
–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 5: Procedure & Process Models

2017-05-15

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content

–
5

–
2

0
17

-0
5

-1
5

–
S

b
lo

ck
co

n
te

n
t

–

2/57

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• “(Software) Economics in a Nutshell”

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•

..

.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5



Content

–
5

–
2

0
17

-0
5

-1
5

–
S

co
n

te
n

t
–

3/57

• Procedure and Process Models

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Procedure classification

• linear / non-linear

• prototyping

• evolutionary, iterative, incremental

• From Procedure to Process Models

• Process Model Examples

• Phase Model

• V-Modell XT

• Agile

• Extreme Programming

• Scrum

• Process Metrics

• CMMI, Spice

Process vs. Procedure Models

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

4/57



Process vs. Procedure Model

–
5

–
2

0
17

-0
5

-1
5

–
S

p
m

re
ca

ll
–

5/57

(Ludewig and Lichter, 2013) propose to distinguish: process model and procedure model.

• A Process model (‘Prozessmodell’) comprises

(i) Procedure model (‘Vorgehensmodell’)

e.g., “waterfall model” (70s/80s).

(ii) Organisational structure — comprising requirements on

• project management and responsibilities,

• quality assurance,

• documentation, document structure,

• revision control.

e.g., V-Modell, RUP, XP (90s/00s).

• In the literature, process model and procedure model are often used as synonyms;
there is not universally agreed distinction.

Procedure Models

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

6/57



The (In)famous Waterfall Model (Rosove, 1967)

–
5

–
2

0
17

-0
5

-1
5

–
S

w
at

e
rf

al
lc

o
n

t
–

7/57

Waterfall or Document-Model— Software develop-
ment is seen as a sequence of activities coupled by (par-
tial) results (documents).
These activities can be conducted concurrently or iter-
atively.

Apart from that, the sequence of activities is fixed as

(basically) analyse, specify, design, code, test, install,
maintain. Ludewig & Lichter (2013)

system
analysis

software
specification

architecture
design

refined design
and coding

integration
and testing

installation and
acceptance

operation and
maintenance



The Spiral Model (Boehm, 1988)

–
5

–
2

0
17

-0
5

-1
5

–
S

sp
ir

al
–

8/57

Barry W. Boehm

Recall: risk and risk value.

Quick Excursion: Risk and Riskvalue

–
4

–
2

0
16

-0
5

-0
2

–
S

m
gm

t
–

10/49

risk — a problem, which did not occur yet, but on occurrence threatens important
project goals or results. Whether it will occur, cannot be surely predicted.

Ludewig & Lichter (2013)

riskvalue = p ·K

p: probability of problem occurrence,

K : cost in case of problem occurrence.

10
5

10
6

10
7

10
8

cost in
case of
incidence /
e

10
−5

10
−4

10
−3 0.01 0.1 0.5

incidence
probability
p

acceptable risks

inacceptable

risks

extreme

risks

• Avionics requires: “Average Probability per Flight Hour for Catastrophic Failure Conditions
of 10−9 or ‘Extremely Improbable”’ (AC 25.1309-1).

• “problems with p = 0.5 are not risks, but environment conditions to be dealt with”



The Spiral Model (Boehm, 1988)

–
5

–
2

0
17

-0
5

-1
5

–
S

sp
ir

al
–

8/57

Barry W. Boehm

Note: risks can have various forms and counter-measures, e.g.,

• open technical questions (→ prototype?),

• lead developer about to leave the company (→ invest in documentation?),

• changed market situation (→ adapt appropriate features?),

• . . .

Idea of Spiral Model: do not plan ahead everything, but go step-by-step.

Repeat until end of project (successful completion or failure):

(i) determine the set R of risks which are threatening the project;
if R = ∅, the project is successfully completed

(ii) assign each risk r ∈ R a risk value v(r)

(iii) for the risk r0 with the highest risk value, r0 = max{v(r) | r ∈ R},
find a way to eliminate this risk, and go this way;
if there is no way to eliminate the risk, stop with project failure

Advantages:

• We know early if the project goal is unreachable.

• Knowing that the biggest risks are eliminated gives a good feeling.

Wait, Where’s the Spiral?

–
5

–
2

0
17

-0
5

-1
5

–
S

sp
ir

al
–

9/57

A concrete process using the Spiral Model could look as follows:

t (cost, project progress)

t0 t1 t2 t3

- investigate goals, alternatives, side conditions - conduct risk analysis,

- develop and test the next product part, - plan the next phase,



Procedure Model Classification

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

10/57

Linear vs. Non-Linear Procedure Models

–
5

–
2

0
17

-0
5

-1
5

–
S

lin
e

ar
–

11/57

• linear: the strict Waterfall Model (no feedback)

• non-linear: basically everything else (with feedback between activities)



Classification By Treatment of (Software) Artefacts

–
5

–
2

0
17

-0
5

-1
5

–
S

e
vo

in
ci

te
r

–

12/57

• Prototyping:

req.

prototypeprototype

P

results

developdevelop S

• Evolutionary:

req.

iteration 0iteration 0 I1 . . . In iteration niteration n S

• Iterative:

req.

planplan

spec. 1

spec. 2

spec. 3

iteration 1iteration 1 I1 iteration 2iteration 2 I2 iteration 3iteration 3 S

• Incremental:
req. 1

project 1project 1 S1

req. 2

project 2project 2 S2

• Staircase: pipelined incremental

Evolutionary and Iterative Development

–
5

–
2

0
17

-0
5

-1
5

–
S

e
vo

it
e

r
–

13/57

req.

iteration 0iteration 0 I1 . . . In iteration niteration n S

evolutionary software development — an approach which includes evolutions of the developed
software under the influence of practical/field testing.

New and changed requirements are considered by developing the software in sequential steps of
evolution. Ludewig & Lichter (2013), flw. (Züllighoven, 2005)

req.

planplan

spec. 1

spec. 2

spec. 3

iteration 1iteration 1 I1 iteration 2iteration 2 I2 iteration 3iteration 3 S

iterative software development — software is developed in multiple iterative steps, all of them
planned and controlled.

Goal: each iterative step, beginning with the second, corrects and improves the existing system
based on defects detected during usage.

Each iterative steps includes the characteristic activities analyse, design, code, test.

Ludewig & Lichter (2013)



Incremental Development

–
5

–
2

0
17

-0
5

-1
5

–
S

in
c

–

14/57

req. 1

project 1project 1 S1

req. 2

project 2project 2 S2

incremental software development — The total extension of a system under development remains
open; it is realised in stages of expansion. The first stage is the core system.

Each stage of expansion extends the existing system and is subject to a separate project. Providing

a new stage of expansion typically includes (as with iterative development) an improvement of the

old components. Ludewig & Lichter (2013)

• Note: (to maximise confusion) IEEE calls our “iterative” incremental:

incremental development — A software development technique in which requirements definition,

design, implementation, and testing occur in an overlapping, iterative (rather than sequential) man-

ner, resulting in incremental completion of the overall software product. IEEE 610.12 (1990)

• One difference (in our definitions):

• iterative: steps towards fixed goal,

• incremental: goal extended for each step; next step goals may already be planned.

Examples: operating system releases, short time-to-market (→ continuous integration).

Another Characterisation of Approaches

–
5

–
2

0
17

-0
5

-1
5

–
S

n
o

n
lin

e
ar

–

15/57

Used for Analysis of Requirements

Results Used on Target System

Has Defined Steps

Preliminary Results Used

Approach
Has Com-
plete Plan

Rapid
Prototyping

Evolutionary
Development

Iterative
Development

Incremental
Development

Staircase
Development

yes

to some amount

to a low amount

req.

prototypeprototype

P

results

developdevelop S

req.

iteration 0iteration 0 I1
. . . In iterationniterationn S

req.

planplan

spec. 1

spec. 2

spec. 3

iteration 1iteration 1 I1 iteration 2iteration 2 I2 iteration 3iteration 3 S

req. 1

project 1project 1 S1

req. 2

project 2project 2 S2



Content

–
5

–
2

0
17

-0
5

-1
5

–
S

co
n

te
n

t
–

16/57

• Procedure and Process Models

• Procedure Model Examples

• The (in)famous Waterfall model

• The famous Spiral model

• Procedure classification

• linear / non-linear

• prototyping

• evolutionary, iterative, incremental

• From Procedure to Process Models

• Process Model Examples

• Phase Model

• V-Modell XT

• Agile

• Extreme Programming

• Scrum

• Process Metrics

• CMMI, Spice

Process Models

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

17/57



From Procedure to Process Model

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

ce
ss

e
s

–

18/57

A process model may describe:

• steps to be conducted during development,
their sequential arrangement,
their dependencies (the procedure model)

• organisation, responsibilities, roles

• structure and properties of documents

• methods to be used,
e.g., for gathering requirements or checking intermediate results

• project phases, milestones, testing criteria

• notations and languages

• tools to be used
(in particular for project management).

Process models typically come with their own terminology (to maximise confusion?),
e.g. what we call artefact is called product in V-Model terminology.

Light vs. Heavyweight Process Models

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

ce
ss

e
s

–

19/57

• You may hear about “light” and “heavyweight” process models.

• Sometimes: heavier means higher number of rules. . .

• Sometimes: heavier means less flexible, adaptable process. . .

• Clear: “lightweight” sounds better than “heavyweight”.

• In the end,

• a process model is too “light”

if it doesn’t support you in doing things which are useful and necessary for your project;

• a process model is too “heavy”

if it forces you to do things which are neither necessary nor useful for your project.

• Thus, following (Ludewig and Lichter, 2013),
we will not try to assign the following process models to a “weight class”.



Phase Models

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

ce
ss

e
s

–

20/57

The Phase Model

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

ce
ss

e
s

–

21/57

• The project is planned by phases,
delimited by well-defined milestones.

• Each phase is assigned a time/cost budget.

• Phases and milestones may be part of the development contract;
partial payment when reaching milestones.

• Roles, responsibilities, artefacts defined as needed.

• By definition, there is no iteration of phases.

• But activities may span (be active during) multiple phases.

• Not uncommon for small projects (few software people, small product size),
small companies.



V-Model XT

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

22/57

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

23/57

���������	
��������������������

��������
�
	
�



V-Modell XT

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

24/57

• There are different “V-shaped” process models, we discuss the (German) “V-Modell”.

• “V-Modell”:

• developed by company IABG in cooperation with the Federal Office for Defence Technology and
Procurement (‘Bundesministerium für Verteidigung’), released 1998

• (German) government as customer often requires usage of the V-Modell

• 2012: “V-Modell XT” Version 1.4 (Extreme Tailoring) (V-Modell XT, 2006)

requirements
fixed

requirements
fixed

acceptanceacceptance

system
specified
system

specified
system

delivered
system

delivered

architecture
designed

architecture
designed

system
integrated

system
integrated

modules
designed
modules
designed

system
realised
system
realised

verification & validation

V-Modell XT: Decision Points

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

25/57

%''����
��(��1�2�����-.&5.�
������������ 
��-.����
��+�
�����
��1������



V-Modell XT: Project Types

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

26/57

project
role

customer
‘Auftraggeber’

developer
‘Auftragnehmer’

customer/developer
‘Auftragg.’/‘Auftragn.’

customer/developer
‘Auftragg.’/‘Auftragn.’

project
type

system development
project (AG)

system development
project (AN)

system development
project (AG/AN)

introduction and
maintenance of specific

process model

project
subject

HW system SW system HW-SW sys-
tem/embedded

System integration introduction and
maintenance of specific

process model

V-Modell XT considers four different project types:

• AG: project from the perspective of the customer
(create call for bids, choose developer, accept product)

• AN: project from the perspective of the developer
(create offer, develop system, hand over system to customer)

• AG/AN: customer and developer from same organisation

• PM: introduction or improvement of a process model

Project type variants: one/many customer(s); development/improvement/migration; maintenance

V-Modell XT: Customer/Developer Interface

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

27/57



V-Modell XT: The V-World (naja. . . )

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

28/57

%
'
'
���
�


�
�"
���
�
�
�.
�

�'
�
�
����


��


�
��
��

V-Modell XT: Procedure Building Blocks

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

29/57



V-Modell XT: Example Building Block & Product State

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

30/57

���
��!*������.�
�'������
�76� 
���-���
�SW-Development (‘SW-Entwicklung’)

vs. codingcoding

M

spec. of M

programmer

%''����
���#��1����������
��	�����



V-Modell XT: (Lots of) Disciplines and Products

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

31/57

%''����
��"(�������+��
�
�&5�����1�2���
%''����
��")�������+��
�
�������� 
���-���
�

�&5�����L��
������


V-Modell XT: (Lots of) Disciplines and Products

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

31/57

%''����
��"(�������+��
�
�&5�����1�2���
%''����
��")�������+��
�
�������� 
���-���
�

�&5�����L��
������




V-Modell XT: Activities (as many?!)

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

32/57

%''����
��)��������+��
�
�����1�2���� %''����
��)#�������+��
�
���� 
���-���
�

�L��
������


V-Modell XT: Activities (as many?!)

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

32/57

%''����
��)��������+��
�
�����1�2���� %''����
��)#�������+��
�
���� 
���-���
�

�L��
������




V-Modell XT: Roles (even more?!)

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

33/57

Project Roles:

Änderungssteuerungsgruppe (Change Control Board), Änderungsverantwortlicher,

Anforderungsanalytiker (AG), Anforderungsanalytiker (AN), Anwender, Assessor,
Ausschreibungsverantwortlicher, Datenschutzverantwortlicher, Ergonomieverantwortlicher,

Funktionssicherheitsverantwortlicher, HW-Architekt, HW-Entwickler,
Informationssicherheitsverantwortlicher, KM-Administrator, KM-Verantwortlicher, Lenkungsausschuss,

Logistikentwickler, Logistikverantwortlicher, Projektkaufmann, Projektleiter, Projektmanager,

Prozessingenieur, Prüfer, QS-Verantwortlicher, SW-Architekt, SW-Entwickler,
Systemarchitekt, Systemintegrator, Technischer Autor, Trainer

Organisation Roles:

Akquisiteur, Datenschutzbeauftragter (Organisation), Einkäufer,
IT-Sicherheitsbeauftragter (Organisation), Qualitätsmanager

V-Modell XT: Tailoring Instance

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

34/57

Building Blocks

Plan

���
���,��1�2����+���&��-.��%��+��
�
�����1�2�����-.&5.�
����������



V-Modell XT: Development Strategies

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

35/57

V-Modell XT mainly supports three strategies,
i.e. principal sequences between decision points,
to develop a system:

incremental component based prototypical

V-Modell XT: Discussion

–
5

–
2

0
17

-0
5

-1
5

–
S

vx
t

–

36/57

Advantages:

• certain management related building block are part of each project,
thus they may receive increased attention of management and developers

• publicly available, can be used free of license costs

• very generic, support for tailoring

• comprehensive, low risk of forgetting things

Disadvantages:

• comprehensive, tries to cover everything; tailoring is supported, but may need high effort

• tailoring is necessary, otherwise a huge amount of useless documents is created

• description/presentation leaves room for improvement

Needs to prove in practice, in particular in small/medium sized enterprises (SME).



Agile

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

37/57

The Agile Manifesto

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

38/57

“Agile — denoting ‘the quality of being agile; readiness for motion; nimbleness, activity,
dexterity in motion’ — software development methods are attempting to offer an answer
to the eager business community asking for lighter weight along with faster and nimbler
software development processes.

This is especially the case with the rapidly growing and volatile Internet software industry
as well as for the emerging mobile application environment.” (Abrahamsson et al., 2002)

The Agile Manifesto (2001):

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

that is, while there is value in the items on the right, we value the items on the left more.



Agile Principles

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

39/57

• Our highest priority is to satisfy the
customer through early and continuous
delivery of valuable software.

• Business people and developers must
work together daily throughout the project.

• Agile processes promote sustainable
development.
The sponsors, developers, and users should
be able to maintain a constant pace
indefinitely.

• Welcome changing requirements,
even late in development.
Agile processes harness change for the
customer’s competitive advantage.

• Deliver working software frequently, from
a couple of weeks to a couple of months,
with a preference to the shorter timescale.

• Working software is the primary measure
of progress.

• Simplicity — the art of maximizing the
amount of work not done — is essential.

• Continuous attention to technical
excellence and good design
enhances agility.

• Build projects around motivated
individuals.
Give them the environment and support
they need, and trust them to get the job
done.

• The most efficient and effective method of
conveying information to and within a
development team is face-to-face
conversation.

• The best architectures, requirements,
and designs emerge from
self-organizing teams.

• At regular intervals, the team reflects on
how to become more effective, then tunes
and adjusts its behavior accordingly.

Similarities of Agiles Process Models

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

40/57

• iterative: cycles of a few weeks, at most three months.

• Work in small groups (6–8 people) proposed.

• Dislike the idea of large, comprehensive documentation (radical or with restrictions).

• Consider the customer important;
recommend or request customer’s presence in the project.

• Dislike dogmatic rules.

(Ludewig and Lichter, 2013)



Extreme Programming (XP)

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

41/57

Extreme Programming (XP) (Beck, 1999)

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

42/57

XP values:

• simplicity, feedback, communication, courage, respect.

XP practices:

• management

• integral team
(including customer)

• planning game
(→ Delphi method)

• short release cycles

• stand-up meetings

• assess in hindsight

• team:

• joint responsibility for the code

• coding conventions

• acceptable workload

• central metaphor

• continuous integration

• programming

• test driven development

• refactoring

• simple design

• pair programming

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer



Scrum

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

43/57

Scrum

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

44/57

• First published 1995 (Schwaber, 1995), based on ideas of Takeuchi and Nonaka.

• Inspired by Rugby (yes, the “hooligan’s game played by gentlemen”):
get the ball in a scrum, then sprint to score.

• Role-based; iterative and incremental;
in contrast to XP no techniques proposed/required.

Three roles:

• product owner:

• representative of customer,

• maintains requirements in the
product backlog,

• plans and decides which
requirement(s) to realise in
next sprint,

• (passive) participant of
daily scrum,

• assesses results of sprints

• scrum team:

• members capable of
developing autonomously,

• decides how and how many
requirements to realise in
next sprint,

• distribution of tasks
self-organised, team decides
who does what when,

• environment needs to
support communication and
cooperation, e.g. by spatial
locality

• scrum master:

• helps to conduct scrum
the right™ way,

• looks for adherence to
process and rules,

• ensures that the team is not
disturbed from outside,

• moderates daily scrum,
responsible for keeping
product backlog up-to-date,

• should be able to assess
techniques and approaches



Scrum Process

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

45/57

Product Backlog
sprint

planning

release
planning

Release Plan

Release Burn.

Sprint Backlog sprint

realisation
daily scrum Sprint Burndown

review
retrospective Sprint Report

requirements
workshop

Product Increment

• product backlog
(maintained by product owner)

• comprises all requirements to be realised,

• priority and effort estimation for
requirements,

• collects tasks to be conducted,

• release plan

• based on initial version of product backlog,

• how many sprints, which major
requirements in which sprint,

• release-burndown report

• see sprint-burndown report

• sprint backlog

• requirements to be realised in next sprint,
taken from product backlog,

• more precise estimations,

• daily update (tasks done, new tasks, new estimations)

• sprint-burndown report

• completed/open tasks from sprint backlog,

• should decrease linearly,
otherwise remove tasks from sprint backlog,

• sprint report

• which requirements (not) realised in last sprint,

• description of obstacles/problems during sprint

Scrum Process

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

45/57

Product Backlog
sprint

planning

release
planning

Release Plan

Release Burn.

Sprint Backlog sprint

realisation
daily scrum Sprint Burndown

review
retrospective Sprint Report

requirements
workshop

Product Increment

• daily scrum:

• daily meeting, 15 min.

• discuss progress, synchronise day plan, discuss and document new obstacles

• team members, scrum master, product owner (if possible)

• sprint:

• at most 30 days, usually shorter (initially longer)

• sprint review:

• assess amount and quality of realisations; product owner accepts results

• sprint retrospective:

• assess how well the scrum process was implemented;
identify actions for improvement (if necessary)



Scrum: Discussion

–
5

–
2

0
17

-0
5

-1
5

–
S

ag
ile

–

46/57

• Has been used in many projects, experience in majority positive.

• Team size bigger 7–10 may need scrum of scrums.

• Competent product owner necessary for success.

• Success depends on motivation, competence,
and communication skills of team members.

• Team members are responsible for planning,
and for adhering to process and rules,
thus intensive learning and experience necessary.

• Can (as other process models) be combined with techniques from XP.

Process Metrics

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

47/57



Assessment and Improvement of the Process

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

48/57

• Idea (for material goods): The quality of the (production) process influences product quality.

• Plan: Specify abstract criteria (metrics) to determine good production processes
(e.g., to choose manufacturer).

• Industry in general (production!):

• ISO 9001, ISO/TS 16949 (automotive), . . .

• Software industry (development!):

• CMM(I), SPICE

• Note: a good process does not stop us from creating bad products;
(the hope is, that) bad products are less likely when using a good process,
i.e. that there is a correlation:

process quality
low high

pr
od

uc
tq

ua
lit

y high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

49/57

�

�

�

�

&00,
�
�IRU�'HYHORSPHQW��9HUVLRQ�����

&00,�'(9��9����

&00,�3URGXFW�7HDP�

�

Improving processes for developing better products and services 

1RYHPEHU������

7(&+1,&$/�5(3257�

&08�6(,������75�����
(6&�75����������

�

6RIWZDUH�(QJLQHHULQJ�3URFHVV�0DQDJHPHQW�3URJUDP�
8QOLPLWHG�GLVWULEXWLRQ�VXEMHFW�WR�WKH�FRS\ULJKW��

�

KWWS���ZZZ�VHL�FPX�HGX�



CMMI

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

50/57

• 1991: Capability Maturity Model (CMM), DoD/SEI/CMU; superseded by

• 1997: Capability Maturity Model Integration (CMMI) (Team, 2010);
constellations: CMMI-DEV (development), CMMI-ACQ (acquisition), CMMI-SRV (service)

• Goals:

• applicable to all organisations which develop software,

• make strengths and weaknesses of the real process visible,
to point out ways for improvement,

• neutral wrt. technology employed in project,

• levels: higher levels have lower levels as premise,

• be consistent with ISO 15504 (SPICE)

• Assumptions:

• better defined, described, and planned processes have higher maturity,

• higher maturity levels require statistical control to support continuous improvement,

• higher maturity level yields:

• better time/cost/quality prediction;

• lower risk to miss project goals;

• higher quality of products.

CMMI Levels

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

51/57

level level name process areas

1 initial -

2 managed REQM, PP, PMC, MA, PPQA, CM, SAM

3 defined + RD, TS, PI, VER, VAL, OPF, OPD, OT, IPM, RSKM, DAR

4
quantitatively

managed
+ OPP, QPM

5 optimising + OID, CAR

• initial – the process is not consciously designed, just evolved.



CMMI Levels

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

51/57

level level name process areas

1 initial -

2 managed REQM, PP, PMC, MA, PPQA, CM, SAM

3 defined + RD, TS, PI, VER, VAL, OPF, OPD, OT, IPM, RSKM, DAR

4
quantitatively

managed
+ OPP, QPM

5 optimising + OID, CAR

• managed (formerly: repeatable) – important areas of software development organised and
prescribed to responsible people; each project may have own process

• Areas: requirements management (REQM), project planning (PP), project monitoring and
control (PMC), measurement and analysis (MA), Process and Product Quality Assurance
(PPQA), configuration management (CM), supplier agreement management (SAM)

CMMI General/Specific Goals and Practices

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

52/57

• CMMI certificates can be obtained via a so-called appraisal

• There are three levels of review methods A, B, C;
A is most thorough (and expensive).

• A certificate authority checks, to what amount
generic goals GG.1, . . . , GG.3 with their generic practices are reached.

Example: GG.2 (for level 2) includes

• GG 2.1: create strategy for planning and installation of process

• GG 2.2: plan the process

• GG 2.3: allocate reources

• . . .

• Each area, like RD, has specific goals and specific practices, sometimes per level

Example: RD (requirements development) includes

• SG 1: develop customer requirements

• SG 2: develop product requirements

• SG 3: analyse and validate requirements

• That is, to reach CMMI level 2, an organisation has to reach GG.1, GG.2,
and SG 1 and SG 2 for area RD.



CMMI: Discussion

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

53/57

• in CMMI, e.g. area RD requires that requirements are analysed, but does not state how —
there are examples, but no particular techniques or approaches

• CMMI as such is not a process model (in the sense of the course)

• CMMI certificate is required by certain (U.S) government customers;
may guide selection of sub-contractors
(a certificate at least proves that they think about their process)

• CMMI can serve as an inspiration
for important aspects of process models wrt. product quality

• Criticism:

• CMM(I) assumptions are based on experience in specific projects;
may not be present for all kinds of software,

• CMMI certification applies to one particular state of process management;
changed processes may require new (expensive) appraisal,
in this sense CMMI certification may hinder innovation,

• CMMI levels are chosen somewhat arbitrarily:
“why is an area in level N and not already in level N − 1?”

SPICE / ISO 15504

–
5

–
2

0
17

-0
5

-1
5

–
S

p
ro

cm
e

t
–

54/57

Software Process Improvement and Capability Determination

• similar to CMM(I): maturity levels, assessment, certificates

• a european development: standardised in ISO/IEC 15504 (2003)

• maturity levels: 0 (incomplete), . . . , 5 (optimizing);

SPICE 0 corresponds to CMMI 1

• provides “process reference models”
(in particular specific ones for automotive, aerospace, etc.)

• Literature: (Hörmann et al., 2006)



Tell Them What You’ve Told Them. . .

–
5

–
2

0
17

-0
5

-1
5

–
S

tt
w

y
tt

–

55/57

• Waterfall Model

• very well-known, very abstract, of limited practical use.

• Spiral Model

• iterated risk assessment, e.g., for very innovative projects.

• Classification of processes

• prototyping: needs purposes and questions

• evolutionary, iterative, incremental

• V-Model XT

• slightly different vocabulary,

• quite comprehensive,

• may serve as inspiration for, e.g., definition of roles,

• can be tailored in various ways

• Agile approaches

• XP: proposes methods and approaches

• Scrum: focuses on management aspects

• Measure process quality: CMMI, Spice

References

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

56/57



References

–
5

–
2

0
17

-0
5

-1
5

–
m

ai
n

–

57/57

Abrahamsson, P., Salo, O., Ronkainen, J., and Warsta, J. (2002). Agile software development methods. review
and analysis. Technical Report 478.

Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software development and enhancement. IEEE Computer, 21(5):61–72.

Hörmann, K., Dittmann, L., Hindel, B., and Müller, M. (2006). SPICE in der Praxis: Interpretationshilfe für Anwender
und Assessoren. dpunkt.verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rosove, P. E. (1967). Developing Computer-based Information Systems. John Wiley and Sons.

Schwaber, K. (1995). SCRUM development process. In Sutherland, J. et al., editors, Business Object Design and
Implementation, OOPSLA’95 Workshop Proceedings. Springer-Verlag.

Team, C. P. (2010). Cmmi for development, version 1.3. Technical Report ESC-TR-2010-033, CMU/SEI.

V-Modell XT (2006). V-Modell XT. Version 1.4.

Züllighoven, H. (2005). Object-Oriented Construction Handbook - Developing Application-Oriented Software with
the Tools and Materials Approach. dpunkt.verlag/Morgan Kaufmann.


