example: states, sets, and relations

- formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}

example: states, sets, and relations

- formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}
- if program state s assigns $1,3,2$, and ℓ_{1} to program variables x, y, z, and $p c$, respectively, then $s \models y \geq z$

example: states, sets, and relations

- formula $y \geq z=$ set of program states in which the value of the variable y is greater than the value of z
- formula $y^{\prime} \geq z=$ binary relation over program states, $=$ set of pairs of program states $\left(s_{1}, s_{2}\right)$ in which the value of the variable y in the second state s_{2} is greater than the value of z in the first state s_{1}
- if program state s assigns $1,3,2$, and ℓ_{1} to program variables x, y, z, and $p c$, respectively, then $s \models y \geq z$
- logical consequence: $y \geq z \models y+1 \geq z$

example program $\mathbf{P}=\left(V, p c, \varphi_{\text {init }}, \mathcal{R}, \varphi_{\text {err }}\right)$

- program variables $V=(p c, x, y, z)$
- program counter $p c$
- program variables x, y, and z range over integers
- set of control locations $\mathcal{L}=\left\{\ell_{1}, \ldots \ell_{5}\right\}$
- initiation condition $\varphi_{\text {init }}=\left(p c=p c=\ell_{1}\right)$
- error condition $\varphi_{\text {err }}=\left(p c=p c=\ell_{5}\right)$
- program transitions $\mathcal{R}=\left\{\rho_{1}, \rho_{2}, \rho_{3}, \rho_{4}, \rho_{5}\right\}$

$$
\begin{aligned}
& \rho_{1}=\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{2}=\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
& \rho_{3}=\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{4}=\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{5}=\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

$$
\begin{aligned}
& \rho_{1}=\left(\operatorname{move}\left(\ell_{1}, \ell_{2}\right) \wedge y \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{2}=\left(\operatorname{move}\left(\ell_{2}, \ell_{2}\right) \wedge x+1 \leq y \wedge x^{\prime}=x+1 \wedge \operatorname{skip}(y, z)\right) \\
& \rho_{3}=\left(\operatorname{move}\left(\ell_{2}, \ell_{3}\right) \wedge x \geq y \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{4}=\left(\operatorname{move}\left(\ell_{3}, \ell_{4}\right) \wedge x \geq z \wedge \operatorname{skip}(x, y, z)\right) \\
& \rho_{5}=\left(\operatorname{move}\left(\ell_{3}, \ell_{5}\right) \wedge x+1 \leq z \wedge \operatorname{skip}(x, y, z)\right)
\end{aligned}
$$

initial state, error state, transition relation \mathcal{R}

- each state that satisfies the initiation condition $\varphi_{\text {init }}$ is called an initial state
- each state that satisfies the error condition $\varphi_{\text {err }}$ is called an error state
- program transition relation $\rho_{\mathcal{R}}$ is the union of the "single-statement" transition relations, i.e.,

$$
\rho_{\mathcal{R}}=\bigvee_{\rho \in \mathcal{R}} \rho .
$$

- the state s has a transition to the state s^{\prime} if the pair of states $\left(s, s^{\prime}\right)$ lies in the program transition relation $\rho_{\mathcal{R}}$, i.e., if $\left(s, s^{\prime}\right) \models \rho_{\mathcal{R}}$

program computation s_{1}, s_{2}, \ldots

- the first element is an initial state, i.e., $s_{1} \models \varphi_{\text {init }}$
- each pair of consecutive states $\left(s_{i}, s_{i+1}\right)$ is connected by a program transition, i.e., $\left(s_{i}, s_{i+1}\right) \models \rho_{\mathcal{R}}$
- if the sequence is finite then the last element does not have any successors i.e., if the last element is s_{n}, then there is no state s such that $\left(s_{n}, s\right) \models \rho_{\mathcal{R}}$

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

example of a computation:
$\left(\ell_{1}, 1,3,2\right),\left(\ell_{2}, 1,3,2\right),\left(\ell_{2}, 2,3,2\right),\left(\ell_{2}, 3,3,2\right),\left(\ell_{3}, 3,3,2\right),\left(\ell_{4}, 3,3,2\right)$

- sequence of transitions $\rho_{1}, \rho_{2}, \rho_{2}, \rho_{3}, \rho_{4}$
- state $=$ tuple of values of program variables $p c, x, y$, and z
- last program state does not any successors

Correctness: Safety

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in $\varphi_{\text {reach }}$,

$$
\varphi_{\text {err }} \wedge \varphi_{\text {reach }} \models \text { false }
$$

where $\varphi_{\text {reach }}=$ set of reachable program states

1: assume (y >= z);
2: while ($\mathrm{x}<\mathrm{y}$) \{ x++;
\}
3: assert(x >= z);
4: exit
5: error

set of reachable states:

$$
\begin{aligned}
\varphi_{\text {reach }}=(p c & =\ell_{1} \vee \\
p c & =\ell_{2} \wedge y \geq z \vee \\
p c & =\ell_{3} \wedge y \geq z \wedge x \geq y \vee \\
p c & \left.=\ell_{4} \wedge y \geq z \wedge x \geq y\right)
\end{aligned}
$$

post operator

- let φ be a formula over V
- let ρ be a formula over V and V^{\prime}
- define a post-condition function post by:

$$
\operatorname{post}(\varphi, \rho)=\exists V^{\prime \prime}: \varphi\left[V^{\prime \prime} / V\right] \wedge \rho\left[V^{\prime \prime} / V\right]\left[V / V^{\prime}\right]
$$

an application $\operatorname{post}(\varphi, \rho)$ computes the image of the set φ under the relation ρ

- post distributes over disjunction wrt. each argument:

$$
\begin{aligned}
& \operatorname{post}\left(\varphi, \rho_{1} \vee \rho_{2}\right)=\left(\operatorname{post}\left(\varphi, \rho_{1}\right) \vee \operatorname{post}\left(\varphi, \rho_{2}\right)\right) \\
& \operatorname{post}\left(\varphi_{1} \vee \varphi_{2}, \rho\right)=\left(\operatorname{post}\left(\varphi_{1}, \rho\right) \vee \operatorname{post}\left(\varphi_{2}, \rho\right)\right)
\end{aligned}
$$

