Reachability Analysis

Andreas Podelski and Matthias Heizmann

May 31, 2017

program code for specifications

validity of Hoare triple: = safety of program:
{y >= z} assume(y >= z);
while (x < y) { while (x < y) {
X++; X++;
} }

{x >= z} assert(x >= z);

program with assume () and assert ()

» assume (e) = if e then skip else halt

program with assume () and assert ()

» assume (e) = if e then skip else halt

» assert (e) = if e then skip else error

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:
correctness of program wrt. Hoare triple:

{¢} C{v}

program with assume () and assert ()

» assume (e) = if e then skip else halt
» assert (e) = if e then skip else error

» generalize partial correctness:
correctness of program wrt. Hoare triple:

{¢} C{v}

= safety of program: assume (¢) ; C ; assert (¢)

» safety = non-reachability of error
(no execution of error branch)

control flow graph

source code control flow graph
1: assume(y >= z); @
2: while (x < y) {
X+t assume(y >= z)
}
<y) ;x++
3: assert(x >= z); @ assume (x<y) ;x

4: exit assume (x >= y)

5: error @
assume(x >= yssume(x < z)

control flow graph

source code control flow graph
1: assume(y >= z); @
2: while (x < y) {

X+t assume(y >= z)

}
<y) ;x++

3: assert(x >= z); @ assume (x<y) ;x
4: exit assume (x >= y)
5

: error @
assume (x >= yssume(x < z)

encode transition as logical formula
assume(y >= z) ~»

control flow graph

source code control flow graph
1: assume(y >= z); @
2: while (x < y) {

X+t assume(y >= z)

}
<y) ;x++

3: assert(x >= z); @ assume (x<y) ;x
4: exit assume (x >= y)

5: error @
assume(x >= yssume(x < z)

encode transition as logical formula
assume(y >= z) ~ y>=7z

control flow graph

source code control flow graph
1: assume(y >= z); @
2: while (x < y) {

X+t assume(y >= z)

}
<y) ;x++

3: assert(x >= z); @ assume (x<y) ;x
4: exit assume (x >= y)
5

: error @
assume (x >= yssume(x < z)

encode transition as logical formula
assume(y >= z) ~ y>=7z
X++ >

control flow graph

source code control flow graph
1: assume(y >= z); @
2: while (x < y) {

X+t assume(y >= z)

}
<y) ;x++

3: assert(x >= z); @ assume (x<y) ;x
4: exit assume (x >= y)

5: error @
assume(x >= yssume(x < z)

encode transition as logical formula
assume(y >= z) ~ y>=7z
x++ ~» X'=x+1

4.
. error

assume(y >= z);

while (x < y) {
X++;

}

3

assert(x >= z);
exit

p2

P1
()
P3

(43)
o

Ay > z A skip(x,y, z))
Ax+1<yAx =x+1Askip(y,z))
A x>y N skip(x,y,z))

A x >z A skip(x,y,z))
Ax+1<zAskip(x,y,z))

transition relation p expressed by logica formula

p1 = (move(l1,la) Ny > z N\ skip(x, y, z))

p2 = (move(la,l2) Ax+1<yAx =x+1Askip(y,z))
p3 = (move(la,03) A x >y A skip(x,y,z))

pa = (move(l3, ly) N x > z A\ skip(x,y, z))

ps = (move(ls, ls) Ax +1 < z Askip(x,y, z))

abbreviations:

move({,¢') = (pc =LA pc =1)
skip(vi, ..., vp)

(Vi=viA...Av,=v,)

program P = (V, pc, Yinit, R, Perr)

V - finite tuple of program variables

v

» pc - program counter variable (pc included in V)
> @init - Initiation condition given by formula over V
» R - a finite set of transition relations

Werr - an error condition given by a formula over V

v

v

transition relation p € R given by
formula over the variables V and their primed versions V'’

states, sets, and relations

» each program variable is assigned a domain of values

states, sets, and relations

» each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

states, sets, and relations

» each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

» > = set of program states

states, sets, and relations

v

each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

v

> = set of program states

v

formula with free variables in V = set of program states

states, sets, and relations

v

each program variable is assigned a domain of values

» program state = function that assigns each program variable
a value from its respective domain

» > = set of program states
» formula with free variables in V' = set of program states
» formula with free variables in V and V/ =

binary relation over program states

» first component of each pair assigns values to V
» second component of the pair assigns values to V'

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'

identify formulas with sets and relations that they represent

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'
identify formulas with sets and relations that they represent

identify the logical consequence relation between formulas =
with set inclusion C

states,

sets, and relations

each program variable is assigned a domain of values

program state = function that assigns each program variable
a value from its respective domain

> = set of program states
formula with free variables in V = set of program states

formula with free variables in V and V' =
binary relation over program states
» first component of each pair assigns values to V
» second component of the pair assigns values to V'
identify formulas with sets and relations that they represent

identify the logical consequence relation between formulas =
with set inclusion C

identify the satisfaction relation = between valuations and
formulas, with the membership relation €

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

» formula y’ > z = binary relation over program states,
= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

example: states, sets, and relations

» formula y > z = set of program states in which the value of
the variable y is greater than the value of z

» formula y’ > z = binary relation over program states,
= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

» if program state s assigns 1, 3, 2, and /3
to program variables x, y, z, and pc, respectively,
thensf=y >z

example: states, sets, and relations

v

formula y > z = set of program states in which the value of
the variable y is greater than the value of z

formula y’ > z = binary relation over program states,

= set of pairs of program states (s, sp) in which the value of
the variable y in the second state s, is greater than the value
of z in the first state s;

if program state s assigns 1, 3, 2, and /;
to program variables x, y, z, and pc, respectively,

thensf=y >z

logical consequence: y >zEy+1>2

example program P = (V, pc, @init, R, Perr)

» program variables V = (pc, x,y, z)

> program counter pc

> program variables x, y, and z range over integers
» set of control locations £ = {/1,... 05}

» initiation condition @i, = (pc = pc = ¢1)

» error condition we = (pc = pc = ¥s)

» program transitions R = {p1, p2, p3, P4, P5 }
ove(l1,0) Ny > z A skip(x,y, z))

= (move({1, {2)

(move(la, o) Ax+1<yAx"=x+1Askip(y, z))
(move (2, £3) A x > y A skip(x,y, z))
()
= ()

3

p2 =

move({3,04) N\ x > z A skip(x, y, z))
move({3,ls) A x +1 < z A skip(x, y, z))

4.

assume(y >= z); @
while (x < y) { ?
X+ yzz
} @ x<y A x' = x +1
assert(x >= z); x>y
exit @
: error > /.\

iR ok

= (move(l1,02) Ny > z A skip(x,y, z))

(move(l2, £a) Ax +1 <y Ax" = x+1Askip(y, z))
= (move(la, £3) A x > y A skip(x, y, z))

(move(

= (move(

move({3,ls) A x > z A skip(x, y, z))

move({3,05) A x +1 < z A skip(x,y, z))

initial state, error state, transition relation R

> each state that satisfies the initiation condition @, is called
an initial state

» each state that satisfies the error condition e is called an
error state

> program transition relation pr is the union of the
“single-statement” transition relations, i.e.,

=\ r-

PER

» the state s has a transition to the state s’ if
the pair of states (s, s’) lies in the program transition
relation pg, i.e., if (s,s') E pr

program computation sy, s, . ..

» the first element is an initial state, i.e., s1 = @init

» each pair of consecutive states (s;, s;11) is connected by a
program transition, i.e., (s, si+1) F pr
> if the sequence is finite
then the last element does not have any successors
i.e., if the last element is s,,
then there is no state s such that (s,, s) E pr

1: assume(y >= z);
while (x < y) {

6,

1y=>z

X++;
} @ px<yAx =x+1
3: assert(x >= z); pP3IX >y
4: exit

e

5: error p4x>i iix<z

example of a computation:

(61717372)7 (62717372)7 (62727372)7 (£27373a2)7 (63737372)7 (64737372)

» sequence of transitions p1, p2, P2, P3, P4
» state = tuple of values of program variables pc, x, y, and z

> last program state does not any successors

Correctness: Safety

> a state is reachable if it occurs in some program computation
> a program is safe if no error state is reachable

> ... if and only if no error state lies in ©each,

Perr N\ Preach ': false .

where ©,each = set of reachable program states

1: assume(y >= z);
2: while (x < y) { @
pPLy=>z

X++;

} @ px<yAx =x+1
3: assert(x >= z); pP3IX >y
4: exit @
5: error > A

set of reachable states:

Preach = (pc = {1 V
pc=bANy>zV
pc=U03ANy>zAx>yV
pc=LlaNy >z Ax>y)

post operator

> let ¢ be a formula over V
» let p be a formula over V and V’

» define a post-condition function post by:
post(p,p) = V" [V /VI A pIV" VIV V]

an application post(ip, p) computes the image of the set ¢
under the relation p

» post distributes over disjunction wrt. each argument:

post(y, p1 V p2) = (post(p, p1) V post(yp, p2))
post(p1 V 2, p) = (post(p1, p) V post(y2, p))

