Computing Weakest Preconditions

* |dea: compute WP(P,B) recursively according
to the structure of the program P,

* Problem: How to deal with loops?

e Solution:
— introduce loop-free intermediate language

— translate program to simplified program in the
intermediate language

— then compute WP on simplified program.



Loop-Free Guarded Commands

* Introduce loop-free guarded commands as an
intermediate representation of the verification

condition

e c::= assume b
assert b
havoc X
C,; G,
c,Uc,

block if b does not hold
fail if b does not hold
nondet. assighnment
seguencing

nondet. choice



From Programs to Guarded Commands
e GC(skip)=

e GC(x:=e)=

* GC(c,; )=

GC(1f b thenc,elsec,)=

GC({I}while bdoc)=



From Programs to Guarded Commands

GC(skip) =
assume true
e GC(x:=e)=
havoc tmp; assume tmp = x; where tmp is fresh
havoc x; assume (x = e[tmp/x])
* GC(c,; ¢y =
GC(c,) ; GC(c,)
GC(1f b thenc,elsec,) =
(assume b; GC(c,)) U (assume —b; GC(c,))

GC({I}whilebdoc)="



Guarded Commands for Loops

e GC({I}while bdoc)-=
assert I;
havoc x,; ...; havoc x;
assume I;
(assume b; GC(c); assert I; assume false) [
assume —b

where x,, ..., X,, are the variables assigned in ¢



Computing Weakest Preconditions

WP(assume b, B) =
WP(assert b, B) =
WP(havoc x, B) =
WP(c,;c,, B) =
WP(c, Uc,,B) =



Computing Weakest Preconditions

WP(assume b, B)=b =B

WP(assert b, B)=b A B

WP(havoc x, B) = Bla/x] (a fresh in B)
WP(c,;c,, B) = WP(c,, WP(c,, B))

WP(c, Uc,,B) = WP(c,, B) A WP(c,, B)



Computing Weakest Preconditions

=

P(assume b,B)=b =B

P(assert b, B)=b =B

P(havoc x, B) = B[a/x] (a fresh in B)
 P(cy;c,, B) = WP(c,, WP(c,, B))

P(c, Uc,,B) =WP(c,, B) A WP(c,, B)

W
W
W
W



Putting Everything Together

Given a Hoare triple H = {A} P {B}
Compute ¢, = assume A; GC(P); assert B
Compute VC, = WP(c,, true)

Infer = VC,, using a theorem prover.



Example: VC Generation

{n > 0}
p:=0;
x:=0;
{b=x*m A x <n}
while x<ndo

X =x+1;

p:=p+m
{p=n%*mj



Example: VC Generation

e Computing the guarded command

assume n > 0;
GC( p:=0;
x:=0;
{b=x*m N x <nj}
while x<ndo
X =x+1;
p:=p+m)
assertp=n*m



Example: VC Generation

e Computing the guarded command

assume n > 0;
assume p, = p,; havoc p; assume p = 0;
GC( x:=0;
{b=x*m N x <nj}
while x<ndo
X =x+1;
p:=p+m)
assertp=n*m



Example: VC Generation

e Computing the guarded command

assume n > 0;
assume p, = p,; havoc p; assume p = 0;
assume X, = x; havoc x; assume x = 0;
GC( {p=x*m A x<nj}
while x<ndo

X =x+1;

p:=p+m)
assertp=n*m



Example: VC Generation

 Computing the guarded command

assume n > 0;
assume py = p; havoc p; assume p = 0;
assume X, = x; havoc x; assume x = 0;

assertp=x*mA x<n;
havoc x; havoc p; assumep=x*m A x <n;

(assume x < n;
GC( x:=x+1;

p:=p+m)
assert p=x*m A x < n; assume false)

0 assume x > n;

assertp=n*m



Example: VC Generation

 Computing the guarded command

assume n > 0;

assume p, = p,; havoc p; assume p = 0;

assume x, = X; havoc x; assume x = 0;

assertp=x*mA x<n;

havoc x; havoc p; assumep=x*m A x <n;
(assume x < n;

assume x, = X; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p=p, +m;
assert p =x * m A x < n; assume false)

0 assume x > n;
assertp=n*m



Example: VC Generation

 Computing the weakest precondition

WP ( assumen > 0O;
assume p, = p,; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mAx<n;
havoc x; havoc p; assumep=x*m A x <n;
(assume x < n;

assume x, = X; havoc x; assume x = x; + 1;
assume p, = p; havoc p; assume p=p, + m;
assert p=x*m A x < n; assert false)

0 assume x > n;
assert p =n * m, true)



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;
assume p, = p,; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mA x<n,
WP(havoc x; havoc p; assumep=x*m A x <n;
(assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p=p, + m;
assert p=x*m A x < n; assume false)

Oassumex>n,p=n*m)



Example: VC Generation

 Computing the weakest precondition

WP ( assumen > 0O;
assume p, = p; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mAx<n,
WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p=p, + m;
assert p=x*m A x < n; assume false)) =
p=n*m)
A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;
assume p, = p; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mA x<n,
WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p=p, + m;
assertp=x*mAx<n),false=p=n*m)

A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;
assume p, = p; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mA x<n,
WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p; assume p = p, + m;
assertp=x*m A x <n), true)

A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;
assume p, = p; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mA x<n,
WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n;

assume x, = x; havoc x; assume x = x, + 1;
assume p, = p; havoc p),
p=p,+m=p=x*mAx<n)

A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;
assume p, = p; havoc p; assume p = 0;
assume x, = X; havoc x; assume x = 0;
assertp=x*mA x<n,
WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n;

assume x, = x; havoc x; assume x = x, + 1),
p,=p/Apa,=p;,+m=-pa,=x*mAx<n)

A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;

assume p, = p; havoc p; assume p = 0;

assume x, = X; havoc x; assume x = 0;

assertp=x*mA x<n,

WP(havoc x; havoc p; assumep=x*m A x < n,
(WP( (assume x < n),

(X, =xAxa,=x,+1A
p,=pApa,=p;,+m)=pa,=x*mAx<n)

A(x>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0;

assume p, = p; havoc p; assume p = 0;

assume x, = X; havoc x; assume x = 0;

assertp=x*mA x<n,

WP(havoc x; havoc p; assumep=x*m A x < n,

(x<nA
X;=XAXa;,=x;+1A
p,=pApa,=p;,+m)=pa,=x*mAx<n)

A(x>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
WP ( assumen > 0O;

assume p, = p; havoc p; assume p = 0;
assume X, = X; havoc x; assume x = 0;
assertp=x*mA x<n,

(pa,=xa,*m A xa, <nA

Xa,<nA

X;=Xa, ANxa;=x;+1 AN

p,=pa, \pa,=p,+m)=pa,=xa,*mAxa, <n)

A(X>n=p=n*m)))



Example: VC Generation

 Computing the weakest precondition
N>0Apy=pApa;=0A xy=xA\xa;=0=

pa;=xa;*mAxa; < nA
(pa,=xa,*m A xa, <nA
xXa,<nA
X;=Xa, ANxa;=x;+1 AN
p,=pa,\pa,=p,+m)=pa,=xa,* mAxa, < n)
A(X>n=p=n*m)))



Example: VC Generation

* The resulting VC is equivalent to the conjunction of
the following implications

Nn>0Ap,=pApa;=0A X,=xAxa;=0=
pas;=xa;*mAxa; <n

N>0Apy=pApa;=0A x,=x Axa;=0A pa,=xa,*mA
xXa,<n=

Xa, > n=-pa,=n*m

N>0Apy=pApa;=0A x,=xAxa;=0A pa,=xa,*mA
Xa, <NA X;=xa, A\xa,=x;,+1Ap,=pa, ANpa,=p,;,+m =

— *
pa;=xa; *mAxa; <n



Example: VC Generation

* simplifying the constraints yields

N>0=0=0" mMAO0<n
X0, <nAXa,>n=xd,*m=n*m

Xa,<n=xa,*m+m=(xa,+1)*mAxa,+1<n

 all of these implications are valid, which proves that
the original Hoare triple was valid, too.



The Diamond Problem

assume A;

cld; C d
c’ld’;
assert B o d

A = WP (c, WP(c, B) A WP(d’, B)) A
WP (d, WP(c’, B) A WP(d’, B))

 Number of paths through the program can be
exponential in the size of the program.

* Size of weakest precondition can be exponential in the
size of the program.



Avoiding the Exponential Explosion

|deas?



Avoiding the Exponential Explosion

|deas?

1. Introduce propositional variables that stand for
repeated subformulas

— yields formulas that are linear in the program size

— burden has now shifted to the theorem prover
(often still exponential behavior)

2. Remove redundancies from the VCs entirely
— yields formula that are quadratic in the program size

— usually more efficient once theorem prover is
factored in



Removing Redundancy from VCs

* The following equivalence holds for arbitrary
programs c and formulas B:

WP(c, B) = WP(c, true) A WLP(c, B)

* We got rid of B below WP. Can we also get rid
of B below WLP?



Passive Guarded Commands

e Cc::= assumeb block if b does not hold
assert b fail if b does not hold
————— nendetassigament—
C;; Gy sequencing
c,Uc, nondet. choice

Passive programs are also often said to be in static
single assignment (SSA) form. For loop-free programs,
the SSA form can be obtained using a simple program

transformation.



Removing Redundancy from VCs

* The following equivalence holds for arbitrary
programs c and formulas B:

WP(c, B) = WP(c, true) A WLP(c, B)

* For passive programs ¢ we also have:

WLP(c, B) = WLP(c, false) vV B



Removing Redundancy from VCs

* Using the equations from the previous slides, we
can compute WP for passive programs recursively
according to the following equation:

WP(c, B) = WP(c, true) N (WLP(c, false) V B)

 WP(c, B) is now quadratic in the size of c
* There is no duplication of B for each path in c



Translating Method Calls to GCs

method m (p,: T_1, ..., p.: T,) returns (r: T)
requires P
modifies x;, ..., X

ensures Q

A method call
Y 1= YooM(Yis «ees Yids
is desugared into the guarded command

assert P[y,/this, y,/ps, o ¥i/ P 1;
havoc Xy; ..., havoc X,; havoc y;

assume Q[yqo/this, y1/py, -y Yi/ P Y/TI



Handling More Complex Program State

* When is the following Hoare triple valid?
{A} x.f :=5 {x.f + y.f = 10}
e Aoughttoimply “y.f=5VvVx=y”
 The IMP Hoare rule for assignment would give us:
(x.f +y.f = 10) [5/x.f]
=5+vy.f=10
= vy.f =5 (we lost one case)

e How come the rule does not work?



Modeling the Heap

e We cannot have side-effects in assertions

— While generating the VC we must remove side-effects!

— But how to do that when lacking precise aliasing
information?

* Simple solution: postpone alias analysis to the
theorem prover

* Model the state of the heap as a symbolic
mapping from addresses to values:

— |f e denotes an address and h a heap state then:
— sel(h,e) denotes the contents of the memory cell

— upd(h,e,v) denotes a new heap state obtained from h
by writing v at address e



Heap Models

 We allow variables to range over heap states
— So we can quantify over all possible heap states.

* Model 1

— One “heap” for each object

— One index constant for each field (we postulate f, # f,).

— rfissel(r,f) and r.f :=eis r := upd(r, f, e)
 Model 2 (Burstall-Bornat)

— One “heap” for each field

— The object address is the index

— r.fis sel(f,r) and r.f := e is f := upd(f,r,e)



