-1-2017-04-24 - Scontent -

-1-2017-04-24 - main -

Content

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2017-04-24

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

o Software, Engineering, Software Engineering

e Successful Software Development

—e working definition: success

e unsuccessful software development exists
‘e common reasons for non-success

e Course

o Content

e topic areas

e structure of topic areas

@ emphasis: formal methods
e relation to other courses
(e literature

‘e Organisation

e lectures
e tutorials

—® exam

2/42

-1-2017-04-24 - main -

-1-2017-04-24 - Sieee61012 -

Software, Engineering, Software Engineering

IEEE Standard Glossary of
) ing Terminol

Sponsor
Standards Coordinating Committee
of the
Computer Society of the IEEE

Approved September 25, 1990

[identifies terms currently in use in the feld of Software Engincering. Standard definitions
those terms are established.

[Abstract: TEEE S 610121990, IEEE Standard Glossary of Software Engineering Terminolog, J
[Keywords: Software engincering; glossary; terminology: definitions; dictiona

1SN 85097067
Copyrighe 1990y

‘The Institute of Electrical and Flectronics Engineers
345 East 47th Street, New York, NY 10017, USA

INTERNATIONAL ISO/IEC/
STANDARD IEEE
24765

First adition
2010-12-15

Y and i ing —
Vocabulary

Ingénierie des systémes et du logiciel — Vocabulaire

Roference number
ISOIIECIIEEE 24765.2010(E)

IEEE ©1SOES 2010
4 ©EEE 2010

Restrctonssony.

3/42

44

- 2017-04-24 - S

Software — Computer programs, procedures, and possibly associated documentation

and data pertaining to the operation of a computer system.

See also: application software; support software; system software.

Contrast with: hardware.

Software —

1. all or part of the programs, procedures, rules, and associated documentation of an

information processing system. [...]

2. see 610.12

IEEE 610.12 (1990)

3. program or set of programs used to run a computer. [...]

NOTE: includes firmware, documentation, data, and execution control statements.

Engineering vs. Non-Engineering

Sengineering

IEEE 24765 (2010)

Mental
prerequisite

the existing and
available technical
know-how

artist’s inspiration,
among others

Deadlines can usually planned cannot be planned due
with sufficientprecision to dependency on
artist’s inspiration
Price oriel t, determined by market
thus calculable value, not by cost
Norms and exist, are known, and are rare and, if known,
standards are usually respected not respected

Evaluation and

is only possible

comparison subjectively,
results are disputed
Author remains anonymous, considers the artwork as
often lacks emotional part of him/herself
ties to the product
Warranty and are clearly regulated, are not defined and in
liability cannot be excluded practice hardly

enforceable

(Ludewig and Lichter, 2013)

5/42

6/42

Software Engineering

1-2017-04-24 - Ssweng

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the develop-
ment, operation, and maintenance of software; thatis, the application of engineering
to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering —

1. the systematic application of scientific and technological knowledge, methods, and
experience to the design, implementation, testing, and documentation of software.

2. see IEEE 61012 (1) ISO/IEC/IEEE 24765 (2010)

Software Engineering-
Multi-person Development of Multi-version Programs.

D. L. Parnas (2011)

principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

7/42

Software

Software Engineering — (1) The application of a systematic, dis-
ciplined, ifiahl b te tha daval i

and maint
ing to softy

(2) The stu m here is no universally accepted definition of software engineering.

- 7

Institutions that teach e, softw g isjust gl -

; ming, If ame, you might put “softwae engincer

software are responsible on your rd but never “programmer.” Others have higher

1 expectarions. & textbook definition of the term might read something

X e o for producing Tike this: “the body of methods, tools, and techniques intended to produce qual-

Software Engineering - 1. the systematic application of scientific cofessionals who will ity software.”

prolessionals who wi Racher than just emphasizing qualiy, we could distingnish sofrware engi-

and technological knowledge, methods, and experience to the
design, implementation, testing, and documentation of software.

2. see 61012 (1). 1SO/IEC/IEEE 24765 (2010)

necring from programming

build and maintain “the development of possibly

Tonments, over a possibly long

its indluserial naure, leading toanother defnition:
< systems intended for nse in vio
riod, worked on by possibly ma

e ¥ P >3
possibly undergoing many changes,” where “development” inclndes manage-
e, validation, documentation, and so forth.

systems to the
satisfaction of their
beneficiaries. This
article presents some

pioncer in the ficld, emphasizes the “engincering” part and
software engineering education firmly roored In traditional engi-
cluding courses on m; and the like—and split from computer
the way cloctri rate from physics.

his arricl ctive on

id oSt 10

Software
version Pr

settle on any of these definitions; rather, I'd like to accept that they are all in [}
some way valid and retain all the views of software they encompass.

PY
ted
Software ngineering — the establishment and use of sound en- in April 20007 that 850,000 IT jobs would go unfilled in the next 12 months. The
gineering principles to obtain economically software that is reli- dearth of qualified personmel is just as perceptible in Furope and Australia. Salaries
u > - are excellent, Project leaders wake p at night worrying about headhnnters hir-
g able and works efficiently on real machines. F. L. Bauer (1971) g their i P " civend
H themselves.
&
= Computer oo nezon S0 21
3
"
H
5 8/n2

The course’s working definition of Software Engineering

-1-2017-04-24 - Ssweng -

Software Engineering -

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-

tion of engineering to software.
(2) The study of approaches as in (1).

IEEE 610.12 (1990)

Software Engineering =the establishment and use of sound engineering
principles to obta' tware that is reliable and works_effi-
F. L. Bauer (1971)

ciently on real machines:

cost, X
time
X
*
X
LAY
scope,
quality

“software that is reliable and works efficiently” (Bauer, 1971)

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality

software related quality

product quallty

6.2 Reliability
The capability of the software product to maintain

a specified level of performance when used under
specified conditions.

6.2.2 Fault tolerance

The capability of the software product to maintain a
specified level of performance in cases of software
faults or of infringement of its specified interface.

suitability

accuracy
interoperability

security

functionality

maturity

. —
recoverability

understandability

uSab|l|t —— leamability
! s operability
attractiveness

___ time behaviour
resource utilisation

analysability

maintainabilit 4 changeability

intainability — "
stability

testability

adaptability

portability 4 installability
= co-existence

replaceability

9/42

10/42

“software that is reliable and works efficiently” (Bauer, 1971)

-1-2017-04-24 - Ssweng -

More general: software of (good) quality (cf. ISO/IEC 9126-1:2000 (2000))

process quality —— -
_——— accuracy
_—
——_ interoperability
security

maturity

software related quality recoverability

understandability
L _———"__ leamnability
usability

— § operability

product quality attractiveness

T - time behaviour
resource utilisation
6.1 Functionality analysability
The capability of the software product to provide _— .
functions which meet stated and im lied hen maintainability —— changeability
the software is used under specified conditions. < stability
testability
adaptabilit
6.1.1 Suitability pLabiity

The capability of the software product to provide an portability é installability

appropriate set of functions for specified tasks and
user objectives.

co-existence
replaceability

The course’s working definition of Software Engineering

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that is, the applica-
tion of engineering to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

10/42

/42

-1-2017-04-24 - main -

Successful Software Development

When is Software Development Successful?

-1-2017-04-24 - Sallhappy -

iii

Developer Customer User

A software development project is successful
if and only if

developer, customer, and user are happy with the result at the end of the project.

12/42

13/42

Is Software Development Always Successful?

uccess

Erfolgs- und Misserfolgsfaktoren
bei der Durchfiihrung von Hard- und
Softwareentwicklungsprojekten

.:.Ill

in Deutschland

2006

Autoren:

Ralf Buscherméhle
Heike Eekhoff
Bernhard Josko

15/42

] Report: VSEK/55/D
H Version: 11
i Datum: 28.09.2006
E: B ——]
g
T 1452
o
Some Empirical Findings (Buschermdhle et al. (2006))
70%
60%
50%
40%
0 19999 30%
10,000-99.999 <3 20%
77 100.000-499.999 =36
" 500,000-999.999 > 612 10%
[>1000,000 >12-24 0%
I ot specified s business critical mission critical safety critical
budget in € (378 responses) planned duration in months (378 responses) Criticality (378 responses, 30 hot spec)
701
[0 25-49%
50-74%
[0 75-89%
kept 0 90-94%
0 completed 0 early B 95-99%
70 cancelled T tate B 100%
project completion (378 responses) deadline (368 responses) main functionality realised (368 responses)
o T <25%
25-49%
2 B <20% 0 50-74%
e 20-49% [0 75-89%
. kept 0 50-99% B 90-94%
2 50 below 7 100-199% B 95-99%
g [0 above 8 =200% B 100%
@ budget (368 responses) deadline missed by (91 responses) secondary functionality realised (368 responses)
<
3
<
2

A Closer Look

-1-2017-04-24 - Swrongs -

-1-2017-04-24 - Swirongs -

o Successful:

Time ¢: @
— Software!
o

)

o Unsuccessful:

Time ¢: .
O
(o]
-

Customer Developer

i1

Custorner Developer

(software) contract

S

(software) contract

Time ¢
o)

o

Customer Developer
(software) contract

Timet' > ¢

T o

Developer Custommer
(software) delivery

Timet >t

N o

Developer Customer
(software) delivery

What might've gone wrong?

16/42

Timet’ > &
i X @&
Developer Custorer

{software) delivery

@ @
.o f=
= = o
I} o
€ sg
g 3

o
k] < @
a o <
£)

(Software) Project Management

@ “ @
®
Some scenarios:
O @ @ ® ®
X v v v V
v X Vv v V
v Vv X v V
v Vv Vv X V
v v v Vv X

e.g. misunderstanding of requirements
e.g. non-scalable design, feature forgotten
e.g. programming mistake

e.g. wrongly conducted test

e.g. wrong estimates, bad scheduling

17/42

In Other Words

All engineering disciplines face the same questions:

o How to describe requirements / avoid misunderstandings with the customer?
o How to describe design ideas / avoid misunderstandings with the implementers?

o How to ensure that the product is built right / that the right product is built?
(— How to measure the quality of the product?)

o How to schedule activities properly?

At best: are there procedures which promise to systematically avoid certain mistakes or costs?

This course is about , so we should discuss:
o How to describe requirements precisely?
o How to describe design ideas precisely?
o How to ensure that is built right?
(— How to measure the quality of ?)
o How to schedule activities properly?
What are procedures to systematically avoid certain mistakes or costs in ?

-1-2017-04-24 - Swrongs -

18/42

Example: Nightly Builds

Scenario:

e Program P compiles successfully at time ¢.
o Programmers work for duration d on P, yielding program P’ at time ¢ +- d.

o P’ does not compile at time ¢ + d.
— the reason for not compiling any more must be among the changes during d.
Experience:

o If dis large, it can be very difficult (and time consuming) to identify the cause.

Proposal: “Nightly Builds”

o Set up a procedure, which (at best: automatically) tries to compile
the current state of the development each day over night.

o Promise: with “nightly builds’, d is effectively limited to be smaller or equal to one day,
so the number of possible causes for not compiling should be manageable.

— Software Engineering as a defensive discipline (measures against failures and “catastrophes”):
e Ve e

o if program P always compiles, the effort for “nightly builds” was strictly speaking wasted.
o if a compilation issue occurs during the project, the caused damage is bounded.

<
3
@
]

Same holds for documentation: if no maintenance is ever needed, documentation effort may be wasted.

19/42

In Other Words

All engineering disciplines face the same questions:

o How to describe requirements / avoid misunderstandings with the customer?
o How to describe design ideas / avoid misunderstandings with the implementers?

o How to ensure that the product is built right / that the right product is built?
(— How to measure the quality of the product?)

o How to schedule activities properly?

At best: are there procedures which promise to systematically avoid certain mistakes or costs?

This course is about , so we should discuss:
o How to describe requirements precisely?
o How to describe design ideas precisely?
o How to ensure that is built right?
(— How to measure the quality of 7
o How to schedule activities properly?
What are procedures to systematically avoid certain mistakes or costs in ?

Software Engineering is a young discipline: plenty of proposals for each question.
So the course will focus on the problems and discuss example proposals.

-1-2017-04-24 - Swrongs -

2042

Course: Content

1-2017-04-24 - main -

21142

Course Content (Tentative)

-1-2017-04-24 - Sccontent -

Capturing
Requirements
Design
Implementation
Code Quality
Assurance

Software Project Management

Structure of Topic Areas

1-2017-04-24 - Sccontent -

Example: Requirements Engineering

Vocabulary

Techniques

informal

semi-formal

formal

Introduction

&Ko
_ : Scales, Metrics,
(=44 |

Costs,
Development
Process

Requirements
Engineering

Arch. & Design

Software
Modelling

Patterns
QA (Testing,
Formal Verif.)
Wrap-Up

e.g. consistent,
complete, tacit, etc.

L10:
L1

L12:
L13:
L14:

L15:
L1é:
L17:

., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
.. Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
.. Thu
., Mon
., Thu
., Mon
.. Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
7., Mon

418) 277, Thu

1274

22/42

23/42

Excursion: Informal vs. Formal Techniques

Example: Requirements Engineering, Airbag Controller

2 t}‘f?'/':

1%

Requirement:

Whenever a crash is detected, the airbag has to be fired within 300 ms (+¢).

‘within’ means ‘within’ means

‘<’;50100 msis between 300 — &
okay, too A l and 300 + &
Developer A Developer B
VS.
o Fix observables: crashdetected : Time — {0,1} and fireairbag: Time — {0,1}
o Formalise requirement: <

Vt,t' € Time o crashdetected(t) A airbagfired(t') = t' € [t + 300 — &, ¢ + 300 + €]

— no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.
24/

-1-2017-04-24 - Sccontent -

= v y v Tgﬁ: .
no more misunderstandings, sometimes tools can o

)/

Structure of Topic Areas

-1-2017-04-24 - Sccontent -

Example: Requirements Engineering

Vocabulary

Techniques

informal

semi-formal

Structure of Topic Areas

1-2017-04-24 - Scconte

Example: Requirements Engineering

In the course:

Use Cases

Pattern Language

Decision Tables
Live Sequence Charts

Vocabulary

Techniques

informal

semi-formal

e.g. consistent,
complete, tacit, etc.

e.g. consistent,
complete, tacit, etc.

e.g “Whenever a crash...”

e.g “Always, if (crash) at¢...”

eg Vi, t' € Timee ..."

26/42

26/42

Course Content (Tentative)

-1-2017-04-24 - Sccontent -

1-2017-04-24 - Scontent -

Content

Capturing
Requirements

@ Design
4
w
IS
o

Software Project Management

Introduction L 1. 244, Mon
Scales, Metrics, L2 ., Thu

| | - 15, Mon
4.5, Thu
8.5, Mon
1.5, Thu
., Mon
18.5., Thu
22.5., Mon
25.5., Thu
., Mon
8: 16, Thu
- 5.6., Mon
- 8.6, Thu
., Mon
| | - 156, Thu
L 9: 19.6, Mon

L10: 226, Thu

Arch. & Design L 11: 26.6, Mon
T 4: 296, Thu
L12: 3.7, Mon
L13: 6.7, Thu
L14: 10.7, Mon
T 5 137, Thu
Patterns L15: 17.7, Mon
QA (Testing, L16: 20.7, Thu
Formal Verif.) L17: 24.7.,Mon
Wrap-Up L18: 277, Thu

I_l_\
N
N
S

Costs,
Development
Process

rArrrre -
N UL AW
v
wn

Requirements
Engineering

Implementation
Code Quality
Assurance

o
~
N
%)
(%]

Software
Modelling

2742

o Software, Engineering, Software Engineering

e Successful Software Development

o working definition: success
(e unsuccessful software development exists
(e common reasons for non-success

e Course
e Content

(e topic areas Ve
e structure of topic areas.”

o emphasis: formal methods
e relation to other courses

o literature

L
0

Organisation

(e lectures
(e tutorials

(® exam

28/42

Course Software-Engineering vs. Other Courses

~1-2017-04-24 - Srel -

The lecturer points out connections to
other topics areas (e.g, research, praxis).

Project Requirements
Management Engineering
Vocabulary Vocabulary
Techniques Techniques

informal informal

Design, SW
Modelling

iigiii

Implementation

Vocabulary

Techniques

totally strongly
o #0000 o

Quality
Assurance

29/42

Course Software-Engineering vs. Softwarepraktikum

~1-2017-04-24 - Srel -

Agreement between
‘Fachschaft’ and the
chair for software
engineering:
strong(er) coupling
between both
courses.

Zeitplan

000000

: 24.4., Mon
: 274, Thu
1.5, Mon
4.5, Thu

- Introduction L
L

Scales, Metrics,

N -

900000

e

Costs,
s e Development
Process

8.5, Mon
1.5, Thu
15.5., Mon

« g 0405,

18.5., Thu
22.5., Mon

[B ol ol ol I
oMU AW

25.5., Thu
7: 29.5., Mon
8: 16, Thu
5.6., Mon

Requirements
Engineering

[ol

8.6, Thu

12.6., Mon
15.6., Thu
19.6., Mon

900000

: 226, Thu
: 26.6., Mon
: 29.6, Thu

« ingabe: 1305 s
e

200000

3.7, Mon
6.7, Thu

« rngabe: 2505 bls

Q00009

: 10.7., Mon

Q00099

13.7, Thu

000000

[T T———
-

« sbgabe st (sl

« fogab 1507 bl

17.7., Mon

Q000009

et

: 20.7, Thu
: 24.7.,Mon
277, Thu

30/42

Literature

oftware
Project Requirements Design, SW Quality Englneerlng
Management Engineering Modelling Assurance g Henchn s Tcen
Vocabulary Vocabulary Vocabulary
Techniques Techniques Techniques
informal informal informal
formal formal formal

Software
Engineering 3

Software Software

Engineering 1 Engineering 2

...more on the course homepage.

~1-2017-04-24 - St -

Any Questions So Far?

-1-2017-04-24 - main -

sommcnne S
7 =4

RINC

3142

32s

-1-2017-04-24 - main -

-1-2017-04-24 - Scontent -

Content

Course: Organisation

33/02

o Software, Engineering, Software Engineering

e Successful Software Development
—e working definition: success
e unsuccessful software development exists

‘e common reasons for non-success

e Course

(e Content

topic areas

structure of topic areas
emphasis: formal methods
relation to other courses

LTI 1T L
e o o o o

literature

‘e Organisation

e lectures
e tutorials

—® exam

34/

Organisation: Lectures

- 2017-04-24 - Sorgalec -

o Homepage: http://swt.informatik.uni-freiburg.de/teaching/SS2017/swtvl

o Course language: German (since we are in an odd year)
o Script/Media:
o slides without annotations on homepage with beginning of lecture the latest
o slides with annotations on homepage typically soon after the lecture
o recording on ILIAS (stream and download) with max. 2 days delay (cf. link on homepage)

o Schedule: topic areas a three 90 min. lectures, one 90 min. tutorial (with exceptions)

o Interaction: absence often moaned; but it takes two, so please ask/comment immediately.

o Questions/comments:

o “online”: askimmediately or in the break

o “offline” (i) try to solve yourself
(i) discuss with colleagues
(i) a) Exercises: ILIAS (group) forum, contact tutor
b) Everything else: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

o Break: well have a 5-10 min. break -

in the middle of each lecture (from now on),
unless a majority objects . Vs.

15:45 1415

1510
15:00 15:00

Organisation: Exercises & Tutorials

1-2017-04-24 - Sorgatut

o Schedule/Submission: Introduction

Scales, Metrics,

o exercises online (homepage and ILIAS) with first lecture of a block, |

. 24h before tutorial g
{usually Wednesday, 12:00, local time), ZOK + Costs,
~ Devel t
° right before tutorial . e\:;zr:sen
(usually Thursday, 12:00, local time).

o please submit electronically via ILIAS; paper submissions are tolerated

o should work in teams of approx. 3, clearly give names on submission Requirements
Engineering

o Grading system: “most complicated grading system ever”
o Admission points (good-will rating, upper bound)

(“reasonable grading given student’s knowledge tutorial”)

o Exam-like points (evil rating, lower bound)
Arch. & Design

(“reasonable grading given student’s knowledge tutorial”)
20% bonus for early submission. Software
Modelling
o Tutorial: Three groups (central assignment), hosted by tutor.
o Starting from discussion of the early submissions (anonymous), O:T;te':?s
esting,
deve.lop one good lpropo.sal together, Formal Verif)
o tutorial notes provided via ILIAS. Wrap-Up

1415

L15:
L16:
L17:
L18:

., Mon
. Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
.. Thu
7., Mon
7., Thu
., Mon
., Thu
., Mon
., Thu
., Mon
., Thu

354

36/42

Organisation: Exam

o Exam Admission:

Achieving 50% of the regular admission points in total
is sufficient for admission to exam.

10 regular admission points on sheets O and 1, and

20 regular admission points on exercise sheets 2-6
120 regula dmission points for 100%.
G
0% - 6O

Exam Form:

o written exam
o date, time, place: tba
o permitted exam aids: one A4 paper (max. 21x 29.7 x 1 mm) of notes, max. two sides inscribed

o scores from the exercises do not contribute to the final grade.

o example exam available on ILIAS

3742

-1-2017-04-24 - Sorgaexam -

One Last Word on The Exercises. . .

good-will rating

quality of submission

@ve improvec@ls in scientific I have improved my skills in scientific
problem solving. problem solving.

totally O O O O x strongly totally w O O O O stongly

agree disagree agree disagree

o Every exercise task is a tiny little scientific work!

o Basic rule for high quality submissions:

o rephrase the task in your own words,
o state your solution,
e convince your tutor of (at best: prove) the correctness of your solution.

38/42

Tell Them What You’ve Told Them. . .

-1-2017-04-24 - Sttwytt -

~1-2017-04-24 - main -

o Basic vocabulary:

o software, engineering, software engineering,
o customer, developer, user,
o successful software development

— some definitions are neither formal nor universally agreed

o (Fun) fact: software development is not always successful

o Basic activities of (software) engineering:

o gather requirements,

o design,

o implementation,

o quality assurance,

o project management

— motivates content of the course - for the case of software
o Formal (vs. informal) methods

o avoid misunderstandings,

o enable objective, tool-based assessment

— still, humans are at the heart of software engineering.

o Course content and organisation

Any (More) Questions?

39/42

40/42

-1-2017-04-24 - main -

References

4142

References

-1-2017-04-24 - main -

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530-538.

Buschermohle, R., Eekhoff, H., and Josko, B. (2006). success - Erfolgs- und Misserfolgsfaktoren bei der
Durchfiihrung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical Report VSEK/55/D.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC FDIS (2000). Information technology - Software product quality - Part 1: Quality model. 9126-1:2000(E).
ISO/IEC/IEEE (2010). Systems and software engineering - Vocabulary. 24765:2010(E).

Ludewig, |. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-person development of multi-version programs. In Jones, C. B.
et al,, editors, Dependable and Historic Computing, volume 6875 of LNCS, pages 413-427. Springer.

42/02

