Softwaretechnik / Software-Engineering

Lecture 7: Formal Methods for Requirements Engineering

2017-05-29

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Requirements Engineering: Content

2017-05-29 -

Topic Area Requirements Engineering: Content

- 2017-05-29 -

Topic Area Requirements Engineering: Content

2017-05-29 -

Content

- 7 - 2017-05-29 -

Decision Tables

Decision Tables: Example

9/49

Decision Table Syntax

-7 - 2017-05-29 - Scoreet

- 7 - 2017-05-29 - Scoreet

- Let C be a set of conditions and A be a set of actions s.t. $C \cap A = \emptyset$.
- A decision table T over C and A is a labelled $(m+k)\times n$ matrix

<i>T</i> : de	T: decision table			r_n	
c_1	description of condition c_1	$v_{1,1}$	••••	$v_{1,n}$)
• • •	:	:	·	:	ļ
c_m	description of condition c_m	$v_{m,1}$	•••	$v_{m,n}$	
a_1	description of action a_1	$w_{1,1}$	•••	$w_{1,n}$	
•••	:		·	:	
a_k	description of action a_k	$w_{k,1}$		$w_{k,n}$	V

- Let C be a set of conditions and A be a set of actions s.t. $C \cap A = \emptyset$.
- A decision table T over C and A is a labelled $(m + k) \times n$ matrix

	<i>T</i> : de	ecision table	r_1		r_n	
	c_1	description of condition c_1	$v_{1,1}$		$v_{1,n}$	
	••••	:	} : }(·	:	
	c_m	description of condition c_m	$v_{m,1}$		$v_{m,n}$	
	a_1	description of action a_1	$w_{1,1}$	\	$w_{1,n}$	
	••••	· ·		·,	:	
	a_k	description of action a_k	$w_{k,1}$	\ \	$w_{k,n}$	
• where • $c_1, \dots, c_m \in C$, • $a_1, \dots, a_k \in A$, • $w_{1,1}, \dots, w_{k,n} \in \{-, \times, *\}$ and • $w_{1,1}, \dots, w_{k,n} \in \{-, \times\}$.						
• Columns $(v_{1,i}, \ldots, v_{m,i}, w_{1,i}, \ldots, w_{k,i})$, $1 \le i \le n$, are called rules,						
• r_1, \ldots, r_n are rule names.						
• $(v_{1,i}, \ldots, v_{m,i})$ is called premise of rule r_i , $(w_{1,i}, \ldots, w_{k,i})$ is called effect of r_i .						

Decision Table Semantics

Each rule $r \in \{r_1, \ldots, r_n\}$ of table T

- ()

T: defined for the formula f	ecision table	r_1		r_n
c_1	description of condition c_1	$v_{1,1}$		$v_{1,n}$
:	:	:	·	:
c_m	description of condition c_m	$v_{m,1}$		$v_{m,n}$
a_1	description of action a_1	$w_{1,1}$		$w_{1,n}$
:	:	÷	·.	:
a_k	description of action a_k	$w_{k,1}$		$w_{k,n}$

is assigned to a propositional logical formula $\mathcal{F}(r)$ over signature $C \stackrel{.}{\cup} A$ as follows:

- Let (v_1, \ldots, v_m) and (w_1, \ldots, w_k) be premise and effect of r.
- Then

$$\mathcal{F}(r) := \underbrace{F(v_1, c_1) \land \dots \land F(v_m, c_m)}_{=:\mathcal{F}_{pre}(r)} \land \underbrace{F(w_1, a_1) \land \dots \land F(w_k, a_k)}_{=:\mathcal{F}_{eff}(r)}$$

where

7 - 2017-05-29 - Scoreet

$$F(v, x) = \begin{cases} x & \text{, if } v = \times \\ \neg x & \text{, if } v = - \\ true & \text{, if } v = * \end{cases}$$

11/49

10/49

Decision Table Semantics: Example

$\mathcal{F}(r) := F(v_1, c_1) \wedge \cdots \wedge F(v_m, c_m)$
$\wedge F(v_1, a_1) \wedge \dots \wedge F(v_k, a_k)$

	$F(v, x) = \left\{ \right.$	$\begin{pmatrix} x \\ \neg x \end{pmatrix}$, if $v = \times$, if $v = -$	
1		true	, if $v = \ast$	

Т	r_1	r_2	r_3
c_1	×	×	_
c_2	×	1	*
c_3	-	×	*
a_1	×	—	—
a_2	-	×	-

- $\mathcal{F}(r_1) = \mathcal{F}(x, c_1) \wedge \mathcal{F}(x, c_2) \wedge \mathcal{F}(-, c_3) \wedge \mathcal{F}(x, a_1) \wedge \mathcal{F}(-, a_2)$ = $c_1 \wedge c_2 \wedge c_3 \wedge a_1 \wedge c_2$
- $\mathcal{F}(r_2) = C_A \land \gamma C_2 \land C_3 \land \gamma \alpha$, $\land \alpha_Z$
- $\mathcal{F}(r_3) = \neg c_1 \land taue \land taue \land \neg a_2$

<>>> 1 <1 ∧ 7a1 ∧ 7a2

2017-05-29-

12/49

Decision Tables as Requirements Specification

We can use decision tables to model (describe or prescribe) the behaviour of software!

Example:	T: roo	m ventilation	r_1	r_2	r_3
Ventilation system of	b	button pressed?	×	×	-
	off	ventilation off?	×	-	*
lecture hall 101-0-026.	on	ventilation on?	-	×	*
	go	start ventilation	×	-	-
	stop	stop ventilation	-	×	-

- We can observe whether button is pressed and whether room ventilation is on or off, and whether (we intend to) start ventilation of stop ventilation.
- We can model our observation by a boolean valuation $\sigma: C \cup A \rightarrow \mathbb{B},$ e.g., set

 $\sigma(b):=\textit{true}, \text{if button pressed now and } \sigma(b):=\textit{false}, \text{if button not pressed now}.$

- $\sigma(go) := \mathit{true}$, we plan to start ventilation and $\sigma(go) := \mathit{false}$, we plan to stop ventilation.
- A valuation $\sigma : C \cup A \to \mathbb{B}$ can be used to assign a truth value to a propositional formula φ over $C \cup A$. As usual, we write $\sigma \models \varphi$ iff φ evaluates to *true* under σ (and $\sigma \nvDash \varphi$ otherwise).
- Rule formulae $\mathcal{F}(r)$ are propositional formulae over $C \cup A$ thus, given σ , we have either $\sigma \models \mathcal{F}(r)$ or $\sigma \not\models \mathcal{F}(r)$.
- Let σ be a model of an observation of C and A. We say, σ is allowed by decision table T if and only if there exists a rule r in T such that $\sigma \models \mathcal{F}(r)$.

14/49

Example

2017-05-29-

T: roc	r_1	r_2	r_3	
b	button pressed?	×	×	-
off	ventilation off?	×	Ι	*
on	ventilation on?	-	\times	*
go	start ventilation	\times	-	-
stop	stop ventilation	-	×	

- $$\begin{split} \mathcal{F}(r_1) &= b \land off \land \neg on \land go \land \neg stop \\ \mathcal{F}(r_2) &= b \land \neg off \land on \land \neg go \land stop \\ \mathcal{F}(r_3) &= \neg b \land \mathsf{true} \land \mathsf{true} \land \neg go \land \neg stop \end{split}$$
- (i) Assume: button pressed, ventilation off, we (only) plan to start the ventilation.

 $\begin{aligned} & \sigma = \{ \mathbf{b} \mapsto \mathsf{tre}, \mathsf{off} \mapsto \mathsf{tree}, \mathsf{on} \mapsto \mathsf{false}, & \mathsf{ge} \mapsto \mathsf{tree}, \mathsf{stop} \mapsto \mathsf{false} \} \\ & \sigma \not\models \mathcal{F}(r_2) \\ & \sigma \models \mathcal{F}(r_4) \\ \end{aligned}$

Example

T: roo	r_1	r_2	r_3	
b	button pressed?	\times	×	-
off	ventilation off?	\times	Ι	*
on	ventilation on?	-	×	*
go	start ventilation	×	-	-
stop	stop ventilation	-	×	

$$\begin{split} \mathcal{F}(r_1) &= b \land off \land \neg on \land go \land \neg stop \\ \mathcal{F}(r_2) &= b \land \neg off \land on \land \neg go \land stop \\ \mathcal{F}(r_3) &= \neg b \land \textit{true} \land \textit{true} \land \neg go \land \neg stop \end{split}$$

(i) Assume: button pressed, ventilation off, we (only) plan to start the ventilation.

- Corresponding valuation: $\sigma_1 = \{b \mapsto true, off \mapsto true, on \mapsto false, start \mapsto true, stop \mapsto false\}.$
- Is our intention (to start the ventilation now) allowed by T? Yes! (Because $\sigma_1 \models \mathcal{F}(r_1)$)

(ii) Assume: button pressed, ventilation on, we (only) plan to stop the ventilation.

- Corresponding valuation: $\sigma_2 = \{b \mapsto true, off \mapsto false, on \mapsto true, start \mapsto false, stop \mapsto true\}.$
- Is our intention (to stop the ventilation now) allowed by T? Yes. (Because $\sigma_2 \models \mathcal{F}(r_2)$)

(iii) Assume: button not pressed, ventilation on, we (only) plan to stop the ventilation.

- Corresponding valuation:
- Is our intention (to stop the ventilation now) allowed by T? M_{S}

15/49

Decision Tables as Specification Language

- Decision Tables can be used to objectively describe desired software behaviour.
- Example: Dear developer, please provide a program such that
 - in each situation (button pressed, ventilation on/off),
 - whatever the software does (action start/stop)
 - is allowed by decision table *T*.

	T: roo	m ventilation	r_1	r_2	r_3	
	b	button pressed?	×	×	-	$ \rangle$
/	off	ventilation off?	×	-	*	$ \rangle$
	on	ventilation on?	-	×	*	'
	go	start ventilation	×	-	_	
	stop	stop ventilation	—	×	—	
	_				_	

Decision Tables as Specification Language

- Decision Tables can be used to objectively describe desired software behaviour.
- Another Example: Customer session at the bank:

$\begin{array}{c c} c_{1} & \mbox{credit limit exceeded}? & \times & \times & \\ \hline c_{2} & \mbox{payment history ok}? & & & \hline & & \\ \hline c_{3} & \mbox{overdraft} < 500 & \hline & & \hline & & \\ \hline c_{1} & \mbox{cash cheque} & & & \\ \hline c_{2} & \mbox{do not cash cheque} & & & \\ \hline c_{3} & \mbox{do fer new conditions} & & & & - \\ \hline c_{1} & \mbox{cash cheque} & & \\ \hline c_{2} & \mbox{do not cash cheque} & & \\ \hline c_{3} & \mbox{do fer new conditions} & & \\ \hline c_{1} & \mbox{cash cheque} & & \\ \hline c_{2} & \mbox{do not cash cheque} & & \\ \hline c_{2} & \mbox{do not cash cheque} & & \\ \hline c_{3} & \mbox{do fer new conditions} & \\ \hline c_{1} & \mbox{cash cheque} & & \\ \hline c_{2} & \mbox{do not cash cheque} & & \\ \hline c_{3} & \mbox{do not cash cheque } & & \\ \hline c_{3} & \mbox{do not cash cheque } & & \\ \hline c_{3} & \mbox{do not cash cheque } & & \\ \hline c_{3} & \mbox{do not cash cheque } & & \\ \hline c_$	T1:	T1: cash a cheque			else
$\begin{array}{ccc} \hline c_2 & \text{payment history ok?} & \hline x & - \\ \hline c_3 & \text{overdraft} < 500 \in ? & \hline - & * \\ \hline a_1 & \text{cash cheque} & \hline x & - \\ a_2 & \text{do not cash cheque} & - & \times \\ a_3 & \text{offer new conditions} & \hline x & - & - \\ \hline \end{array}$	c_1	credit limit exceeded?	×	×	
$\begin{array}{c cccc} c_{3} & \text{overdaft} < 500 \in ? & \hline & & \\ \hline a_{1} & \text{cash cheque} & & \times & - & \times \\ a_{2} & \text{do not cash cheque} & - & & \times & - \\ a_{3} & \text{offer new conditions} & & \times & - & - \end{array}$	c_2	payment history ok?	×	-	
a1 cash cheque × - × a2 do not cash cheque - × - a3 offer new conditions × - -	c_3	overdraft $< 500 \in$?	-	*	
a_2 do not cash cheque-×- a_3 offer new conditions×	a_1	cash cheque	×	-	×
a ₃ offer new conditions × – –	a_2	do not cash cheque	-	×	-
	a_3	offer new conditions	×	-	-

- clerk checks database state (yields σ for c_1,\ldots,c_3),
- database says: credit limit exceeded over 500 \in , but payment history ok,
- clerk cashes cheque but offers new conditions (according to T1).

16/49

Decision Tables as Specification Language

Decision Tables for Requirements Analysis

7 - 2017-05-29 - mair

Recall Once Again

19/49

Completeness

-7 - 2017-05-29 - Set

- 7 - 2017-05-29 - Setana

Definition. [Completeness] A decision table T is called complete if and only if the disjunction of all rules' premises is a tautology, i.e. if

$$\models \bigvee_{r \in T} \mathcal{F}_{pre}(r).$$

T: roo	r_1	r_2	r_3	
b	button pressed?	×	×	_
off	ventilation off?	\times	١	*
on	ventilation on?	-	×	*
go	start ventilation	×	-	-
stop	stop ventilation	-	×	-

• Is T complete?

No. (Because there is no rule for, e.g., the case $\sigma(b) = true$, $\sigma(on) = false$, $\sigma(off) = false$).

Recall:

$$\begin{split} \mathcal{F}(r_1) &= c_1 \wedge c_2 \wedge \neg c_3 \wedge a_1 \wedge \neg a_2 \\ \mathcal{F}(r_2) &= c_1 \wedge \neg c_2 \wedge c_3 \wedge \neg a_1 \wedge a_2 \\ \mathcal{F}(r_3) &= \neg c_1 \wedge \textit{true} \wedge \textit{true} \wedge \neg a_1 \wedge \neg a_2 \end{split}$$

$$\mathcal{F}_{pre}(r_1) \lor \mathcal{F}_{pre}(r_2) \lor \mathcal{F}_{pre}(r_3)$$

= $(c_1 \land c_2 \land \neg c_3) \lor (c_1 \land \neg c_2 \land c_3) \lor (\neg c_1 \land true \land true)$

is not a tautology.

21/49

Requirements Analysis with Decision Tables

- Assume we have formalised requirements as decision table T.
- If T is (formally) incomplete,
 - then there is probably a case not yet discussed with the customer, or some misunderstandings.
- If T is (formally) complete,
 - then there still may be misunderstandings. If there are no misunderstandings, then we did discuss all cases.
- Note:
 - Whether T is (formally) complete is decidable.
 - Deciding whether T is complete reduces to plain SAT.
 - There are efficient tools which decide SAT.
- In addition, decision tables are often much easier to understand than natural language text.

• Syntax:

<i>T</i> : de	ecision table	r_1		r_n	else
c_1	description of condition c_1	$v_{1,1}$		$v_{1,n}$	
÷	:	:	·	:	
c_m	description of condition c_m	$v_{m,1}$	•••	$v_{m,n}$	
a_1	description of action a_1	$w_{1,1}$		$w_{1,n}$	$w_{1,e}$
:		:	•	:	:
a_k	description of action a_k	$w_{k,1}$		$w_{k,n}$	$w_{k,e}$

• Semantics:

-7 - 2017-05-29 - Setani

- 2017-05-29 - Setana

$$\mathcal{F}(\mathsf{else}) := \neg \left(\bigvee_{r \in T \setminus \{\mathsf{else}\}} \mathcal{F}_{pre}(r) \right) \land F(w_{1,e}, a_1) \land \dots \land F(w_{k,e}, a_k)$$

Proposition. If decision table T has an 'else'-rule, then T is complete.

23/49

Uselessness

Definition. [Uselessness] Let T be a decision table. A rule $r \in T$ is called useless (or: redundant) if and only if there is another (different) rule $r' \in T$ • whose premise is implied by the one of r and • whose effect is the same as r's, i.e. if $\exists r' \neq r \in T \bullet \models (\mathcal{F}_{pre}(r) \implies \mathcal{F}_{pre}(r')) \land (\mathcal{F}_{eff}(r) \iff \mathcal{F}_{eff}(r')).$ r is called subsumed by r'.

• Again: uselessness is decidable; reduces to SAT.

Uselessness: Example

T: roo	om ventilation	r_1	r_2	r_3/r_4
b	button pressed?	×	×	ÁA
off	ventilation off?	×	I	(*))-
on	ventilation on?	-	×	$(*) (\times)$
go	start ventilation	\times	-	()
stop	stop ventilation	-	×	$\Box \Box$
				\bigcirc
				-

¢

- Rule r_4 is subsumed by r_3 .
- Rule r_3 is not subsumed by r_4 .
- Useless rules "do not hurt" as such.

-7 - 2017-05-29 -

- 7 - 2017-05-29 - Setana

• Yet useless rules should be removed to make the table more readable, yielding an **easier usable** specification.

25/49

Useless	Requirements on Requirements S	Specification Documents						
	The representation and form of a requirements	specification should be:						
	 easily understandable, not unnecessarily complicated – processarily 	 easily maintainable – creating and maintaining the requirements 						
	all affected people should be able to understand the requirements specification,	specification should be easy and should not need unnecessary effort,						
	 precise – the requirements specification should not introduce new unclarities or rooms for interpretation (→ testable, objective), 	 easily usable – storage of and access to the requirements specification should not need significant effort. 						
• Rule r_4	is subsumed by r_0							
• Rule r_i	A very precise objective requirements specification may not be easily understandable by every affected	d person.						
	ightarrow provide redundant explanations.							
	 It is not trivial to have both, low maintenance effort and low access effort. 							
	→ value low access effort higher, a requirements specification document is much i (and most changes require reading beforehand).	more often read than changed or written						
	9	13						

- Useless rules "do not hurt" as such.
- Yet useless rules should be removed to make the table more readable, yielding an **easier usable** specification.

Determinism

2017-05-29-

- 7 - 2017-05-29 - Setana -

Definition. [*Determinism*] A decision table *T* is called **deterministic** if and only if the premises of all rules are pairwise disjoint, i.e. if

$$\forall r_1 \neq r_2 \in T \bullet \models \neg (\mathcal{F}_{pre}(r_1) \land \mathcal{F}_{pre}(r_2)).$$

Otherwise, T is called **non-deterministic**.

• And again: determinism is decidable; reduces to SAT.

26/49

Determinism: Example

T: roo	om ventilation	r_1	r_2	r_3
b	button pressed?	×	×	_
off	ventilation off?	×		*
on	ventilation on?	-	×	*
go	start ventilation	\times	-	-
stop	stop ventilation	-	×	-

• Is T deterministic? Yes.

Determinism: Another Example

			\cap			
T_{abstr}	: room ventilation		$ r_1 $		$ r_2 $	r_3
b	button pressed?	Ļ	×		×	_
go	start ventilation	T	Х	Π	-1	—
stop	stop ventilation		-		×/	—
		T	. 7		∇	

• Is T_{abstr} determistic? No.

By the way...

- Is non-determinism a bad thing in general?
 - Just the opposite: non-determinism is a very, very powerful modelling tool.
 - Read table T_{abstr} as:
 - the button may switch the ventilation on under certain conditions (which I will specify later), and
 - the button may switch the ventilation off under certain conditions (which I will specify later).

We in particular state that we do not (under any condition) want to see *on* and *off* executed together, and that we do not (under any condition) see *go* or *stop* without button pressed.

• On the other hand: non-determinism may not be intended by the customer.

28/49

Content

2017-05-29

- (Basic) Decision Tables
- Syntax, Semantics
- …for Requirements Specification
- …for Requirements Analysis
- Completeness,
- Useless Rules,
- Determinism

Domain Modelling

- Conflict Axiom,
- Relative Completeness,
- Vacuous Rules,
- Conflict Relation
- Collecting Semantics
- Discussion

Logic

Domain Modelling for Decision Tables

30/49

Domain Modelling

Example:

T: roc	om ventilation	r_1	r_2	r_3
b	button pressed?	×	×	-
off	ventilation off?	×	I	*
on	ventilation on?	—	\times	*
go	start ventilation	\times	-	-
stop	stop ventilation	-	×	-

- If on and off model opposite output values of one and the same sensor for "room ventilation on/off", then $\sigma \models on \land off$ and $\sigma \models \neg on \land \neg off$, never happen in reality for any observation σ .
- Decision table *T* is incomplete for exactly these cases. (*T* "does not know" that *on* and *off* can be opposites in the real-world).
- We should be able to "tell" *T* that *on* and *off* are opposites (if they are). Then *T* would be relative complete (relative to the domain knowledge that *on/off* are opposites).

Bottom-line:

- 7 - 2017-05-29 - :

- Conditions and actions are **abstract entities** without inherent connection to the **real world**.
- When modelling real-world aspects by conditions and actions,
- we may also want to represent relations between actions/conditions in the real-world (\rightarrow domain model (Bjørner, 2006)).

Conflict Axioms for Domain Modelling

• A conflict axiom over conditions C is a propositional formula φ_{confl} over C.

Intuition: a conflict axiom characterises all those cases, i.e. all those combinations of condition values which 'cannot happen' – according to our understanding of the domain.

• Note: the decision table semantics remains unchanged!

Example:

• Let $\varphi_{confl} = (on \land off) \lor (\neg on \land \neg off).$

"on models an opposite of off, neither can both be satisfied nor both non-satisfied at a time"

Notation:

T: roo	m ventilation	r_1	r_2	r_3			
b	button pressed?	×	×	-			
off	ventilation off?	×	-	*			
on	ventilation on?		×	*			
go	start ventilation	×	-	-			
stop	stop ventilation		×	١			
$\neg [(on \land off) \lor (\neg on \land \neg off)]$							
Yen M							

32/49

Pitfalls in Domain Modelling (Wikipedia, 2015)

"Airbus A320-200 overran runway at Warsaw Okecie Intl. Airport on 14 Sep. 1993."

- To stop a plane after touchdown, there are spoilers and thrust-reverse systems.
- Enabling one of those while in the air, can have fatal consequences.
- Design decision: the software should block activation of spoilers or thrust-revers while in the air.
- Simplified decision table of blocking procedure:

SIOITI	able u	blocking procedure.					W/W
	Т		r_1	r_2	r_3	else	∕\∕∖`'
	splq	spoilers requested	\times	×	—		
_	thrq	thrust-reverse requested	-	-	×		
$\left(\right)$	lgsw	at least 6.3 tons weight on each landing gear strut	×	*	×		
(spd	wheels turning faster than 133 km/h	*	×	*		
	spl	enable spoilers	×	×	-	-	
	thr	enable thrust-reverse	-	_	×	-	

Idea: if conditions *lgsw* and *spd* not satisfied, then aircraft is in the air.

14 Sep. 1993:

2017-05-29 -

- wind conditions not as announced from tower, tail- and crosswinds,
- anti-crosswind manoeuvre puts too little weight on landing gear
- wheels didn't turn fast due to hydroplaning.

Relative Completeness

Definition. [Completeness wrt. Conflict Axiom] A decision table T is called complete wrt. conflict axiom φ_{confl} if and only if the disjunction of all rules' premises and the conflict axiom is a tautology, i.e. if

$$\models \varphi_{confl} \lor \bigvee_{r \in T} \mathcal{F}_{pre}(r).$$

- Intuition: a relative complete decision table explicitly cares for all cases which 'may happen'.
- Note: with $\varphi_{confl} = false$, we obtain the previous definitions as a special case. Fits intuition: $\varphi_{confl} = false$ means we don't exclude any states from consideration.

34/49

Example

7 - 2017-05-29 - Setconfila

T: roc	om ventilation	r_1	r_2	r_3	
b	button pressed?	\times	×	-	
off	ventilation off?	×	1	*	
on	ventilation on?	-	×	*	
go	start ventilation	\times	-	-	
stop	stop ventilation	-	×	-	
$\neg [(on \land off) \lor (\neg on \land \neg off)]$					

- T is complete wrt. its conflict axiom.
- Pitfall: if on and off are outputs of two different, independent sensors, then σ ⊨ on ∧ off is possible in reality (e.g. due to sensor failures).
 Decision table T does not tell us what to do in that case!

Definition. [Vacuitiy wrt. Conflict Axiom] A rule $r \in T$ is called vacuous wrt. conflict axiom φ_{confl} if and only if the premise of r implies the conflict axiom, i.e. if $\models \mathcal{F}_{pre}(r) \rightarrow \varphi_{confl}$.

• Intuition: a vacuous rule would only be enabled in states which 'cannot happen'.

Example:

T: roo	om ventilation	r_1	r_2	r_3	r_4	
b	button pressed?	×	×	-	×	
off	ventilation off?	×	-	*	×	
on	ventilation on?	-	×	*	\times	
go	start ventilation	\times	-	-	-	
stop	stop ventilation	-	×		×	
$\neg [(on \land off) \lor (\neg on \land \neg off)]$						

- Vacuity wrt. φ_{confl} : Like uselessness, vacuity doesn't hurt as such but
 - May hint on inconsistencies on customer's side. (Misunderstandings with conflict axiom?)
 - Makes using the table less easy! (Due to more rules.)
 - Implementing vacuous rules is a waste of effort!

36/49

Content

-7 - 2017-05-29 -

- (Basic) Decision Tables
- Syntax, Semantics
- ... for Requirements Specification
- …for Requirements Analysis
- Completeness,
- Useless Rules,
- └ Determinism

Domain Modelling

- Conflict Axiom,
- Relative Completeness,
- Vacuous Rules,
- Conflict Relation
- Collecting Semantics
- Discussion

Logic

Conflicting Actions

38/49

Conflicting Actions

Definition. [Conflict Relation] A conflict relation on actions A is a transitive and symmetric relation $\oint (A \times A)$.

Definition. [Consistency] Let r be a rule of decision table T over C and A.

 (i) Rule r is called consistent with conflict relation ∉ if and only if there are no conflicting actions in its effect, i.e. if

$$= \mathcal{F}_{eff}(r) \to \bigwedge_{(a_1, a_2) \in \pounds} \neg (a_1 \land a_2).$$

(ii) T is called consistent with \oint iff all rules $r \in T$ are consistent with \oint .

• Again: consistency is decidable; reduces to SAT.

- 7 - 2017-05-29 - Setco

Example: Conflicting Actions

T: roo	om ventilation	r_1	r_2	r_3		
b	button pressed?	×	×	-		
off	ventilation off?	×		*		
on	ventilation on?	-	×	*		
go	start ventilation	$/\times$	-	-	V	
stop	stop ventilation	(\times)	×	-	8	
$\neg [(on \land off) \lor (\neg on \land \neg off)]$						

• Let \notin be the transitive, symmetric closure of $\{(stop, go)\}$.

"actions stop and go are not supposed to be executed at the same time"

- Then rule r_1 is inconsistent with $\frac{1}{2}$.
- A decision table with inconsistent rules may do harm in operation!
- Detecting an inconsistency only late during a project can incur significant cost!
- Inconsistencies in particular in (multiple) decision tables, created and edited by multiple people, as well as in requirements in general – are <u>not always as obvious</u> as in the toy examples given here! (would be too easy...)
- And is even less obvious with the collecting semantics (ightarrow in a minute).

40/49

Content

- (Basic) Decision Tables
- Syntax, Semantics
- …for Requirements Specification
- …for Requirements Analysis
- Completeness,
- →● Useless Rules,
- └ Determinism

Domain Modelling

- Conflict Axiom,
- Relative Completeness,
- Vacuous Rules,
- └─● Conflict Relation
- Collecting Semantics
- Discussion

7 - 2017-05-29 - Sconter

Logic

42/49

Collecting Semantics

-7 - 2017-05-29 -

- 7 - 2017-05-29 - Setcoll -

 Let T be a decision table over C and A and σ be a model of an observation of C and A. Then

$$\mathcal{F}_{coll}(T) := \bigwedge_{a \in A} a \leftrightarrow \bigvee_{r \in T, r(a) = \times} \mathcal{F}_{pre}(r)$$

is called the collecting semantics of T.

- Let T be a decision table over C and A
- and σ be a model of an observation of C and A. Then

$$\underline{\mathcal{F}_{coll}(T)} := \bigwedge_{a \in A} a \leftrightarrow \bigvee_{r \in T, r(a) = \times} \mathcal{F}_{pre}(r)$$

is called the collecting semantics of T.

• We say, σ is allowed by T in the collecting semantics if and only if $\sigma \models \underline{\mathcal{F}_{coll}(T)}$. That is, if exactly all actions of all enabled rules are planned/executed.

43/49

Collecting Semantics

 Let T be a decision table over C and A and σ be a model of an observation of C and A. Then

$$\underline{\mathcal{F}_{coll}(T)} := \bigwedge_{a \in A} a \leftrightarrow \bigvee_{r \in T, r(a) = \times} \mathcal{F}_{pre}(r)$$

is called the collecting semantics of T.

• We say, σ is allowed by T in the collecting semantics if and only if $\sigma \models \mathcal{F}_{coll}(T)$. That is, if exactly all actions of all enabled rules are planned/executed.

Example:

- 7 - 2017-05-29 - :

2017-05-29-

<i>T</i> : roo	m ventilation	r_1	r_2	r_3	r_4	
b	button pressed?	(\times)	×	-	(\times)	
off	ventilation off?	$(\times$	-	*	*	
on	ventilation on?	-	×	*	*	
go	start ventilation	×	-	-	1-1	
stop	stop ventilation	-	×	-	-	~pgo, bluk
blnk	blink button 3×	(-/	-	1	$\setminus \times$	-
	$\neg [(on \land off) \lor (\neg on \land \neg$	off)]		\sim	1

• "Whenever the button is pressed, let it blink (in addition to go/stop action."

Definition. [Consistency in the Collecting Semantics]

Decision table T is called **consistent with conflict relation** \oint in the collecting semantics (under conflict axiom φ_{confl}) if and only if there are no conflicting actions in the effect of jointly enabled transitions, i.e. if

 $\models \mathcal{F}_{coll}(T) \land \varphi_{confl} \to \bigwedge_{(a_1, a_2) \in \sharp} \neg (a_1 \land a_2).$

- 7 - 2017-05-29 - main

44/49

Discussion

"Es ist aussichtslos, den Klienten mit formalen Darstellungen zu kommen; [...]" ("It is futile to approach clients with formal representations") (Ludewig and Lichter, 2013)

- ... of course it is vast majority of customers is not trained in formal methods.
- formalisation is (first of all) for developers analysts have to translate for customers.
- formalisation is the description of the analyst's understanding, in a most precise form.
 Precise/objective: whoever reads it whenever to whomever, the meaning will not change.
- Recommendation: (Course's Manifesto?)
 - use formal methods for the most important/intricate requirements (formalising all requirements is in most cases not possible),
 - use the most appropriate formalism for a given task,
 - use formalisms that you know (really) well.

017-05-29

2017-05-29-

46/49

Tell Them What You've Told Them...

- Decision Tables one example for a formal requirements specification language with
 - formal syntax,
 - formal semantics.
- Requirements analysts can use DTs to
 - formally (objectively, precisely)

describe their understanding of requirements. Customers may need translations/explanation!

DT properties like

- (relative) completeness, determinism,
- uselessness,

can be used to **analyse** requirements.

The discussed DT properties are **decidable**, there can be **automatic** analysis tools.

- Domain modelling formalises assumptions on the context of software; for DTs:
 - conflict axioms, conflict relation,
 - Note: wrong assumptions can have serious consequences.

References

48/49

References

7 - 2017-05-29 -

- 7 - 2017-05-29 -

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd edition.

Bjørner, D. (2006). Software Engineering, Vol. 3: Domains, Requirements and Software Design. Springer-Verlag.

Kopetz, H. (2011). What I learned from Brian. In Jones, C. B. et al., editors, *Dependable and Historic Computing*, volume 6875 of *LNCS*. Springer.

Lovins, A. B. and Lovins, L. H. (2001). Brittle Power - Energy Strategy for National Security. Rocky Mountain Institute.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Wikipedia (2015). Lufthansa flight 2904. id 646105486, Feb., 7th, 2015.