- Idea: compute WP(P,B) recursively according to the structure of the program P.
- Problem: How to deal with loops?
- Solution:
 - introduce loop-free intermediate language
 - translate program to simplified program in the intermediate language
 - then compute WP on simplified program.

Loop-Free Guarded Commands

Introduce loop-free guarded commands as an intermediate representation of the verification condition

```
    c ::= assume b
    assert b
    havoc x
    c<sub>1</sub>; c<sub>2</sub>
    c<sub>1</sub> □ c<sub>2</sub>
```

block if b does not hold fail if b does not hold nondet. assignment sequencing nondet. choice

From Programs to Guarded Commands

- GC(skip) =
- GC(x := e) =

- $GC(c_1; c_2) =$
- $GC(if b then c_1 else c_2) =$
- GC({I} while b do c) =

From Programs to Guarded Commands

```
• GC(skip) = assume true
```

```
    GC(x := e) =
        havoc tmp; assume tmp = x; where tmp is fresh
        havoc x; assume (x = e[tmp/x])
```

- $GC(c_1; c_2) =$ $GC(c_1); GC(c_2)$
- GC(if b then c_1 else c_2) = (assume b; GC(c_1)) \square (assume $\neg b$; GC(c_2))
- GC({I} while b do c) = ?

Guarded Commands for Loops

```
    GC({I} while b do c) =
        assert I;
        havoc x₁; ...; havoc xₙ;
        assume I;
        (assume b; GC(c); assert I; assume false) □
        assume ¬b
```

where $x_1, ..., x_n$ are the variables assigned in c

- WP(assume *b*, B) =
- WP(assert b, B) =
- WP(havoc x, B) =
- WP($c_1; c_2, B$) =
- WP($c_1 \square c_2$,B) =

- WP(assume b, B) = $b \Rightarrow$ B
- WP(assert b, B) = $b \wedge B$
- WP(havoc x, B) = B[a/x] (a fresh in B)
- WP(c_1 ; c_2 , B) = WP(c_1 , WP(c_2 , B))
- WP($c_1 \square c_2$,B) = WP(c_1 , B) \land WP(c_2 , B)

- WLP(assume b, B) = $b \Rightarrow$ B
- WLP(assert b, B) = $b \Rightarrow B$
- WLP(havoc x, B) = B[a/x] (a fresh in B)
- $WLP(c_1;c_2, B) = WP(c_1, WP(c_2, B))$
- WLP $(c_1 \square c_2, B) = WP(c_1, B) \land WP(c_2, B)$

Putting Everything Together

Given a Hoare triple H ≡ {A} P {B}

• Compute c_H = assume A; GC(P); assert B

• Compute $VC_H = WP(c_H, true)$

• Infer $\vdash VC_H$ using a theorem prover.

```
{n > 0}
p := 0;
x := 0;
\{p = x * m \land x < n\}
while x < n do
   x := x + 1;
   p := p + m
{p = n * m}
```

```
assume n > 0;
GC(p := 0;
     x := 0;
     \{p = x * m \land x < n\}
     while x < n do
        x := x + 1;
        p := p + m);
assert p = n * m
```

```
assume n > 0;
assume p_0 = p; havoc p; assume p = 0;
GC(x := 0;
     \{p = x * m \land x < n\}
     while x < n do
        x := x + 1;
        p := p + m);
assert p = n * m
```

```
assume n > 0;
assume p_0 = p; havoc p; assume p = 0;
assume x_0 = x; havoc x; assume x = 0;
GC( \{p = x * m \land x < n\}
     while x < n do
        x := x + 1;
        p := p + m);
assert p = n * m
```

```
assume n \ge 0;
assume p_0 = p; havoc p; assume p = 0;
assume x_0 = x; havoc x; assume x = 0;
assert p = x * m \land x < n;
havoc x; havoc p; assume p = x * m \land x < n;
 (assume x < n;
  GC( x := x + 1;
       p := p + m);
  assert p = x * m \land x \le n; assume false)
\square assume x \ge n;
assert p = n * m
```

```
assume n > 0;
assume p_0 = p; havoc p; assume p = 0;
assume x_0 = x; havoc x; assume x = 0;
assert p = x * m \land x < n;
havoc x; havoc p; assume p = x * m \land x < n;
 (assume x < n;
  assume x_1 = x; havoc x; assume x = x_1 + 1;
  assume p_1 = p; havoc p; assume p = p_1 + m;
  assert p = x * m \land x < n; assume false)
\square assume x > n;
assert p = n * m
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n;
       havoc x; havoc p; assume p = x * m \land x < n;
         (assume x < n;
         assume x_1 = x; havoc x; assume x = x_1 + 1;
         assume p_1 = p; havoc p; assume p = p_1 + m;
         assert p = x * m \land x < n; assert false)
       \square assume x > n;
       assert p = n * m, true)
```

```
WP ( assume n > 0;
      assume p_0 = p; havoc p; assume p = 0;
      assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n;
         (assume x < n;
         assume x_1 = x; havoc x; assume x = x_1 + 1;
         assume p_1 = p; havoc p; assume p = p_1 + m;
         assert p = x * m \land x < n; assume false)
      \square assume x > n, p = n * m)
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x \le n,
   (WP( (assume x < n;
          assume x_1 = x; havoc x; assume x = x_1 + 1;
         assume p_1 = p; havoc p; assume p = p_1 + m;
          assert p = x * m \land x < n; assume false)) \Rightarrow
       p = n * m
   \wedge (x > n \Rightarrow p = n * m))
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
   (WP( (assume x < n;
         assume x_1 = x; havoc x; assume x = x_1 + 1;
         assume p_1 = p; havoc p; assume p = p_1 + m;
         assert p = x * m \land x < n), false \Rightarrow p = n * m)
   \wedge (x > n \Rightarrow p = n * m)))
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
   (WP( (assume x < n;
         assume x_1 = x; havoc x; assume x = x_1 + 1;
         assume p_1 = p; havoc p; assume p = p_1 + m;
         assert p = x * m \land x < n), true)
   \wedge (x > n \Rightarrow p = n * m)))
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
   (WP( (assume x < n;
          assume x_1 = x; havoc x; assume x = x_1 + 1;
          assume p_1 = p; havoc p),
         p = p_1 + m \Rightarrow p = x * m \land x \leq n
   \wedge (x > n \Rightarrow p = n * m)))
```

```
WP ( assume n > 0;
       assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
       assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
   (WP( (assume x < n;
          assume x_1 = x; havoc x; assume x = x_1 + 1),
         p_1 = p \land pa_1 = p_1 + m \Rightarrow pa_1 = x * m \land x < n
   \wedge (x > n \Rightarrow p = n * m))
```

```
WP ( assume n > 0;
        assume p_0 = p; havoc p; assume p = 0;
       assume x_0 = x; havoc x; assume x = 0;
        assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
    (WP( (assume x < n),
          (x_1 = x \wedge xa_1 = x_1 + 1 \wedge
          p_1 = p \land pa_1 = p_1 + m) \Rightarrow pa_1 = x * m \land x \leq n
    \wedge (x > n \Rightarrow p = n * m))
```

```
WP ( assume n > 0;
        assume p_0 = p; havoc p; assume p = 0;
        assume x_0 = x; havoc x; assume x = 0;
        assert p = x * m \land x < n,
  WP(havoc x; havoc p; assume p = x * m \land x < n,
          (x < n \land
          x_1 = x \wedge xa_1 = x_1 + 1 \wedge
          p_1 = p \land pa_1 = p_1 + m) \Rightarrow pa_1 = x * m \land x \leq n
    \wedge (x > n \Rightarrow p = n * m))
```

```
WP ( assume n > 0;
        assume p_0 = p; havoc p; assume p = 0;
        assume x_0 = x; havoc x; assume x = 0;
        assert p = x * m \land x < n,
       (pa_2 = xa_2 * m \wedge xa_2 \leq n \wedge
        xa_2 < n \wedge
        x_1 = xa_2 \land xa_1 = x_1 + 1 \land
        p_1 = pa_2 \wedge pa_1 = p_1 + m \Rightarrow pa_1 = xa_2 * m \wedge xa_2 \leq n
      \wedge (x > n \Rightarrow p = n * m))
```

$$n \geq 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \Rightarrow$$

$$pa_3 = xa_3 * m \land xa_3 \leq n \land$$

$$(pa_2 = xa_2 * m \land xa_2 \leq n \land$$

$$xa_2 < n \land$$

$$x_1 = xa_2 \land xa_1 = x_1 + 1 \land$$

$$p_1 = pa_2 \land pa_1 = p_1 + m) \Rightarrow pa_1 = xa_2 * m \land xa_2 \leq n)$$

$$\land (x \geq n \Rightarrow p = n * m)))$$

 The resulting VC is equivalent to the conjunction of the following implications

$$n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \Rightarrow pa_3 = xa_3 * m \land xa_3 \le n$$

$$n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \land pa_2 = xa_2 * m \land xa_2 \le n \Rightarrow xa_2 \ge n \Rightarrow pa_2 = n * m$$

$$n \ge 0 \land p_0 = p \land pa_3 = 0 \land x_0 = x \land xa_3 = 0 \land pa_2 = xa_2 * m \land xa_2 < n \land x_1 = xa_2 \land xa_1 = x_1 + 1 \land p_1 = pa_2 \land pa_1 = p_1 + m \Rightarrow pa_1 = xa_1 * m \land xa_1 \le n$$

simplifying the constraints yields

$$n \ge 0 \Rightarrow 0 = 0 * m \land 0 \le n$$

$$xa_2 \le n \land xa_2 \ge n \Rightarrow xa_2 * m = n * m$$

$$xa_2 < n \Rightarrow xa_2 * m + m = (xa_2 + 1) * m \land xa_2 + 1 \le n$$

• all of these implications are valid, which proves that the original Hoare triple was valid, too.

The Diamond Problem

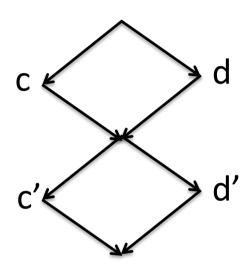
```
assume A;

c \square d;

c' \square d';

assert B

A \Rightarrow WP(c, WP(c', B) \land WP(d', B)) \land WP(d, WP(c', B) \land WP(d', B))
```



- Number of paths through the program can be exponential in the size of the program.
- Size of weakest precondition can be exponential in the size of the program.

Avoiding the Exponential Explosion

Ideas?

Avoiding the Exponential Explosion

Ideas?

- 1. Introduce propositional variables that stand for repeated subformulas
 - yields formulas that are linear in the program size
 - burden has now shifted to the theorem prover (often still exponential behavior)
- 2. Remove redundancies from the VCs entirely
 - yields formula that are quadratic in the program size
 - usually more efficient once theorem prover is factored in

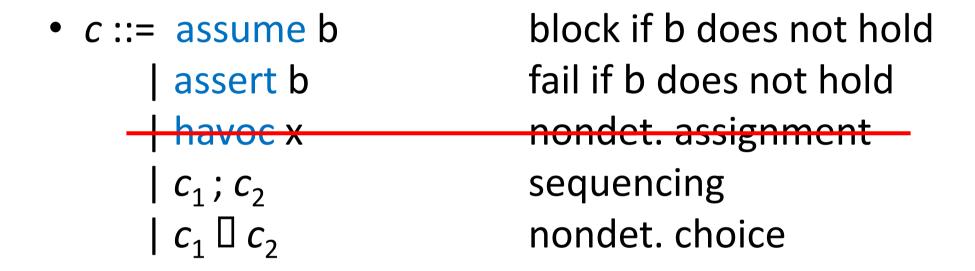
Removing Redundancy from VCs

 The following equivalence holds for arbitrary programs c and formulas B:

$$WP(c, B) \equiv WP(c, true) \land WLP(c, B)$$

 We got rid of B below WP. Can we also get rid of B below WLP?

Passive Guarded Commands



Passive programs are also often said to be in static single assignment (SSA) form. For loop-free programs, the SSA form can be obtained using a simple program transformation.

Removing Redundancy from VCs

 The following equivalence holds for arbitrary programs c and formulas B:

$$WP(c, B) \equiv WP(c, true) \land WLP(c, B)$$

For passive programs c we also have:

$$WLP(c, B) \equiv WLP(c, false) \lor B$$

Removing Redundancy from VCs

 Using the equations from the previous slides, we can compute WP for passive programs recursively according to the following equation:

WP(c, B)
$$\equiv$$
 WP(c, true) \land (WLP(c, false) \lor B)

- WP(c, B) is now quadratic in the size of c
- There is no duplication of B for each path in c

Translating Method Calls to GCs

```
method m (p_1: T_1, ..., p_k: T_k) returns (r: T)
    requires P
    modifies x_1, \ldots, x_n
    ensures Q
A method call
```

```
y := y_0.m(y_1, ..., y_k);
```

is desugared into the guarded command

```
assert P[y_0/this, y_1/p_1, ..., y_k/p_k];
havoc x_1; ..., havoc x_n; havoc y;
assume Q[y_0/this, y_1/p_1, ..., y_k/p_k, y/r]
```

Handling More Complex Program State

When is the following Hoare triple valid?

$${A} x.f := 5 {x.f + y.f = 10}$$

- A ought to imply "y.f = $5 \lor x = y$ "
- The IMP Hoare rule for assignment would give us:

$$(x.f + y.f = 10) [5/x.f]$$

 $\equiv 5 + y.f = 10$
 $\equiv y.f = 5 (we lost one case)$

How come the rule does not work?

Modeling the Heap

- We cannot have side-effects in assertions
 - While generating the VC we must remove side-effects!
 - But how to do that when lacking precise aliasing information?
- Simple solution: postpone alias analysis to the theorem prover
- Model the state of the heap as a symbolic mapping from addresses to values:
 - If e denotes an address and h a heap state then:
 - sel(h,e) denotes the contents of the memory cell
 - upd(h,e,v) denotes a new heap state obtained from h by writing v at address e

Heap Models

- We allow variables to range over heap states
 - So we can quantify over all possible heap states.
- Model 1
 - One "heap" for each object
 - One index constant for each field (we postulate $f_1 \neq f_2$).
 - r.f is sel(r,f) and r.f := e is r := upd(r, f, e)
- Model 2 (Burstall-Bornat)
 - One "heap" for each field
 - The object address is the index
 - r.f is sel(f,r) and r.f := e is f := upd(f,r,e)