
–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2017-04-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Content
–

1
–

2
0

17
-0

4
-2

4
–

S
co

n
te

n
t

–

2/42

• Software, Engineering, Software Engineering

• Successful Software Development

• working definition: success

• unsuccessful software development exists

• common reasons for non-success

• Course

• Content

• topic areas

• structure of topic areas

• emphasis: formal methods

• relation to other courses

• literature

• Organisation

• lectures

• tutorials

• exam

Software, Engineering, Software Engineering

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

3/42

–
1

–
2

0
17

-0
4

-2
4

–
S

ie
e

e
6

10
12

–

4/42

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on April 03,2015 at 13:47:32 UTC from IEEE Xplore. Restrictions apply.

Reference number
ISO/IEC/IEEE 24765:2010(E)

© ISO/IEC 2010
© IEEE 2010

INTERNATIONAL
STANDARD

ISO/IEC/
IEEE

24765

First edition
2010-12-15

Systems and software engineering —
Vocabulary

Ingénierie des systèmes et du logiciel — Vocabulaire

Authorized licensed use limited to: Michigan State University. Downloaded on September 06,2014 at 17:36:30 UTC from IEEE Xplore. Restrictions apply.

–
1

–
2

0
17

-0
4

-2
4

–
S

so
ft

w
ar

e
–

5/42

Software — Computer programs, procedures, and possibly associated documentation
and data pertaining to the operation of a computer system.

See also: application software; support software; system software.

Contrast with: hardware. IEEE 610.12 (1990)

Software —

1. all or part of the programs, procedures, rules, and associated documentation of an
information processing system. [...]

2. see 610.12

3. program or set of programs used to run a computer. [...]

NOTE: includes firmware, documentation, data, and execution control statements.

IEEE 24765 (2010)

Engineering vs. Non-Engineering
–

1
–

2
0

17
-0

4
-2

4
–

S
e

n
gi

n
e

e
ri

n
g

–

6/42

workshop
(technical product)

studio
(artwork)

Mental
prerequisite

the existing and
available technical
know-how

artist’s inspiration,
among others

Deadlines can usually be planned
with sufficient precision

cannot be planned due
to dependency on
artist’s inspiration

Price oriented on cost,
thus calculable

determined by market
value, not by cost

Norms and
standards

exist, are known, and
are usually respected

are rare and, if known,
not respected

Evaluation and
comparison

can be conducted using
objective, quantified
criteria

is only possible
subjectively,
results are disputed

Author remains anonymous,
often lacks emotional
ties to the product

considers the artwork as
part of him/herself

Warranty and
liability

are clearly regulated,
cannot be excluded

are not defined and in
practice hardly
enforceable

(Ludewig and Lichter, 2013)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Software Engineering
–

1
–

2
0

17
-0

4
-2

4
–

S
sw

e
n

g
–

7/42

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; that is, the application of engineering
to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering —

1. the systematic application of scientific and technological knowledge, methods, and
experience to the design, implementation, testing, and documentation of software.

2. see IEEE 610.12 (1) ISO/IEC/IEEE 24765 (2010)

Software Engineering–
Multi-person Development of Multi-version Programs.

D. L. Parnas (2011)

fi
ff

.in
fo

rm
at

ik
.u

n
i-

b
re

m
e

n
.d

e
/

2
0

0
1/

as
se

ts
/

im
ag

e
s/

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

co
m

m
o

n
s.

w
ik

im
e

d
ia

.o
rg

(C
C

-b
y

-s
a

3
.0

)

–
1

–
2

0
17

-0
4

-2
4

–
S

sw
e

n
g

–

8/42

Software Engineering — (1) The application of a systematic, dis-
ciplined, quantifiable approach to the development, operation,
and maintenance of software; that is, the application of engineer-
ing to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering — 1. the systematic application of scientific
and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software.

2. see 610.12 (1). ISO/IEC/IEEE 24765 (2010)

Software Engineering: Multi-person Development of Multi-
version Programs. D. L. Parnas (2011)

Software Engineering — the establishment and use of sound en-
gineering principles to obtain economically software that is reli-
able and works efficiently on real machines. F. L. Bauer (1971)

0018-9162/01/$10.00 © 2001 IEEEComputer

Software
Engineering in
the Academy

T
here is no universally accepted definition of software engineering.
For some, software engineering is just a glorified name for program-
ming. If you are a programmer, you might put “software engineer”
on your business card but never “programmer.” Others have higher
expectations. A textbook definition of the term might read something

like this: “the body of methods, tools, and techniques intended to produce qual-
ity software.”

Rather than just emphasizing quality, we could distinguish software engi-
neering from programming by its industrial nature, leading to another definition:
“the development of possibly large systems intended for use in production envi-
ronments, over a possibly long period, worked on by possibly many people, and
possibly undergoing many changes,” where “development” includes manage-
ment, maintenance, validation, documentation, and so forth.

David Parnas,1 a pioneer in the field, emphasizes the “engineering” part and
advocates a software engineering education firmly rooted in traditional engi-
neering—including courses on materials and the like—and split from computer
science the way electrical engineering is separate from physics.

Because this article presents a broad perspective on software education, I won’t
settle on any of these definitions; rather, I’d like to accept that they are all in
some way valid and retain all the views of software they encompass. In fact, I
am not just focusing on the “software engineering courses” traditionally offered
in many universities but more generally on how to instill software engineering
concerns into an entire software curriculum.

If not everyone agrees on the definition of the discipline, few question its
importance. We might have wished for less embarrassing testimonials of our
work’s societal relevance than the Y2K scare, but it is still fresh enough in every-
one’s mind to remind us how much the world has come to rely on software sys-
tems. The institutions that teach software—either as part of computer science
or in a specific software engineering program—are responsible for producing
software professionals who will build and maintain these systems to the satis-
faction of their beneficiaries.

SOFTWARE PROFESSIONALS

Judging by the employment situation, current and future graduates can be happy
with their studies. The Information Technology Association of America estimated
in April 20002 that 850,000 IT jobs would go unfilled in the next 12 months. The
dearth of qualified personnel is just as perceptible in Europe and Australia. Salaries
are excellent. Project leaders wake up at night worrying about headhunters hir-
ing away some of their best developers—or pondering the latest offers they received
themselves.

Institutions that teach

software are responsible

for producing

professionals who will

build and maintain

systems to the

satisfaction of their

beneficiaries. This

article presents some

ideas on how best to

honor this

responsibility.

Bertrand Meyer
Interactive Software Engineering

T
here is no universally accepted definition of software engineering.
For some, software engineering is just a glorified name for program-

Because this article presents a broad perspective on software education, I won’t
settle on any of these definitions; rather, I’d like to accept that they are all in
some way valid and retain all the views of software they encompass. In fact, I

The course’s working definition of Software Engineering
–

1
–

2
0

17
-0

4
-2

4
–

S
sw

e
n

g
–

9/42

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-
tion of engineering to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

scope,
quality

cost,
time

cost

time

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

“software that is reliable and works efficiently” (Bauer, 1971)

–
1

–
2

0
17

-0
4

-2
4

–
S

sw
e

n
g

–

10/42

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance

recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

6.2 Reliability
The capability of the software product to maintain
a specified level of performance when used under
specified conditions.

6.2.2 Fault tolerance
The capability of the software product to maintain a
specified level of performance in cases of software
faults or of infringement of its specified interface.

westphal
Bleistift

“software that is reliable and works efficiently” (Bauer, 1971)

–
1

–
2

0
17

-0
4

-2
4

–
S

sw
e

n
g

–

10/42

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

maturity

recoverability

usability

understandability

learnability

operability

attractiveness

time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

6.1 Functionality
The capability of the software product to provide
functions which meet stated and implied needs when
the software is used under specified conditions.

6.1.1 Suitability
The capability of the software product to provide an
appropriate set of functions for specified tasks and
user objectives.

westphal
Bleistift

westphal
Bleistift

The course’s working definition of Software Engineering
–

1
–

2
0

17
-0

4
-2

4
–

S
sw

e
n

g
–

11/42

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-
tion of engineering to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

westphal
Bleistift

westphal
Bleistift

Successful Software Development

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

12/42

When is Software Development Successful?
–

1
–

2
0

17
-0

4
-2

4
–

S
al

lh
ap

p
y

–

13/42

Developer Customer User

A software development project is successful

if and only if

developer, customer, and user are happy with the result at the end of the project.

Is Software Development Always Successful?
–

1
–

2
0

17
-0

4
-2

4
–

S
su

cc
e

ss
–

14/42

Erfolgs- und Misserfolgsfaktoren

bei der Durchführung von Hard- und

Softwareentwicklungsprojekten

in Deutschland

2006

Autoren:

Ralf Buschermöhle
Heike Eekhoff
Bernhard Josko

Report: VSEK/55/D
Version: 1.1
Datum: 28.09.2006

Some Empirical Findings (Buschermöhle et al. (2006))

–
1

–
2

0
17

-0
4

-2
4

–
S

su
cc

e
ss

–

15/42

3.17

30.16

6.88

5.03

25.66

29.1

1-9,999

10,000-99,999

100,000-499,999

500,000-999,999

≥ 1,000,000

not specified

budget in e (378 responses)

33.07
2.91

10.05

22.49
25.13

≤ 3

> 3-6

> 6-12

> 12-24

> 24

planned duration in months (378 responses)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

business critical mission critical safety critical

Criticality (378 responses, 30 ’not spec.’)

97.35
2.65

completed

cancelled

project completion (378 responses)

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

0.27

82.61

4.89

4.89

5.16

1.9
25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

main functionality realised (368 responses)

81.52

11.14

3.26

kept

below

above

budget (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20 %

20-49 %

50-99 %

100-199 %

≥ 200 %

deadline missed by (91 responses)

4.89

57.61

8.15
7.61

13.04

4.89

2.99

< 25 %

25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

secondary functionality realised (368 responses)

A Closer Look
–

1
–

2
0

17
-0

4
-2

4
–

S
w

ro
n

gs
–

16/42

• Successful:

Software!

Customer Developer

(software) contract

Time t:

→

10
0

10
0

10
0

Developer Customer

(software) delivery

Time t′ ≥ t:

• Unsuccessful:

Software!

Customer Developer

(software) contract

Time t:

→

:-(

:-(

10
0

10
0

10
0

Developer Customer

(software) delivery

✘

Time t′ ≥ t:

What might’ve gone wrong?

–
1

–
2

0
17

-0
4

-2
4

–
S

w
ro

n
gs

–

17/42

Software!

Customer Developer

(software) contract

Time t:

→

:-(

:-(

10
0

10
0

10
0

Developer Customer

(software) delivery

✘

Time t′ ≥ t:

. . .

C
ap

tu
ri

n
g

R
e

q
u

ir
e

m
e

n
ts

D
e

si
gn

Im
p

le
m

e
n

ta
ti

o
n

(C
o

d
e)

Q
u

al
it

y
A

ss
u

ra
n

ce

. . .

➀ ➁ ➂ ➃

(Software) Project Management➄

Some scenarios:
➀ ➁ ➂ ➃ ➄

✘ ✔ ✔ ✔ ✔ e.g. misunderstanding of requirements

✔ ✘ ✔ ✔ ✔ e.g. non-scalable design, feature forgotten

✔ ✔ ✘ ✔ ✔ e.g. programming mistake

✔ ✔ ✔ ✘ ✔ e.g. wrongly conducted test

✔ ✔ ✔ ✔ ✘ e.g. wrong estimates, bad scheduling

In Other Words
–

1
–

2
0

17
-0

4
-2

4
–

S
w

ro
n

gs
–

18/42

All engineering disciplines face the same questions:

• How to describe requirements / avoid misunderstandings with the customer?

• How to describe design ideas / avoid misunderstandings with the implementers?

• How to ensure that the product is built right / that the right product is built?
(→ How to measure the quality of the product?)

• How to schedule activities properly?

At best: are there procedures which promise to systematically avoid certain mistakes or costs?

This course is about Software Engineering, so we should discuss:

• How to describe requirements on software precisely?

• How to describe design ideas for software precisely?

• How to ensure that software is built right?
(→ How to measure the quality of software?)

• How to schedule software development activities properly?

What are procedures to systematically avoid certain mistakes or costs in software development?

Example: Nightly Builds
–

1
–

2
0

17
-0

4
-2

4
–

S
w

ro
n

gs
–

19/42

Scenario:

• Program P compiles successfully at time t.

• Programmers work for duration d on P , yielding program P ′ at time t+ d.

• P ′ does not compile at time t+ d.

→ the reason for not compiling any more must be among the changes during d.

Experience:

• If d is large, it can be very difficult (and time consuming) to identify the cause.

Proposal: “Nightly Builds”

• Set up a procedure, which (at best: automatically) tries to compile
the current state of the development each day over night.

• Promise: with “nightly builds”, d is effectively limited to be smaller or equal to one day,
so the number of possible causes for not compiling should be manageable.

→ Software Engineering as a defensive discipline (measures against failures and “catastrophes”):

• if program P always compiles, the effort for “nightly builds” was strictly speaking wasted.

• if a compilation issue occurs during the project, the caused damage is bounded.

Same holds for documentation: if no maintenance is ever needed, documentation effort may be wasted.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

In Other Words
–

1
–

2
0

17
-0

4
-2

4
–

S
w

ro
n

gs
–

20/42

All engineering disciplines face the same questions:

• How to describe requirements / avoid misunderstandings with the customer?

• How to describe design ideas / avoid misunderstandings with the implementers?

• How to ensure that the product is built right / that the right product is built?
(→ How to measure the quality of the product?)

• How to schedule activities properly?

At best: are there procedures which promise to systematically avoid certain mistakes or costs?

This course is about Software Engineering, so we should discuss:

• How to describe requirements on software precisely?

• How to describe design ideas for software precisely?

• How to ensure that software is built right?
(→ How to measure the quality of software?)

• How to schedule software development activities properly?

What are procedures to systematically avoid certain mistakes or costs in software development?

Software Engineering is a young discipline: plenty of proposals for each question.

So the course will focus on the problems and discuss example proposals.

Course: Content

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

21/42

Course Content (Tentative)
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

22/42

. . .

C
ap

tu
ri

n
g

R
e

q
u

ir
e

m
e

n
ts

D
e

si
gn

Im
p

le
m

e
n

ta
ti

o
n

C
o

d
e

Q
u

al
it

y
A

ss
u

ra
n

ce

. . .

Software Project Management

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon

Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Structure of Topic Areas
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

23/42

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

semi-formal

formal

Excursion: Informal vs. Formal Techniques
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

24/42

Example: Requirements Engineering, Airbag Controller

D
ai

m
le

rC
h

ry
sl

e
r

A
G

,C
C

B
Y

-S
A

3
.0

Requirement:

Whenever a crash is detected, the airbag has to be fired within 300ms (±ε).

Developer A

‘within’ means
‘≤’; so 100ms is

okay, too

Developer B

‘within’ means
between 300− ε

and 300 + ε

vs.

• Fix observables: crashdetected : Time → {0, 1} and fireairbag : Time → {0, 1}

• Formalise requirement:

∀ t, t′ ∈ Time • crashdetected(t) ∧ airbagfired(t′) =⇒ t′ ∈ [t+ 300− ε, t+ 300 + ε]

→ no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.

westphal
Bleistift

westphal
Bleistift

–
1

–
2

0
17

-0
4

-2
4

–
S

cc
o

n
te

n
t

–

25/42

→ no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.

Structure of Topic Areas
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

26/42

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

semi-formal

formal

westphal
Bleistift

Structure of Topic Areas
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

26/42

Example: Requirements Engineering

Vocabulary e.g. consistent,
complete, tacit, etc.

Techniques

informal

semi-formal

formal

In the course:

e.g. “Whenever a crash. . . ”

e.g. “Always, if 〈crash〉 at t. . . ”

e.g. “∀ t, t′ ∈ Time • . . . ”

Use Cases

Pattern Language

Decision Tables
Live Sequence Charts

westphal
Bleistift

Course Content (Tentative)
–

1
–

2
0

17
-0

4
-2

4
–

S
cc

o
n

te
n

t
–

27/42

. . .

C
ap

tu
ri

n
g

R
e

q
u

ir
e

m
e

n
ts

D
e

si
gn

Im
p

le
m

e
n

ta
ti

o
n

C
o

d
e

Q
u

al
it

y
A

ss
u

ra
n

ce

. . .

Software Project Management

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon

Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

westphal
Bleistift

westphal
Bleistift

Content
–

1
–

2
0

17
-0

4
-2

4
–

S
co

n
te

n
t

–

28/42

• Software, Engineering, Software Engineering

• Successful Software Development

• working definition: success

• unsuccessful software development exists

• common reasons for non-success

• Course

• Content

• topic areas

• structure of topic areas

• emphasis: formal methods

• relation to other courses

• literature

• Organisation

• lectures

• tutorials

• exam

westphal
Bleistift

Course Software-Engineering vs. Other Courses
–

1
–

2
0

17
-0

4
-2

4
–

S
re

l–

29/42

Project
Management

Vocabulary

Techniques

informal

formal

Requirements
Engineering

Vocabulary

Techniques

informal

formal

Design, SW
Modelling

Vocabulary

Techniques

informal

formal

Implementation

Vocabulary

Techniques

Quality
Assurance

Vocabulary

Techniques

informal

formal

Op. Sys. Networks

Tech. InfoInfo I

Info II

Info III Logic Graph Theory Maths I Maths II

Optimisation Stochastics

The lecturer points out connections to
other topics areas (e.g. research, praxis).

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✔

westphal
Bleistift

Course Software-Engineering vs. Softwarepraktikum
–

1
–

2
0

17
-0

4
-2

4
–

S
re

l–

30/42

Agreement between
‘Fachschaft’ and the
chair for software
engineering:
strong(er) coupling
between both
courses.

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon

Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Literature
–

1
–

2
0

17
-0

4
-2

4
–

S
lit

–

31/42

Project
Management

Vocabulary

Techniques

informal

formal

Requirements
Engineering

Vocabulary

Techniques

informal

formal

Design, SW
Modelling

Vocabulary

Techniques

informal

formal

Quality
Assurance

Vocabulary

Techniques

informal

formal

. . .more on the course homepage.

Any Questions So Far?

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

32/42

Course: Organisation

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

33/42

Content
–

1
–

2
0

17
-0

4
-2

4
–

S
co

n
te

n
t

–

34/42

• Software, Engineering, Software Engineering

• Successful Software Development

• working definition: success

• unsuccessful software development exists

• common reasons for non-success

• Course

• Content

• topic areas

• structure of topic areas

• emphasis: formal methods

• relation to other courses

• literature

• Organisation

• lectures

• tutorials

• exam

Organisation: Lectures
–

1
–

2
0

17
-0

4
-2

4
–

S
o

rg
al

e
c

–

35/42

• Homepage: http://swt.informatik.uni-freiburg.de/teaching/SS2017/swtvl

• Course language: German (since we are in an odd year)

• Script/Media:

• slides without annotations on homepage with beginning of lecture the latest

• slides with annotations on homepage typically soon after the lecture

• recording on ILIAS (stream and download) with max. 2 days delay (cf. link on homepage)

• Schedule: topic areas à three 90 min. lectures, one 90 min. tutorial (with exceptions)

• Interaction: absence often moaned; but it takes two, so please ask/comment immediately.

• Questions/comments:

• “online”: ask immediately or in the break

• “offline”: (i) try to solve yourself
(ii) discuss with colleagues
(iii) a) Exercises: ILIAS (group) forum, contact tutor

b) Everything else: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

• Break: we’ll have a 5-10 min. break
in the middle of each lecture (from now on),
unless a majority objects now. ·

14:15

15:00

15:45

vs. ·

14:15

15:00
15:10

15:55

westphal
Bleistift

westphal
Bleistift

Organisation: Exercises & Tutorials
–

1
–

2
0

17
-0

4
-2

4
–

S
o

rg
at

u
t

–

36/42

• Schedule/Submission:

• exercises online (homepage and ILIAS) with first lecture of a block,

• early submission 24h before tutorial
(usually Wednesday, 12:00, local time),

• regular submission right before tutorial
(usually Thursday, 12:00, local time).

• please submit electronically via ILIAS; paper submissions are tolerated

• should work in teams of approx. 3, clearly give names on submission

• Grading system: “most complicated grading system ever”

• Admission points (good-will rating, upper bound)

(“reasonable grading given student’s knowledge before tutorial”)

• Exam-like points (evil rating, lower bound)

(“reasonable grading given student’s knowledge after tutorial”)

20% bonus for early submission.

• Tutorial: Three groups (central assignment), hosted by tutor.

• Starting from discussion of the early submissions (anonymous),
develop one good proposal together,

• tutorial notes provided via ILIAS.

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon

Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

Organisation: Exam
–

1
–

2
0

17
-0

4
-2

4
–

S
o

rg
ae

xa
m

–

37/42

• Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

10 regular admission points on sheets 0 and 1, and
20 regular admission points on exercise sheets 2–6

→ 120 regular admission points for 100%.

• Exam Form:

• written exam

• date, time, place: tba

• permitted exam aids: one A4 paper (max. 21 x 29.7 x 1 mm) of notes, max. two sides inscribed

• scores from the exercises do not contribute to the final grade.

• example exam available on ILIAS

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

One Last Word on The Exercises. . .
–

1
–

2
0

17
-0

4
-2

4
–

S
b

ad
co

p
–

38/42

quality of submission

good-will rating

I have improved my skills in scientific
problem solving.

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✘

I have improved my skills in scientific
problem solving.

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✔

• Every exercise task is a tiny little scientific work!

• Basic rule for high quality submissions:

• rephrase the task in your own words,

• state your solution,

• convince your tutor of (at best: prove) the correctness of your solution.

westphal
Bleistift

Tell Them What You’ve Told Them. . .
–

1
–

2
0

17
-0

4
-2

4
–

S
tt

w
y

tt
–

39/42

• Basic vocabulary:

• software, engineering, software engineering,

• customer, developer, user,

• successful software development

→ note: some definitions are neither formal nor universally agreed

• (Fun) fact: software development is not always successful

• Basic activities of (software) engineering:

• gather requirements,

• design,

• implementation,

• quality assurance,

• project management

→ motivates content of the course – for the case of software

• Formal (vs. informal) methods

• avoid misunderstandings,

• enable objective, tool-based assessment

→ note: still, humans are at the heart of software engineering.

• Course content and organisation

Any (More) Questions?

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

40/42

References

–
1

–
2

0
17

-0
4

-2
4

–
m

ai
n

–

41/42

References
–

1
–

2
0

17
-0

4
-2

4
–

m
ai

n
–

42/42

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Buschermöhle, R., Eekhoff, H., and Josko, B. (2006). success – Erfolgs- und Misserfolgsfaktoren bei der
Durchführung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical Report VSEK/55/D.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC FDIS (2000). Information technology – Software product quality – Part 1: Quality model. 9126-1:2000(E).

ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary. 24765:2010(E).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-person development of multi-version programs. In Jones, C. B.
et al., editors, Dependable and Historic Computing, volume 6875 of LNCS, pages 413–427. Springer.

	Content
	Software, Engineering, Software Engineering
	
	
	Engineering vs. Non-Engineering
	Software Engineering
	
	The course's working definition of Software Engineering
	``software that is reliable and works efficiently'' Bauer1971
	The course's working definition of Software Engineering

	Successful Software Development
	When is Software Development Successful?
	Is Software Development Always Successful?
	Some Empirical Findings (Buschermoehle2006)
	A Closer Look
	
	In Other Words
	Example: Nightly Builds
	In Other Words

	Course: Content
	Course Content (Tentative)
	Structure of Topic Areas
	Excursion: Informal vs. Formal Techniques
	
	Structure of Topic Areas
	Course Content (Tentative)
	Content
	Course Software-Engineering vs. Other Courses
	Course Software-Engineering vs. Softwarepraktikum
	Literature

	Any Questions So Far?
	Course: Organisation
	Content
	Organisation: Lectures
	Organisation: Exercises & Tutorials
	Organisation: Exam
	One Last Word on The Exercises…
	Tell Them What You've Told Them…

	Any (More) Questions?
	References
	References

