
–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 3: More Metrics & Cost Estimation

2017-05-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany



Topic Area Project Management: Content
–

3
–

2
0

17
-0

5
-0

8
–

S
b

lo
ck

co
n

te
n

t
–

2/43

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5



Content
–

3
–

2
0

17
-0

5
-0

8
–

S
co

n
te

n
t

–

3/43

• Software Metrics

• Subjective Metrics

• Goal-Question-Metric Approach

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points



–
3

–
2

0
17

-0
5

-0
8

–
S

p
se

u
d

o
co

n
t

–

4/43

Kinds of Metrics: by Measurement Procedure
–

2
–

2
0

17
-0

4
-2

7
–

S
m

e
tr

ic
ki

n
d

s
–

32/42

objective metric pseudo metric subjective metric

Procedure measurement, counting,
possibly standardised

computation (based on
measurements or
assessment)

review by inspector,
verbal or by given scale

Advantages exact, reproducible,
can be obtained
automatically

yields relevant, directly
usable statement on not
directly visible
characteristics

not subvertable,
plausible results,
applicable to complex
characteristics

Disadvantages not always relevant,
often subvertable,
no interpretation

hard to comprehend,
pseudo-objective

assessment costly,
quality of results depends
on inspector

Example,
general

body height, air pressure body mass index (BMI),
weather forecast for the
next day

health condition,
weather condition (“bad
weather”)

Example in
Software
Engineering

size in LOC or NCSI;
number of (known) bugs

productivity;
cost estimation
by COCOMO

usability;
severeness of an error

Usually used for collection of simple
base measures

predictions (cost
estimation);
overall assessments

quality assessment;
error weighting

(Ludewig and Lichter, 2013)



Recall: Can Pseudo-Metrics be Useful?
–

3
–

2
0

17
-0

5
-0

8
–

S
p

se
u

d
o

co
n

t
–

5/43

• Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few
false negatives) between valuation yields and the property to be measured:

valuation yield
low high

q
u

al
it

y
high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

• This may strongly depend on context information:

• If LOC was (or could be made) non-subvertible (→ tutorials),
then LOC/day could be a useful measure for, e.g., project progress.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Kinds of Metrics: by Measurement Procedure
–

3
–

2
0

17
-0

5
-0

8
–

S
su

b
je

ct
iv

e
–

6/43

objective metric pseudo metric subjective metric

Procedure measurement, counting,
possibly standardised

computation (based on
measurements or
assessment)

review by inspector,
verbal or by given scale

Advantages exact, reproducible,
can be obtained
automatically

yields relevant, directly
usable statement on not
directly visible
characteristics

not subvertable,
plausible results,
applicable to complex
characteristics

Disadvantages not always relevant,
often subvertable,
no interpretation

hard to comprehend,
pseudo-objective

assessment costly,
quality of results depends
on inspector

Example,
general

body height, air pressure body mass index (BMI),
weather forecast for the
next day

health condition,
weather condition (“bad
weather”)

Example in
Software
Engineering

size in LOC or NCSI;
number of (known) bugs

productivity;
cost estimation
by COCOMO

usability;
severeness of an error

Usually used for collection of simple
base measures

predictions (cost
estimation);
overall assessments

quality assessment;
error weighting

(Ludewig and Lichter, 2013)



Subjective Metrics
–

3
–

2
0

17
-0

5
-0

8
–

S
su

b
je

ct
iv

e
–

7/43

example problems countermeasures

Statement “The specification
is available.”

Terms may be
ambiguous,
conclusions are
hardly possible.

Allow only certain
statements, characterise
them precisely.

Assessment “The module is
implemented in a
clever way.”

Not necessarily
comparable.

Only offer particular
outcomes; put them on an
(at least ordinal) scale.

Grading “Readability is
graded 4.0.”

Subjective;
grading not
reproducible.

Define criteria for grades;
give examples how to grade;
practice on existing artefacts

(Ludewig and Lichter, 2013)



The Goal-Question-Metric Approach

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

8/43



Information Overload!?
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

10/43

Now we have mentioned nearly 60 attributes one could measure. . .

Which ones should we measure?

It depends. . .

re
le

va
nt

pla
us

ib
le

av
ail

ab
le

diff
er

en
tia

te
d

ec
onom

ica
l

co
m

par
ab

le
re

pro
duc

ib
le

ro
bus

t

One approach: Goal-Question-Metric (GQM).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Goal-Question-Metric (Basili and Weiss, 1984)
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

11/43

The three steps of GQM:

(i) Define the goals relevant for a project or an organisation.

(ii) From each goal, derive questions
which need to be answered to check whether the goal is reached.

(iii) For each question, choose (or develop) metrics
which contribute to finding answers.

Being good wrt. to a certain metric is (in general) not an asset on its own.
We usually want to optimise wrt. goals, not wrt. metrics.
In particular critical: pseudo-metrics for quality.

Software and process measurements may yield
personal data (“personenbezogene Daten”).
Their collection may be regulated by laws.

westphal
Bleistift

westphal
Bleistift



Example: A Metric for Maintainability
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

12/43

• Goal: assess maintainability.

• One approach: grade the following aspects, e.g., with scale S = {0, . . . , 10}.

(Some aspects may be objective, some subjective (conduct review))

• Norm Conformance

n1 : size of units (modules etc.)

n2 : labelling

n3 : naming of identifiers

n4 : design (layout)

n5 : separation of literals

n6 : style of comments

• Locality

l1 : use of parameters
l2 : information hiding
l3 : local flow of control
l4 : design of interfaces

• Readability

r1 : data types
r2 : structure of control flow
r3 : comments

• Testability

t1 : test driver
t2 : test data
t3 : preparation for test evaluation
t4 : diagnostic components
t5 : dynamic consistency checks

• Typing

y1 : type differentiation
y2 : type restriction

• Define: m = n1+···+y2
20

(with weights: mg = g1·n1+···+g20·y2
G

, G =
∑

20

i=1
gi).

• Procedure:

• Train reviewers on existing examples.

• Do not over-interpret results of first applications.

• Evaluate and adjust before putting to use, adjust regularly. (Ludewig and Lichter, 2013)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Example: A Metric for Maintainability
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

12/43

• Goal: assess maintainability.

• One approach: grade the following aspects, e.g., with scale S = {0, . . . , 10}.

(Some aspects may be objective, some subjective (conduct review))

• Norm Conformance

n1 : size of units (modules etc.)

n2 : labelling

n3 : naming of identifiers

n4 : design (layout)

n5 : separation of literals

n6 : style of comments

• Locality

l1 : use of parameters
l2 : information hiding
l3 : local flow of control
l4 : design of interfaces

• Readability

r1 : data types
r2 : structure of control flow
r3 : comments

• Testability

t1 : test driver
t2 : test data
t3 : preparation for test evaluation
t4 : diagnostic components
t5 : dynamic consistency checks

• Typing

y1 : type differentiation
y2 : type restriction

• Define: m = n1+···+y2
20

(with weights: mg = g1·n1+···+g20·y2
G

, G =
∑

20

i=1
gi).

• Procedure:

• Train reviewers on existing examples.

• Do not over-interpret results of first applications.

• Evaluate and adjust before putting to use, adjust regularly. (Ludewig and Lichter, 2013)

Development of a pseudo-metrics:

(i) Identify aspect to be represented.

(ii) Devise a model of the aspect.

(iii) Fix a scale for the metric.

(iv) Develop a definition of the pseudo-metric,
i.e., how to compute the metric.

(v) Develop base measures for all parameters of
the definition.

(vi) Apply and improve the metric.



And Which Metrics Should One Use?
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

13/43

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)



And Which Metrics Should One Use?
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

13/43

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

LOC and changed lines over time (obtained by statsvn(1).



And Which Metrics Should One Use?
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

13/43

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



And Which Metrics Should One Use?
–

3
–

2
0

17
-0

5
-0

8
–

S
gq

m
–

13/43

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

• size. . .

. . . of newly created and changed code, etc.
(automatically provided by revision control software),

• effort. . .

. . . for coding, review, testing, verification, fixing, maintenance, etc.

• errors. . .

. . . at least errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track

• error rate per release, error density (errors per LOC),

• average effort for error detection and correction,

• etc.

over time. In case of unusual values: investigate further (maybe using additional metrics).

Tool support for software metrics, e.g., SonarCube.



Content
–

3
–

2
0

17
-0

5
-0

8
–

S
co

n
te

n
t

–

14/43

• Software Metrics

• Subjective Metrics

• Goal-Question-Metric Approach

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points



Topic Area Project Management: Content
–

3
–

2
0

17
-0

5
-0

8
–

S
b

lo
ck

co
n

te
n

t
–

15/43

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5



Content
–

3
–

2
0

17
-0

5
-0

8
–

S
co

n
te

n
t

–

16/43

• Software Metrics

• Subjective Metrics

• Goal-Question-Metric Approach

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points



“(Software) Economics in a Nutshell”

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

17/43



Costs
–

3
–

2
0

17
-0

5
-0

8
–

S
e

co
–

18/43

“Next to ‘Software’, ‘Costs’ is one of the terms occurring most often in this book.”
Ludewig and Lichter (2013)

A first approximation:

cost (‘Kosten’) all disadvantages of a solution

benefit (‘Nutzen’)
(or: negative costs)

all benefits of a solution.

Note: costs / benefits can be subjective — and not necessarily quantifiable in terms of money...

Super-ordinate goal of many projects:

• Minimize overall costs, i.e. maximise difference between benefits and costs.

(Equivalent: minimize sum of positive and negative costs.)

westphal
Bleistift



Costs vs. Benefits: A Closer Look
–

3
–

2
0

17
-0

5
-0

8
–

S
e

co
–

19/43

The benefit of a software is determined by the advantages achievable using the software;
it is influenced by:

• the degree of coincidence between product and requirements,

• additional services, comfort, flexibility etc.

Some other examples of cost/benefit pairs: (inspired by Jones (1990))

Costs Possible Benefits

Labor during development
(e.g., develop new test
machinery)

Use of result
(e.g., faster testing)

New equipment
(purchase, maintenance,
depreciation)

Better equipment
(maintenance;
maybe revenue from selling old)

New software purchases (Other) use of new software

Conversion from old
system to new

Improvement of system,
maybe easier maintenance

Increased data gathering Increased control

Training for employees Increased productivity



Costs: Economics in a Nutshell
–

3
–

2
0

17
-0

5
-0

8
–

S
e

co
–

20/43

Distinguish current cost (‘laufende Kosten’), e.g.

• wages,

• (business) management, marketing,

• rooms,

• computers, networks, software as part of infrastructure,

• . . .

and project-related cost (‘projektbezogene Kosten’), e.g.

• additional temporary personnel,

• contract costs,

• expenses,

• hardware and software as part of product or system,

• . . .

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Software Costs in a Narrower Sense
–

3
–

2
0

17
-0

5
-0

8
–

S
e

co
–

21/43

software costs

net production quality costs

error prevention
costs

analyse-and-fix
costs

error costs

error localisation
costs

error removal
costs

error caused costs
(in operation)

decreased benefit

maintenance
(without quality)

quality assurance

during and after development Ludewig and Lichter (2013)

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971) co

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
(C

C
-b

y
-s

a
3

.0
)

westphal
Bleistift

westphal
Bleistift



Discovering Fundamental Errors Late Can Be Expensive
–

3
–

2
0

17
-0

5
-0

8
–

S
e

co
–

22/43

2

5

10

20

50

100

200

relative cost of an error

Analysis Design Coding Test &
Integration

Acceptance
& Operation

phase of error
detection

larger projects

smaller projects

Relative error costs over latency according to investigations at IBM, etc.

By (Boehm, 1979); Visualisation: Ludewig and Lichter (2013).

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Cost Estimation

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

23/43



Content
–

3
–

2
0

17
-0

5
-0

8
–

S
co

n
te

n
t

–

24/43

• Software Metrics

• Subjective Metrics

• Goal-Question-Metric Approach

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Cost Estimation

• Expert’s Estimation

• The Delphi Method

• Algorithmic Estimation

• COCOMO

• Function Points



Why Estimate Cost?
–

3
–

2
0

17
-0

5
-0

8
–

S
w

h
ye

st
im

at
e

–

25/43

Software!

need 1
need 2
need 3
. . .

Customer Developer

announcement
(Lastenheft)

→

. . .e
prop. 1
prop. 2
. . .

Customer Developer

offer
(Pflichtenheft)

→

spec 1
spec 2a
spec 2b
. . .§

. . .e

Customer Developer

software contract
(incl. Pflichtenheft)

→

10
0

10
0

10
0

Developer Customer

software delivery

Lastenheft (Requirements Specification) Vom Auftraggeber festgelegte Gesamtheit
der Forderungen an die Lieferungen und Leistungen eines Auftragnehmers innerhalb
eines Auftrages.
(Entire demands on deliverables and services of a developer within a contracted development, cre-

ated by the customer.) DIN 69901-5 (2009)

• Developer can help with writing the requirements specification,
in particular if customer is lacking technical background.

Pflichtenheft (Feature Specification) Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber vorgegebenen
Lastenhefts.
(Specification of how to realise a given requirements specification, created by the developer.)

DIN 69901-5 (2009)

• One way of getting the feature specification: a pre-project (may be subject of a designated contract).

• Tricky: one and the same content can serve both purposes; then only the title defines the purpose.

westphal
Bleistift

westphal
Bleistift



The “Estimation Funnel”
–

3
–

2
0

17
-0

5
-0

8
–

S
w

h
ye

st
im

at
e

–

26/43

4×

2×

1×

0.5×

0.25×

effort estimated to real
effort (log. scale)

Pre-Project Analysis Design Coding & Test

t

Uncertainty with estimations (following (Boehm et al., 2000), p. 10).

Visualisation: Ludewig and Lichter (2013)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Expert’s Estimation

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

27/43



Expert’s Estimation
–

3
–

2
0

17
-0

5
-0

8
–

S
e

xp
e

rt
s

–

28/43

One approach: the Delphi method.

• Step 1:
write down your

estimates!

• Step 2: show your estimates
and explain!

9.5
13 11 3

27

• Step 3:
estimate again!

• Then take the median, for example.

westphal
Bleistift



Algorithmic Estimation

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

29/43



Algorithmic Estimation: Principle
–

3
–

2
0

17
-0

5
-0

8
–

S
al

go
ri

th
m

ic
–

30/43

P1 P2 P3 P4 P5

?

P6
t

size /
cost

Assume:

• Projects P1, . . . , P5 took place in the past,

• Sizes Si , costs Ci, and kinds ki (0 = blue-ish, 1 = yellow-ish) have been measured and recorded.

Question: What is the cost of the new project P6?

Approach:

(i) Try to find a function f such that f(Si, ki) = Ci , for 1 ≤ i ≤ 5.

(ii) Estimate size S̃6 and kind k̃6 .

(iii) Estimate cost C6 as C̃6 = f(S̃6, k̃6).

(In the artificial example above, f(S, k) = S · 1.8 + k · 0.3 would work, i.e.

if P6 is of kind yellow (thus k̃6 = 1) and size estimate is S̃6 = 2.7 then estimate C6 as f(S̃6, k̃6) = 5.16.)

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Algorithmic Estimation: Principle
–

3
–

2
0

17
-0

5
-0

8
–

S
al

go
ri

th
m

ic
–

30/43

P1 P2 P3 P4 P5

?

P6
t

size /
cost

Approach, more general:

(i) Identify (measurable) factors F1, . . . , Fn which influence overall cost, like size in LOC.

(ii) Take a big sample of data from previous projects.

(iii) Try to come up with a formula f such that f(F1, . . . , Fn) matches previous costs.

(iv) Estimate values for F1, . . . , Fn for a new project.

(v) Take f(F̃1, . . . , F̃n) as cost estimate C̃ for the new project.

(vi) Conduct new project, measure F1, . . . , Fn and cost C .

(vii) Adjust f if C is too different from C̃ .

Note:

• The need for (expert’s) estimation does not go away: one needs to estimate F̃1, . . . , F̃n .

• Rationale: it is often easier to estimate technical aspects than to estimate cost directly.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Algorithmic Estimation: COCOMO

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

31/43



Algorithmic Estimation: COCOMO
–

3
–

2
0

17
-0

5
-0

8
–

S
co

co
m

o
–

32/43

• Constructive Cost Model:

Formulae which fit a huge set of archived project data (from the late 70’s).

• Flavours:

• COCOMO 81 (Boehm, 1981): variants basic, intermediate, detailed

• COCOMO II (Boehm et al., 2000)

• All flavours are based on estimated program size S measured in
DSI (Delivered Source Instructions) or kDSI (1000 DSI).

• Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

• COCOMO examples:

• textbooks like Ludewig and Lichter (2013) (most probably made up)

• an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

westphal
Bleistift



COCOMO 81
–

3
–

2
0

17
-0

5
-0

8
–

S
co

co
m

o
–

33/43

Characteristics of the Type
a b

Software

Size Innovation
Deadlines/
Constraints

Dev.
Environment

Project Type

Small
(<50 KLOC)

Little Not tight Stable 3.2 1.05 Organic

Medium
(<300 KLOC)

Medium Medium Medium 3.0 1.12 Semi-detached

Large Greater Tight
Complex HW/
Interfaces

2.8 1.20 Embedded

Basic COCOMO:

• effort required: E = a · (S/kDSI )b [PM (person-months)]

• time to develop: T = c · Ed [months]

• headcount: H = E/T [FTE (full time employee)]

• productivity: P = S/E [DSI per PM] (← use to check for plausibility)

Intermediate COCOMO:

E = M · a · (S/kDSI )b [person-months]

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



COCOMO 81: Some Cost Drivers
–

3
–

2
0

17
-0

5
-0

8
–

S
co

co
m

o
–

34/43

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

factor
very
low low normal high

very
high

extra
high

RELY required software reliability 0.75 0.88 1 1.15 1.40

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65

TIME execution time constraint 1 1.11 1.30 1.66

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language
experience

1.14 1.07 1 0.95

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development
schedule

1.23 1.08 1 1.04 1.10

• Note: what, e.g., “extra high” TIME means, may depend on project context.
(Consider data from previous projects.)



COCOMO II (Boehm et al., 2000)

–
3

–
2

0
17

-0
5

-0
8

–
S

co
co

m
o

–

35/43

Consists of

• Application Composition Model — project work is configuring components, rather than
programming

• Early Design Model — adaption of Function Point approach (in a minute);
does not need completed architecture design

• Post-Architecture Model — improvement of COCOMO 81; needs completed archi-
tecture design, and size of components estimatable



COCOMO II: Post-Architecture
–

3
–

2
0

17
-0

5
-0

8
–

S
co

co
m

o
–

36/43

E = 2.94 · SX ·M

• Program size: S = (1 + REVL) · (Snew + Sequiv )

• requirements volatility REVL:
e.g., if new requirements make 10% of code unusable, then REVL = 0.1

• Snew : estimated size minus size w of re-used code,

• Sequiv = w/q, if writing new code takes q-times the effort of re-use.

• Scaling factors:

X = δ + ω, ω = 0.91, δ = 1

100
· (PREC + FLEX + RESL+ TEAM + PMAT )

factor
very
low

low normal high very
high

extra
high

PREC precedentness (experience with
similar projects)

6.20 4.96 3.72 2.48 1.24 0.00

FLEX development flexibility
(development process fixed by
customer)

5.07 4.05 3.04 2.03 1.01 0.00

RESL Architecture/risk resolution (risk
management, architecture size)

7.07 5.65 4.24 2.83 1.41 0.00

TEAM Team cohesion (communication
effort in team)

5.48 4.38 3.29 2.19 1.10 0.00

PMAT Process maturity (see CMMI) 7.80 6.24 4.69 3.12 1.56 0.00



COCOMO II: Post-Architecture Cont’d
–

3
–

2
0

17
-0

5
-0

8
–

S
co

co
m

o
–

37/43

M = RELY ·DATA · · · · · SCED

group factor description

Product factors RELY required software reliability

DATA size of database

CPLX complexity of system

RUSE degree of development of reusable components

DOCU amount of required documentation

Platform factors TIME execution time constraint

STOR memory consumption constraint

PVOL stability of development environment

Team factors ACAP analyst capability

PCAP programmer capability

PCON continuity of involved personnel

APEX experience with application domain

PLEX experience with development environment

LTEX experience with programming language(s) and tools

Project factors TOOL use of software tools

SITE degree of distributedness

SCED required development schedule

(also in COCOMO 81, new in COCOMO II)



Algorithmic Estimation: Function Points

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

38/43



Algorithmic Estimation: Function Points
–

3
–

2
0

17
-0

5
-0

8
–

S
fu

n
ct

io
n

p
ts

–

39/43

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

VAF = 0.65+
1

100
·

14∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Algorithmic Estimation: Function Points
–

3
–

2
0

17
-0

5
-0

8
–

S
fu

n
ct

io
n

p
ts

–

39/43

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

IBM and VW curve for the conversion from AFPs to PM according to
(Noth and Kretzschmar, 1984) and (Knöll and Busse, 1991).

VAF = 0.65+
1

100
·

14∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

westphal
Bleistift

westphal
Bleistift



Discussion
–

3
–

2
0

17
-0

5
-0

8
–

S
fu

n
ct

io
n

p
ts

–

40/43

Ludewig and Lichter (2013) says:

• Function Point approach used in practice,
in particular for commercial software (business software?).

• COCOMO tends to overestimate in this domain;
needs to be adjusted by corresponding factors.

In the end, it’s experience, experience, experience:

“Estimate, document, estimate better.” (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience now.

• Take notes on your projects:

(e.g., Softwarepraktikum, Bachelor Projekt, Master Bacherlor’s Thesis, Master Projekt, Master’s Thesis, . . . )

• timestamps, size of program created, number of errors found, number of pages written, . . .

• Try to identify factors: what hindered productivity, what boosted productivity, . . .

• Which detours and mistakes were avoidable in hindsight? How?

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift

westphal
Bleistift



Tell Them What You’ve Told Them. . .
–

3
–

2
0

17
-0

5
-0

8
–

S
tt

w
y

tt
–

41/43

• Goal-Question-Metric approach:

• Define goals, derive questions, choose metrics.

• Evaluate and adjust.

Recall: It’s about the goal, not the metrics.

• For software costs, we can distinguish

• net production, quality costs, maintenance.

Software engineering is about being economic in all three aspects.

• Why estimate?

• Requirements specification (‘Lastenheft’)

• Feature specification (‘Pflichtenheft’)

The latter (plus budget) is usually part of software contracts.

• Approaches:

• Expert’s Estimation

• Algorithmic Estimation: COCOMO, Function Points

→ estimate cost indirectly, by estimating more technical aspects.

In the end, it’s experience (and experience (and experience)).



References

–
3

–
2

0
17

-0
5

-0
8

–
m

ai
n

–

42/43



References
–

3
–

2
0

17
-0

5
-0

8
–

m
ai

n
–

43/43

Basili, V. R. and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. IEEE
Transactions of Software Engineering, 10(6):728–738.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design specifications. In
EURO IFIP 79, pages 711–719. Elsevier North-Holland.

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

DIN (2009). Projektmanagement; Projektmanagementsysteme. DIN 69901-5.

Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. BI Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und Praxisvergleich der
wichtigsten Verfahren. Springer-Verlag.

Wheeler, D. A. (2006). Linux kernel 2.6: It’s worth more!


	Topic Area Project Management: Content
	Content
	
	Recall: Can Pseudo-Metrics be Useful?
	Kinds of Metrics: by Measurement Procedure
	Subjective Metrics
	The Goal-Question-Metric Approach
	
	Information Overload!?
	Goal-Question-Metric BasiliWeiss1984
	Example: A Metric for Maintainability
	And Which Metrics Should One Use?
	Content
	Topic Area Project Management: Content
	Content

	``(Software) Economics in a Nutshell''
	Costs
	Costs vs. Benefits: A Closer Look
	Costs: Economics in a Nutshell
	Software Costs in a Narrower Sense
	Discovering Fundamental Errors Late Can Be Expensive

	Cost Estimation
	Content
	Why Estimate Cost?
	The ``Estimation Funnel''

	Expert's Estimation
	Expert's Estimation

	Algorithmic Estimation
	Algorithmic Estimation: Principle

	Algorithmic Estimation: COCOMO
	Algorithmic Estimation: COCOMO
	COCOMO 81
	COCOMO 81: Some Cost Drivers
	COCOMO II Boehm2000
	COCOMO II: Post-Architecture
	COCOMO II: Post-Architecture Cont'd

	Algorithmic Estimation: Function Points
	Algorithmic Estimation: Function Points
	Discussion
	Tell Them What You've Told Them…

	References
	References




