Reachability Analysis

Andreas Podelski and Matthias Heizmann

May 31, 2017

(ロ)、(型)、(E)、(E)、 E) の(の)

program code for specifications

validity of Hoare triple:

{y >= z}
while (x < y) {
 x++;
}
{x >= z}

 \equiv safety of program:

assume(y >= z); while (x < y) { x++; } assert(x >= z);

.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

• assume
$$(e) \equiv$$
 if e then skip else halt

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

generalize partial correctness:

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error
- generalize partial correctness: correctness of program wrt. Hoare triple:

=

 $\{\phi\} \ {\it C} \ \{\psi\}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- assume $(e) \equiv$ if e then skip else halt
- assert $(e) \equiv$ if e then skip else error
- generalize partial correctness: correctness of program wrt. Hoare triple:

 $\{\phi\} \ {\it C} \ \{\psi\}$

- \equiv safety of program: assume (ϕ) ; C ; assert (ψ)
- safety = non-reachability of error (no execution of error branch)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

encode transition as logical formula assume(y >= z)
$$\rightsquigarrow$$

encode transition as logical formula assume(y >= z) $\rightsquigarrow y >= z$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

encode transition as logical formula
assume(y >= z)
$$\rightsquigarrow$$
 y >= z
x++ \rightsquigarrow

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

encode transition as logical formula
assume(y >= z)
$$\rightsquigarrow$$
 y >= z
x++ \rightsquigarrow x'=x+1

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$\rho_4$$

 ρ_1
 ρ_1
 ρ_2
 ρ_3
 ρ_4
 ρ_4
 ρ_5
 ρ_4
 ρ_5
 ρ_4
 ρ_5
 $\rho_$

.

$$\begin{split} \rho_1 &= (\textit{move}(\ell_1, \ell_2) \land y \geq z \land \textit{skip}(x, y, z)) \\ \rho_2 &= (\textit{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \textit{skip}(y, z)) \\ \rho_3 &= (\textit{move}(\ell_2, \ell_3) \land x \geq y \land \textit{skip}(x, y, z)) \\ \rho_4 &= (\textit{move}(\ell_3, \ell_4) \land x \geq z \land \textit{skip}(x, y, z)) \\ \rho_5 &= (\textit{move}(\ell_3, \ell_5) \land x + 1 \leq z \land \textit{skip}(x, y, z)) \end{split}$$

transition relation ρ expressed by logica formula

$$\begin{array}{ll} \rho_{1} \equiv & (\textit{move}(\ell_{1},\ell_{2}) \land y \geq z \land \textit{skip}(x,y,z)) \\ \rho_{2} \equiv & (\textit{move}(\ell_{2},\ell_{2}) \land x+1 \leq y \land x'=x+1 \land \textit{skip}(y,z)) \\ \rho_{3} \equiv & (\textit{move}(\ell_{2},\ell_{3}) \land x \geq y \land \textit{skip}(x,y,z)) \\ \rho_{4} \equiv & (\textit{move}(\ell_{3},\ell_{4}) \land x \geq z \land \textit{skip}(x,y,z)) \\ \rho_{5} \equiv & (\textit{move}(\ell_{3},\ell_{5}) \land x+1 \leq z \land \textit{skip}(x,y,z)) \end{array}$$

abbreviations:

$$move(\ell, \ell') \equiv (pc = \ell \land pc' = \ell')$$

skip $(v_1, \dots, v_n) \equiv (v'_1 = v_1 \land \dots \land v'_n = v_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

program $\mathbf{P} = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$

- V finite tuple of program variables
- ▶ pc program counter variable (pc included in V)
- φ_{init} initiation condition given by formula over V
- *R* a finite set of *transition relations*
- φ_{err} an error condition given by a formula over V
- ► transition relation \(\rho \in \mathcal{R}\) given by formula over the variables \(V\) and their primed versions \(V'\)

• each program variable is assigned a *domain* of values

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain

• $\Sigma = \text{set of program states}$

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain

- Σ = set of program states
- formula with free variables in V = set of program states

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain
- Σ = set of program states
- formula with free variables in V = set of program states
- ▶ formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain
- Σ = set of program states
- formula with free variables in V = set of program states
- ▶ formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'
- identify formulas with sets and relations that they represent

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain
- Σ = set of program states
- formula with free variables in V = set of program states
- ▶ formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'
- identify formulas with sets and relations that they represent
- ▶ identify the logical consequence relation between formulas ⊨ with set inclusion ⊆

- each program variable is assigned a *domain* of values
- program state = function that assigns each program variable a value from its respective domain
- Σ = set of program states
- formula with free variables in V = set of program states
- ▶ formula with free variables in V and V' = binary relation over program states
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'
- identify formulas with sets and relations that they represent
- ▶ identify the logical consequence relation between formulas ⊨ with set inclusion ⊆
- ► identify the satisfaction relation ⊨ between valuations and formulas, with the membership relation ∈

▶ formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z

- ▶ formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z
- ▶ formula y' ≥ z = binary relation over program states, = set of pairs of program states (s₁, s₂) in which the value of the variable y in the second state s₂ is greater than the value of z in the first state s₁

- ▶ formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z
- ▶ formula y' ≥ z = binary relation over program states, = set of pairs of program states (s₁, s₂) in which the value of the variable y in the second state s₂ is greater than the value of z in the first state s₁

if program state s assigns 1, 3, 2, and ℓ₁
 to program variables x, y, z, and pc, respectively,
 then s ⊨ y ≥ z

- ▶ formula y ≥ z = set of program states in which the value of the variable y is greater than the value of z
- ▶ formula y' ≥ z = binary relation over program states, = set of pairs of program states (s₁, s₂) in which the value of the variable y in the second state s₂ is greater than the value of z in the first state s₁

- if program state s assigns 1, 3, 2, and ℓ₁
 to program variables x, y, z, and pc, respectively,
 then s ⊨ y ≥ z
- logical consequence: $y \ge z \models y + 1 \ge z$

example program $\mathbf{P} = (V, pc, \varphi_{init}, \mathcal{R}, \varphi_{err})$

- program variables V = (pc, x, y, z)
- program counter pc
- program variables x, y, and z range over integers
- set of control locations $\mathcal{L} = \{\ell_1, \dots \ell_5\}$
- initiation condition $\varphi_{init} = (pc = pc = \ell_1)$
- error condition $\varphi_{err} = (pc = pc = \ell_5)$
- program transitions $\mathcal{R} = \{\rho_1, \rho_2, \rho_3, \rho_4, \rho_5\}$

$$\begin{split} \rho_1 &= (\textit{move}(\ell_1, \ell_2) \land y \geq z \land \textit{skip}(x, y, z)) \\ \rho_2 &= (\textit{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \textit{skip}(y, z)) \\ \rho_3 &= (\textit{move}(\ell_2, \ell_3) \land x \geq y \land \textit{skip}(x, y, z)) \\ \rho_4 &= (\textit{move}(\ell_3, \ell_4) \land x \geq z \land \textit{skip}(x, y, z)) \\ \rho_5 &= (\textit{move}(\ell_3, \ell_5) \land x + 1 \leq z \land \textit{skip}(x, y, z)) \end{split}$$

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$x \ge z$$

$$x \ge z$$

$$(l_1)$$

$$y \ge z$$

$$(l_2) x < y \land x' = x + 1$$

$$x \ge y$$

$$(l_3)$$

$$x < z$$

$$(l_4)$$

$$(l_4)$$

$$(l_5)$$

•

$$\begin{split} \rho_1 &= (\textit{move}(\ell_1, \ell_2) \land y \geq z \land \textit{skip}(x, y, z)) \\ \rho_2 &= (\textit{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \textit{skip}(y, z)) \\ \rho_3 &= (\textit{move}(\ell_2, \ell_3) \land x \geq y \land \textit{skip}(x, y, z)) \\ \rho_4 &= (\textit{move}(\ell_3, \ell_4) \land x \geq z \land \textit{skip}(x, y, z)) \\ \rho_5 &= (\textit{move}(\ell_3, \ell_5) \land x + 1 \leq z \land \textit{skip}(x, y, z)) \end{split}$$

initial state, error state, transition relation ${\cal R}$

- each state that satisfies the initiation condition φ_{init} is called an *initial* state
- \blacktriangleright each state that satisfies the error condition $\varphi_{\it err}$ is called an $\it error$ state
- program transition relation ρ_R is the union of the "single-statement" transition relations, i.e.,

$$\rho_{\mathcal{R}} = \bigvee_{\rho \in \mathcal{R}} \rho \; .$$

► the state s has a transition to the state s' if the pair of states (s, s') lies in the program transition relation p_R, i.e., if (s, s') ⊨ p_R program computation s_1, s_2, \ldots

- the first element is an initial state, i.e., $s_1 \models \varphi_{init}$
- each pair of consecutive states (s_i, s_{i+1}) is connected by a program transition, i.e., (s_i, s_{i+1}) ⊨ ρ_R

 if the sequence is finite then the last element does not have any successors i.e., if the last element is s_n, then there is no state s such that (s_n, s) ⊨ ρ_R

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$\rho_4 x \ge z$$

 $\rho_5 x < z$
 ℓ_1
 $\rho_1 y \ge z$
 $\ell_2 \supset \rho_2 x < y \land x' = x + 1$
 $\rho_5 x < z$

example of a computation:

 $(\ell_1, 1, 3, 2), (\ell_2, 1, 3, 2), (\ell_2, 2, 3, 2), (\ell_2, 3, 3, 2), (\ell_3, 3, 3, 2), (\ell_4, 3, 3, 2)$

- sequence of transitions $\rho_1, \rho_2, \rho_2, \rho_3, \rho_4$
- state = tuple of values of program variables pc, x, y, and z
- last program state does not any successors

- a state is reachable if it occurs in some program computation
- a program is safe if no error state is reachable
- ... if and only if no error state lies in φ_{reach} ,

$$\varphi_{err} \land \varphi_{reach} \models false$$
.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $\varphi_{reach} = \text{set of reachable program states}$

1: assume(y >= z);
2: while (x < y) {
 x++;
 }
3: assert(x >= z);
4: exit
5: error

$$\rho_4 x \ge z$$

 $\rho_5 x < z$
 ℓ_1
 $\rho_1 y \ge z$
 $\ell_2 \supset \rho_2 x < y \land x' = x + 1$
 $\rho_5 x < z$

set of reachable states:

$$\varphi_{reach} = (pc = \ell_1 \lor pc = \ell_2 \land y \ge z \lor pc = \ell_3 \land y \ge z \land x \ge y \lor pc = \ell_4 \land y \ge z \land x \ge y)$$

post operator

- let φ be a formula over V
- let ρ be a formula over V and V'
- define a post-condition function post by:

$$post(\varphi, \rho) = \exists V'' : \varphi[V''/V] \land \rho[V''/V][V/V']$$

an application $\textit{post}(\varphi,\rho)$ computes the image of the set φ under the relation ρ

post distributes over disjunction wrt. each argument:

$$post(\varphi, \rho_1 \lor \rho_2) = (post(\varphi, \rho_1) \lor post(\varphi, \rho_2))$$

 $post(\varphi_1 \lor \varphi_2, \rho) = (post(\varphi_1, \rho) \lor post(\varphi_2, \rho))$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <