Softwaretechnik / Software-Engineering

Lecture 2: Software Metrics

2017-04-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Survey: Previous Experience B Prject Management

Requirements Engineering o Programming

Design Modelling 3 Software Qualty Assurance

3 e e 783w 0 1 2.3 4 5 6 7 8 5w

Topic Area Project Management: Content

VL2 Software Metrics
|-« Properties of Metrics
Fe Scales

Lo Examples

VL3 & Cost Estimation

{~te Deadlines and Costs
I-te Experts Estimation
Lie Algorithmic Estimation

Project Management

[-e Project

[-t» Process and Process Modelling
[-to Procedure Models

Lie Process Models

o Process Metrics
Lo cmm spice

Expectations

« general Introduction

Scales, Metric,
v workwith othersin a arge software development team ¥ |

+ communicate results to other people

+/ learn how to property document the work nﬁnﬁwg,

' know, how to acquire knowledge on aspects of SW Eng.on our own ¥ oSy

v get weaknesses

' overview, terminology, and references for own enquiries |

X know about i togetsuch i S
working

v "

mishaps at each step |

v y: p:
“implicitly” in smaller, self-made projects
v jith the tical ol \ctical Arch. & Design
v getting tools (roughly specific ideas) for attacking problems
' have some fun, leam a lot [.] not only for the further studying or working ot
ing.
butalso for lfe
» other courses Pattems.

(X) Vorallem hoffe ich auf eine sinnwolle Verbindung zum Softwarepraktikum. I
WrpUp | Li8: 277. Thu

Content

« Survey: Expectations on the Course
Software Metrics

« Motivation

« Vocabulary
« Requirements on Useful Metrics
Excursion: Scales

o Excursion Excursion: Mean, Median, Quartiles
Example: LOC
Other Properties of Metrics

* Base Measures vs. Derived Measures
* Subjective and Pseudo Metrics

Discussion

Expectations Cont’d

« project management Introduction
Scales, Merics,
' minimize risks, estimate project duration,
) y for software
(/) how to estimate cost/time, without resorting to years of experience =
(g Bloye: 2 Development
v different life stages of a software Process.
v b with the most dures of software
development
+/ selection of right process for a project ¢ Requirements

(%) learn how things are done in real companies. i

« requirements

v How
v formalise software engineering problems
+ leam how to specify the requirements Arch & Design
() how to write something based on customer's wishes, which is
h Software.
customer, such that the I on their own Modeling

18 277, Thu

Expectations Cont’d

o design Introduction
Scales, Metr
v techniques and vocabulary to express design | o Metrles.
¢/ leam how to use basic and maybe some advanced techniques. models
and patterns in software development Costs,

+ the modern techniques: [] Test Driven Design, Behaviour Driven Design BT
v acquire knowledge in UML e
v principles of reasonable software architectures |
(%) verification of architectures Requirements.
bad. Engineering,
(2]
X how to quantify and check things like ‘good usability”
X fogus on software architecture. |
Implementation
(x) write reusable and maintainable code: Arch. & Design
(X) knowi q i
Software
+ Quality Assurance Modeling,
() Which software qualities are more important for different types of SW?
Patterns

(X) test code in a reusable

1 oty b

(%) conductareview Wrap-Up

Engineering vs. Non-Engineering

‘workshop

(technical product)

Mental the existing and artsts inspiration.

prerequisite available technical among others
know-how

Deadiines can sualy bd@amned) | cannot be panmec due
with suff todependency on

artsts inspiration

Price determined by market
value, not by cost

Norms and exist are known,and | are rare and. if known,
standards are usuall respected | not respected

y possi
comparison biective, quantiied subjectively.

ria results are disputed

Author remains anonymous. | considers the artwork as

often lacks emotional | part of him/herself
ties to the product

Warantyand are clearly regulated.
cannot be excluded practice hardly
enforceable

ind Lichter, 2013)

Tm

Content

« Survey: Expectations on the Course
o Software Metrics

« Motivation

« Vocabulary

» Requirements on Useful Metrics
Excursion: Scales

« Excursion Excursion: Mean, Median, Quartiles
 Example: LOC

 Other Properties of Metrics

W. Base Measures vs. Derived Measures

* Subjective and Pseudo Metrics

« Discussion

Vocabulary

metric - A quantitative measure of the degree to which a system. component, or pro-
cess posesses a given attribute.
See: quality metric. IEEE 610,12 (1990)

quality metric -
(1) A quantitative measure of the degree to which an item possesses a given quality
attribute.
(2) A function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software possesses a given
quality attribute. IEEE 610.12 (1990)

Software Metri

Software Metrics

Motivation and Goals

Important motivations and goals for using software metrics:

specify quality requirements

assess the quality of products and processes
quantify experience, progress, etc

predict cost/effort, etc.

support decisions

Software metrics can be used:

prodecures must not have more then ' parameters’ or
rocedure P has N parameters’

prescriptive, e,
desc

A descriptive metric can be
“the test effort was ' hours’, or
“the expected test effort is N hours’”

Note: prescriptive and prognostic are different things.

Examples: support decisions by diagnostic measurements:

Measure CPU time spent per procedure, then “optimize” most time consuming procedure.

Measure attributes which indicate architecture problems, then re-factor accordingly.

Recall: Software Quality (1SO/EC 9126-1:2000 (2000))

process quality —————— e
functionality S oty
P
software related quality relabilty == faut tlerance

recoverabilty
understandabilty
usability —— _ leamability
—— T operabiiy
product quality attractiveness
T gime behaviour,
effciency, ———— lime bebaviou,
ey resource utlsation
analysabilty
_—
maintainability = " M.nHu v
F———

J

_—
portabilty =——
= cocxitence
replacesblty
132
Requirements on Useful Metrics
Definition. A software metric is a function m : P — S which assigns to each
proband p € P a valuation yield (‘Bewertung) m(p) € 5. We call S the scale of m.
In order to be useful, a (software) metric should be:
differentiated | worst case: same valuation yield for all probands
comparable | ordinal scale, better: rational (or absolute) scale (—» in a minute)
reproducible | multiple applications of a metric to the same proband should
yield the same valuation
available valuation yields need to be in place when needed
relevant wrt. overall needs
economical worst case: doing the project gives a perfect prognosis of project
duration - ata high price;
irrelevant metrics are not economical (if not available for free)
plausible (> pseudo-metric)
robust developers cannot arbitrarily manipulate the yield:
antonym: subvertible
16/42

Useful Metrics

« For material goods, useful metrics are often pretty obvious:

« Not so obvious for immaterial goods, like software.

Excursion: Scale

4/

1712

Content

o Survey: Expectations on the Course
Software Metrics

* Motivation ./

« Vocabulary

 Requirements on Useful Metrics

Excursion: Scales

Excursion Excursion: Mean, Median, Quartiles
« Example: LOC
= Other Properties of Metrics

vv; Base Measures vs. Derived Measures
e Subjective and Pseudo Metrics

« Discussion

Scales and Types of Scales

Scales S are distinguished by supported operations:

percen-
_4 | SzWith min | tleseg | o Popor | natual
=7 | twansitvity) median ton | 0Ofzero)

nominalscale | x x x x x x

ordinal scale v v v v x x x

interval scale

(with units) v v v v v x x

rational scale

(with units) v v v v v v v

absolute scale a ational scale where S comprises the key figures tself

Examples: Nominal Scale
= nationality, gender, car manufacturer, geographic direction, train number,

+ Software engineering example: programming language (S = {Java,C, .. })

— There is no (natural) order between elements of S; the lexicographic order can be imposed
(“C < Java”), butis not related to the measured information (thus not natural).

Scales and Types of Scales

Scales and Types of Scale:

Scales and Types of Scales

Scales are distinguished by supported operations: Scales § are distinguished by supported operations:

Scales S are distinguished by supported operations:
percen- percen- percen-
Zu | =z i | dieseg | o | propor | nawnal _ | = win | win | Geseg | o | proper | natural <.>With min, | fleseg | o Propor | natural
= transitity) | max | median tion | 0(zero) =7 | tansitivity) | max | median tion | 0(zero) transitvity) max | median ton | 0fzero)
nominalscale | v x x x x x x nominalscale v/ x x x x x x nominalscale | v x x x x x x
ordinal scale v v v v x X X ordinal scale v v v v x X X ordinal scale v v v v X x x
interval scale interval scale terval scale
(with units) v v v v v * * (with units) v v v v v * * (with units) v v v v v * *
rational scale rational scale rational scale
(with units) v v v v v v v (with units) v v v v v v v (with units) v v v v v v v
absolute scale tional scale where 5 absolute scale a ational scale where S comprises the key figures itself absolute scale a ational scale where S comprises the key figures itself

Examples: Ordinal Scale Examples: Interval Scale
« strongly agree > agree > disagree > strongly disagree; Chancellor > Minister (administrative ranks);
« leaderboard (finishing number tells us that 1st was faster than 2nd, but not how much faster)

« types of scales,

Examples: Rational Scale
« temperature in Fahrenheit

= age (“twice as old"); finishing time: weight: pressure; price; speed: distance from Freiburg,

oday it is 10°F warmer than yesterday” (A (Vcay. Uyesterday) = 10°F) « Software engineering example: runtime of a program for given inputs

00°F is twice as warm as 50°F":...? No. Note: the zero is arbitrarily chosen.

« Software engineering example: CMMI scale (maturity levels 1 to 5) (later)

« Software engineering example: time of check-i

— The (natural) zero induces a meaning for proportion 1m1 /1.

revision control system
— There is a (natural) order between elements of M, . 3 .)
but no (natural) notion of distance or average. —+ There is a (natural) notion of difference A : S x S — IR, but no (natural) proportion and 0.

18/42
Scales and Types of Scales Something for the Mathematicians. .. Something for the Computer Scientists. . .
Scales are distinguished by supported operations: Recall: « Afunction which
<> iwith propor- | natural assigns to each algorithm (or problem, or program)
=7 | transitivity) medig | 2| Tton | 0fzero) Definition. [Metric Space (math] o acomplexity class.
nominal scale v x x x x x x Let X beaset. Afunctiond : X x X — Ris called metric on X (worst-, average-, best-case; deterministic, non-deterministic; space, time; ..
.ea_a__ms_w v v v v x x x ety e s e 25 can be seen as a metric (according to our earlier definition):
interval scale i) d(z,y) >0 g ti
with units v v L N * Ddemz e « probands P: set of algorithms (or problems, or programs)
e e (i) d@,y) =0 = =y identity of indiscernibles) e 5 problom chces ke O(
(with units) v v v v v v v i) d(z,) = dly, =) (i) o scale S: problem classes like O(V)
absolute scale a rational scale where 5 comprises the key figures telf W) d(x,2) < d(z.y) + d(y.2) (triangle inequality) Example
(X, d)is called metric space. . .
« Problem p: “does element E occur in unsorted, finite list L"?
Examples: Absolute Scale = Complexity metric (worst-case; deterministic; time):
« seatsin a bus, number of public holidays, number of inhabitants of country, + PO, N — |L] (ength ofis).
« “average number of children per family: 1.203" - what s a 0.203-child?)
The absolute scale has been used as a rational scale (makes sense for certain purposes if done with care) —+ different from all scales discussed before;
. ametric space requires more than a rational scale.
« Software engineering example: number of known errors;

— definitions of, e IEEE 610,12, may use standard (math) names for different things - the McCabe metric (in a minute)is sometimes called complexity metric
— An absolute scale has a median, but in general not an average in the scale

(in the rough sense of “complicatedness").

— descriptions of software metrics may use standard (comp. sc.) names for different things.

Excursion Excursion: Communicating Figures

Project Management: Metrics on People

Definition. A software metric s a function m : P — S which assigns to each
proband p € P avaluation yield (‘Bewertung’) m(p) € 5. We call S the scale of m.

N Requirements Engineering

o Here: Pis the set of participants in the survey of the course “Software Engineering

« Scale: S = {0, ..., 10} (ordinal scale; has = and , < and >, min and max),
. procedure: self (- subjectiy
242 22n
Reduce Information Further . 2017 vs. 2016
. eirements Engineering
©
' average: 22069
medan 1
 Arithmetic mean: 2.284 (not in the scale!) o
Harsgemen 2017 JR—
« Minimum and maximum: O and 10
o Median: 1 (the value suchthat 50% of the probands have yields below and above) - - -
« tstand 3rd Quartile: 1and 4 (25%.38%)
e 39452 37972
. . . Qo | g e TR S i
+ aboxplot visualises 5 aspects of data at once (whiskers sometimes defined differently): et 0
[R—— e Eparence 1016 bogamming 2017 [EN—
100 % (maximum)
759% (3rd quartile) _
50 % (median) average: 2.284 avg 2091
’ e e 25652
ettt e e I T | Pt R
o
]] [o— Hodeling 2015 rzor a0
RE Experience 2017 RE Experience 2016
23/m 240

Reduce Information Further

N Requirements Engineering
o
o Arithmetic mean: 2.284 (not in the scale!) 5
« Minimum and maximum: O and 10
* Median: 1 (the value such that 50% of the probands have yields below and above)
3,211,2
(2l

T@wﬁ

Back From Excursion: Scales

23/a

Requirements on Useful Metrics Example: Lines of Code (LOC)

Content

© Survey: Expectations on the Course In order to be useful, a (software) metric should be:

* Software Metrics

« Motivation differentiated _ worst case: same valuation yield for all probands pr— p T D
« Vocabulary comparable ordinal scale, better rational (or absolute) scale
» Requirements on Useful Metrics reproducible ”::_Mv(ﬂ”wv_ﬂ:aw:c:m of a metric to the same proband should yield the programsize | LOCeor number of lines in total
o Excursion: Scales
L available valuation yields need to be in place when needed netprogram | LOCye number of non-empty lines.
Excursion Excursion: Mean, Median, Quartiles i
relevant wrt. overall needs size
* Example: LOC cconomical worstcase o prognosis of code size LOCprs | number of lines with not
Other Properties of Metrics ~atahigh price: only comments and
not available for free) non-printable differentiated | <
Base Measures vs. Derived Measures plausible (= pseudo-metric
Subjective and Pseudo Metrics ‘robust developers cannot arbitrarlly manlpulate the yield: delivered DLOCer, | like LOC, only code comparable
antonym: subvertible program size | DLOCy, | (as source or compiled) reproducible
o Discussion DLOCpas | given to customer -
idewig and Lichter, 2013) available
relevant Z
. economical | (
plausible]
3 robust 2
2602 27m 28/a2
More Examples Kinds of Metrics: ISO/IEC 15939:2011
n.ﬂﬂ“ﬂuﬁ_.ﬂ._n positive example negative example
base measure - measure defined in terms of an attribute and the method for quanti-
differentiated | program lengthin LOC | CMM/CMMi level below 2 fyingit. 1SO/IEC 15939 (2011)
comparable | cyclomatic complexity | review (text)
reproducible memory consumption | grade assigned by inspector . . Examples:
Other Properties of Metrics « lines of code, hours spent on testing
available number of developers | number of errorsin the code . o
(not only known ones) .
relevant expected development | number of subclasses (NOC)
cost; number of errors
economical | number of discovered | highly detailed timekeeping derived measure -~ measure that is defined as a function of two o fbase
errorsin code measures. 1SO/IEC 15939 (2011)
plausible cost estimation cyclomatic complexity of a
following COCOMO program with pointer s
(to a certain amount) operations Examples:
robust grading by experts almost all pseudo-metrics . ge/median lines of code,
ie

(Ludewig and Li

r, 2013)

£

290 - 304

Kinds of Metrics: by Measurement Procedure Pseudo-Metrics

objective metric pseudo metric Some of the most interesting aspects of software development projects
are (today) hard or impossible to measure directly, eg:
Procedure counting, Y insp o how maintainable is the software? « doall modules do appropriate error handling?
i =] verdlorbrg « how much effort is needed until < isined sufficient and well
o howi 2 usable?
Advantages exact. reproducible, yields relevant, directly | not subvertable, . how s the productivity of my software people?
= S Pseudo-Metrics
automatically directly visible applicable to complex high rel "
characterstics characteristics Due to high relevance, people want
hard to measure despite the difficulty in
pseud quality of results depend: measuring. Two main approaches:
nointerpretation on inspector
Example, body height,air pressure | body massindex (BMJ, | health condition, .
general weather forecast for the weather condition ("bad Expert review,
next day weather') grading
¥ Pseudo-metrics,
Example in sizein LOC or NCS; productivity; usability; !
Software e i an error derived measures
Engineering. by COCOMO
Usually used for | collection of simple predictions (cost quality assessment; Note: not every derived measure is a pseudo-metric:
base measures estimation): error weighting

overall assessments

« average LOC per module: derived, not pseudo — we really measure average LOC per module.

(Ludewig and Lichter, 2013) 3 « measure maintainability in average LOC per module: derived, pseudo

—» we dorit really measure maintainabilty; average-LOC s only interpreted as maintainability.

3a 3302 Not robust if easily subvertible (see exercises). 340
Pseudo-Metrics Example Can Pseudo-Metrics be Useful? McCabe Complexity
Example: productivity (derived). « Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few complexity -
! ther plexity
« Team T develops software S with LOC N = 817in ¢ = 310h, false negatives) between valuation yields and the property to be measured:

(1) The degree to which a system or component has a design or implement
o Define productivity as p = N/t, here: ca. 2.64 LOC/h

productivit difficult to understand and verify. Contrast with: simplicity.
« Pseudo-metric: measure performance, efficiency, quality, luatonsield (2) Pertaining to any of a set of stru i ib

of teams by productivity (as defined above). low high IEEE 610.12(1990)

false positive true positive
« team may wri High x x x o ox
K true negative
—+ 5-time productivity increase, but real efficiency actually decreased. x x — .
low " Definition. [Cyclomatic Number [graph theory]]
~» ot (at all) plausible. o . Let G = (V,) be a graph comprising vertices V and edges E.

— clearly pseudo

The cyclomatic number of G is defined mﬁ wwhbe of efes

v(G) = |E| +1
« This may strongly depend on context information:

« If LOC was (or could be made non-subvertible (— tutorials)). " ber of ed: b d ke le fi
| then productivity could be useful measure for e g, team performance. j Intuition: minimum number of edgesto be removed to make G cyclefree.

350 360 37m

McCabe Complexity Cont’d

ion. [Cyclomatic Complexity [McCabe, 1976]]
Let G = (V,) be the Control Flow Graph of program P.

Then the cyclomatic complexity of P is defined as v(P) =
number of entry or exit points.

~ [V + pwhere pis the

sertionSort (int[] array) (G
for (int i = 2: i < array.length: is) {

white (] > 0 8& tmp < array[j ~1]) (
array[] = array[j 1)
. =

i

10 array[j] = tmp:
|
)
Number of edges: |E| = 11
Number of nodes Vi=6+2+2=10

. Extemalconnections: p =

1 Leﬁvvu:\ua+u©

: 38m

Content

« Survey: Expectations on the Course
» Software Metrics

« Motivation ./~

 Vocabulary,”

« Requirements on Useful Metrics«”

» Excursion: Scales v/

71 Excursion Excursion: Mean, Median, Quartiles

« Example: LOCY
Other Properties of Metrics

W Base Measures vs. Derived Measures.

« Subjective and Pseudo Mets
Ml

« Discussion

40/

McCabe Complexity Cont’d

Definition. [Cyclomatic Complexity [McCabe, 1976])
Let G = (V, E) be the Control Flow Graph of program P.

Then the cyclomatic complexity of P is defined as v(P) =

number of entry or exit points.

Intuition: number of paths, number of decision points.
Interval scale (not absolute, no zero due to p > 0);
easy to compute
Somewhat independent from programming language.
Plausibility:
+ loops and conditions are harder to understand than
sequencing.
— doesn' consider data.
Prescriptive use:
“For each procedure, either limit cyclomatic
complexity to [agreed-upon limit] or provide
witten explanation of why limit exceeded”

References

Code Metrics for OO Programs (Chidamber and Kemerer, 1994)

metric computation
weighted methods | 3~ ¢;.n = number of methods, ¢; = complexity of method i
per class (WMC) =
depth of inheritance | graph distance heritance tree (multiple inheritance ?)
tree (DIT)
number of ren number of direct subclasses of the class

of a class (NOC)

coupling between | CBO(C) = |Ko U Kil.
object classes (CBO) | K., = set of classes used by C', K; = set of classes using C'

response foraclass | RFC = |M U\, Ril, M set of methods of C',
(RFC) R; set of all methods calling method i

lack of cohesionin | max(|P| — |Q],0). P = methods using no common attribute,
methods (LCOM) Q = methods using at least one common attribute

« objective metrics: DIT, NOC, CBO; ~ pseudo-metrics: WMC, RFC, LCOM

... there seems to be agreement that it is far more important to focus on empirical validation (or
refutation) of the proposed metrics than to propose new ones, (Kan, 2003)

References

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476-493.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

1SO/IEC (2011). Information technology - Software engineering - Software measurement process. 159392011
ISO/IEC FDIS (2000). Information technology - Software product quality - Part I: Quality model. 9126-1:2000().
Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Ludewig,). and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

42ua

