
–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 2: Software Metrics

2017-04-27

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content

–
2

–
2

0
17

-0
4

-2
7

–
S

b
lo

ck
co

n
te

n
t

–

2/42

•VL 2 Software Metrics

• Properties of Metrics

• Scales

• Examples

• Cost Estimation

• Deadlines and Costs

• Expert’s Estimation

• Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

.

..

VL 5

Content

–
2

–
2

0
17

-0
4

-2
7

–
S

co
n

te
n

t
–

3/42

• Survey: Expectations on the Course

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Excursion Excursion: Mean, Median, Quartiles

• Example: LOC

• Other Properties of Metrics

• Base Measures vs. Derived Measures

• Subjective and Pseudo Metrics

• Discussion

Survey: Previous Experience

–
2

–
2

0
17

-0
4

-2
7

–
S

e
xp

e
ct

at
io

n
s

–

4/42

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Project Management

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Programming

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Design Modelling

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Software Quality Assurance

Expectations

–
2

–
2

0
17

-0
4

-2
7

–
S

e
xp

e
ct

at
io

n
s

–

5/42

• general

✔ work with others in a large software development team

✔ communicate results to other people

✔ learn how to properly document the work

✔ know, how to acquire knowledge on aspects of SW Eng. on our own

✔ get to know industry standards, investigate their strengths / weaknesses

✔ overview, terminology, and references for own enquiries

✘ know about trustful internet sources to get such information while
working

✔ understanding the procedure of software production, including common
mishaps at each step

✔ systematically analyse the steps of software development which are done
“implicitly” in smaller, self-made projects

✔ course is balanced with theoretical as well as practical scenarios

✔ getting tools (roughly specific ideas) for attacking problems

✔ have some fun, learn a lot [...] not only for the further studying or working
but also for life

• other courses

(✘) Vorallem hoffe ich auf eine sinnvolle Verbindung zum Softwarepraktikum.

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon
Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

Expectations Cont’d

–
2

–
2

0
17

-0
4

-2
7

–
S

e
xp

e
ct

at
io

n
s

–

6/42

• project management

✔ minimize risks, estimate project duration,

(✘) the financial part: how much money can can you demand for software?

(✔) how to estimate cost/time, without resorting to years of experience

✔ different life stages of a software

✔ become acquainted with the most common procedures of software
development

✔ selection of right process for a project.

(✘) learn how things are done in real companies

• requirements

✔ How to communicate between customer and software team effectively

✔ formalise software engineering problems

✔ learn how to specify the requirements

(✔) how to write something based on customer’s wishes, which is
unambiguous (for the programmers), but understandable for the
customer, such that the customers can check on their own what is meant.

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon
Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

Expectations Cont’d

–
2

–
2

0
17

-0
4

-2
7

–
S

e
xp

e
ct

at
io

n
s

–

7/42

• design

✔ techniques and vocabulary to express design

✔ learn how to use basic and maybe some advanced techniques, models
and patterns in software development

✔ the modern techniques: [...] Test Driven Design, Behaviour Driven Design

✔ acquire knowledge in UML

✔ principles of reasonable software architectures

(✘) verification of architectures

(✔) what distinguished well-designed SW from bad-designed ones

✘ how to quantify and check things like “good usability”

✘ focus on software architecture

• Implementation

(✘) write reusable and maintainable code

(✘) knowing the adequate codes for the certain software

• Quality Assurance

(✔) Which software qualities are more important for different types of SW?

(✘) test code in a reusable efficient way

(✔) extend my basic knowledge on verification methods (unit tests etc.)

(✘) conduct a review

Introduction L 1: 24.4., Mon

Scales, Metrics, L 2: 27.4., Thu

- 1.5., Mon

T 1: 4.5., Thu

Costs, L 3: 8.5., Mon
Development L 4: 11.5., Thu

Process L 5: 15.5., Mon

T 2: 18.5., Thu

L 6: 22.5., Mon

- 25.5., Thu

L 7: 29.5., MonRequirements
Engineering L 8: 1.6., Thu

- 5.6., Mon

- 8.6., Thu

T 3: 12.6., Mon

- 15.6., Thu

L 9: 19.6., Mon

L10: 22.6., Thu

Arch. & Design L 11: 26.6., Mon

T 4: 29.6., Thu

L 12: 3.7., Mon

L 13: 6.7., Thu
Software
Modelling

L 14: 10.7., Mon

T 5: 13.7., Thu

Patterns L 15: 17.7., Mon

L16: 20.7., ThuQA (Testing,
Formal Verif.) L 17: 24.7., Mon

Wrap-Up L18: 27.7., Thu

Content

–
2

–
2

0
17

-0
4

-2
7

–
S

co
n

te
n

t
–

8/42

• Survey: Expectations on the Course

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Excursion Excursion: Mean, Median, Quartiles

• Example: LOC

• Other Properties of Metrics

• Base Measures vs. Derived Measures

• Subjective and Pseudo Metrics

• Discussion

Software Metrics

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

9/42

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

in
tr

o
–

10/42

Engineering vs. Non-Engineering

–
1

–
2

0
16

-0
4

-1
8

–
S

e
n

gi
n

e
e

ri
n

g
–

6/36

workshop
(technical product)

studio
(artwork)

Mental
prerequisite

the existing and
available technical
know-how

artist’s inspiration,
among others

Deadlines can usually be planned
with sufficient precision

cannot be planned due
to dependency on
artist’s inspiration

Price oriented on cost,
thus calculable

determined by market
value, not by cost

Norms and
standards

exist, are known, and
are usually respected

are rare and, if known,
not respected

Evaluation and
comparison

can be conducted using
objective, quantified
criteria

is only possible
subjectively,
results are disputed

Author remains anonymous,
often lacks emotional
ties to the product

considers the artwork as
part of him/herself

Warranty and
liability

are clearly regulated,
cannot be excluded

are not defined and in
practice hardly
enforceable

(Ludewig and Lichter, 2013)

Vocabulary

–
2

–
2

0
17

-0
4

-2
7

–
S

vo
ca

b
u

la
ry

–

11/42

metric — A quantitative measure of the degree to which a system, component, or pro-
cess posesses a given attribute.
See: quality metric. IEEE 610.12 (1990)

quality metric —

(1) A quantitative measure of the degree to which an item possesses a given quality
attribute.

(2) A function whose inputs are software data and whose output is a single numerical
value that can be interpreted as the degree to which the software possesses a given
quality attribute. IEEE 610.12 (1990)

Software Metrics: Motivation and Goals

–
2

–
2

0
17

-0
4

-2
7

–
S

go
al

s
–

12/42

Important motivations and goals for using software metrics:

• specify quality requirements

• assess the quality of products and processes

• quantify experience, progress, etc.

• predict cost/effort, etc.

• support decisions

Software metrics can be used:

• prescriptive, e.g., “all prodecures must not have more then N parameters”, or

• descriptive, e.g., “procedure P has N parameters”.

A descriptive metric can be

• diagnostic, e.g., “the test effort was N hours”, or

• prognostic, e.g., “the expected test effort is N hours”.

Note: prescriptive and prognostic are different things.

• Examples: support decisions by diagnostic measurements:

(i) Measure CPU time spent per procedure, then “optimize” most time consuming procedure.

(ii) Measure attributes which indicate architecture problems, then re-factor accordingly.

Recall: Software Quality (ISO/IEC 9126-1:2000 (2000))

–
2

–
2

0
17

-0
4

-2
7

–
S

go
al

s
–

13/42

software related quality

process quality . . .

product quality

functionality

suitability
accuracy

interoperability

security

reliability

maturity

fault tolerance
recoverability

usability

understandability

learnability

operability

attractiveness

efficiency
time behaviour

resource utilisation

maintainability

analysability

changeability

stability

testability

portability

adaptability

installability

co-existence

replaceability

Useful Metrics

–
2

–
2

0
17

-0
4

-2
7

–
S

go
al

s
–

14/42

• For material goods, useful metrics are often pretty obvious:

T
h

o
rs

te
n

H
ar

tm
an

n
,C

C
B

Y
-S

A
3

.0
,h

tt
p

s:
//

co
m

m
o

n
s.

w
ik

im
e

d
ia

.o
rg

/
w

/
in

d
e

x.
p

h
p

?c
u

ri
d

=7
3

73
12

S
im

o
n

A
.E

u
gs

te
r,

C
C

B
Y

-S
A

3
.0

,c
o

m
m

o
n

s.
w

ik
im

e
d

ia
.o

rg
/

w
/

in
d

e
x.

p
h

p
?c

u
ri

d
=7

9
0

0
2

4
5

• Not so obvious for immaterial goods, like software.

Content

–
2

–
2

0
17

-0
4

-2
7

–
S

co
n

te
n

t
–

15/42

• Survey: Expectations on the Course

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Excursion Excursion: Mean, Median, Quartiles

• Example: LOC

• Other Properties of Metrics

• Base Measures vs. Derived Measures

• Subjective and Pseudo Metrics

• Discussion

Requirements on Useful Metrics

–
2

–
2

0
17

-0
4

-2
7

–
S

re
q

o
n

m
e

tr
ic

s
–

16/42

Definition. A software metric is a function m : P → S which assigns to each
proband p ∈ P a valuation yield (“Bewertung”) m(p) ∈ S. We call S the scale of m.

In order to be useful, a (software) metric should be:

differentiated worst case: same valuation yield for all probands

comparable ordinal scale, better: rational (or absolute) scale (→ in a minute)

reproducible multiple applications of a metric to the same proband should
yield the same valuation

available valuation yields need to be in place when needed

relevant wrt. overall needs

economical worst case: doing the project gives a perfect prognosis of project
duration — at a high price;
irrelevant metrics are not economical (if not available for free)

plausible (→ pseudo-metric)

robust developers cannot arbitrarily manipulate the yield;
antonym: subvertible

Excursion: Scales

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

17/42

Scales and Types of Scales

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

18/42

Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Nominal Scale

• nationality, gender, car manufacturer, geographic direction, train number, . . .

• Software engineering example: programming language (S = {Java, C, . . . })

→ There is no (natural) order between elements of S; the lexicographic order can be imposed
(“C < Java”), but is not related to the measured information (thus not natural).

Scales and Types of Scales

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

18/42

Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Ordinal Scale

• strongly agree > agree > disagree > strongly disagree; Chancellor > Minister (administrative ranks);

• leaderboard (finishing number tells us that 1st was faster than 2nd, but not how much faster)

• types of scales, . . .

• Software engineering example: CMMI scale (maturity levels 1 to 5) (→ later)

→ There is a (natural) order between elements of M ,
but no (natural) notion of distance or average.

Scales and Types of Scales

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

18/42

Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Interval Scale

• temperature in Fahrenheit

• “today it is 10°F warmer than yesterday” (∆(ϑtoday, ϑyesterday) = 10°F)

• “100°F is twice as warm as 50°F”: . . . ? No. Note: the zero is arbitrarily chosen.

• Software engineering example: time of check-in in revision control system

→ There is a (natural) notion of difference ∆ : S × S → R, but no (natural) proportion and 0.

Scales and Types of Scales

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

18/42

Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Rational Scale

• age (“twice as old”); finishing time; weight; pressure; price; speed; distance from Freiburg. . .

• Software engineering example: runtime of a program for given inputs.

→ The (natural) zero induces a meaning for proportion m1/m2.

Scales and Types of Scales

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

18/42

Scales S are distinguished by supported operations:

=, 6=
<, > (with
transitivity)

min,
max

percen-
tiles, e.g.
median

∆
propor-

tion
natural
0 (zero)

nominal scale ✔ ✘ ✘ ✘ ✘ ✘ ✘

ordinal scale ✔ ✔ ✔ ✔ ✘ ✘ ✘

interval scale
(with units)

✔ ✔ ✔ ✔ ✔ ✘ ✘

rational scale
(with units)

✔ ✔ ✔ ✔ ✔ ✔ ✔

absolute scale a rational scale where S comprises the key figures itself

Examples: Absolute Scale

• seats in a bus, number of public holidays, number of inhabitants of a country, . . .

• “average number of children per family: 1.203” – what is a 0.203-child?
The absolute scale has been used as a rational scale (makes sense for certain purposes if done with care).

• Software engineering example: number of known errors.

→ An absolute scale has a median, but in general not an average in the scale.

Something for the Mathematicians. . .

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

19/42

Recall:

Definition. [Metric Space (math.)]

Let X be a set. A function d : X ×X → R is called metric on X
if and only if, for each x, y, x ∈ X ,

(i) d(x, y) ≥ 0 (non-negative)

(ii) d(x, y) = 0 ⇐⇒ x = y (identity of indiscernibles)

(iii) d(x, y) = d(y, x) (symmetry)

(iv) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

(X, d) is called metric space.

→ different from all scales discussed before;
a metric space requires more than a rational scale.

→ definitions of, e.g., IEEE 610.12, may use standard (math.) names for different things

Something for the Computer Scientists. . .

–
2

–
2

0
17

-0
4

-2
7

–
S

sc
al

e
s

–

20/42

• A function which

• assigns to each algorithm (or problem, or program)

• a complexity class
(worst-, average-, best-case; deterministic, non-deterministic; space, time; . . .),

can be seen as a metric (according to our earlier definition):

• probands P : set of algorithms (or problems, or programs)

• scale S: problem classes like O(N).

Example:

• Problem p: “does element E occur in unsorted, finite list L”?

• Complexity metric (worst-case; deterministic; time):

• p is in O(N), N = |L| (length of list).

→ the McCabe metric (in a minute) is sometimes called complexity metric
(in the rough sense of “complicatedness”).

→ descriptions of software metrics may use standard (comp. sc.) names for different things.

Excursion Excursion: Communicating Figures

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

21/42

Project Management: Metrics on People

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

d
ia

n
–

22/42

Definition. A software metric is a function m : P → S which assigns to each
proband p ∈ P a valuation yield (“Bewertung”) m(p) ∈ S. We call S the scale of m.

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering

• Here: P is the set of participants in the survey of the course “Software Engineering”.

• Scale: S = {0, . . . , 10} (ordinal scale; has = and 6=, < and >, min and max).

• Measurement procedure: self-assessment (→ subjective measure).

Reduce Information Further

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

d
ia

n
–

23/42

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering

• Arithmetic mean: 2.284 (not in the scale!)

• Minimum and maximum: 0 and 10

• Median: 1 (the value such that 50% of the probands have yields below and above)

Reduce Information Further

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

d
ia

n
–

23/42

10

20

30

0 1 2 3 4 5 6 7 8 9 10

Requirements Engineering

• Arithmetic mean: 2.284 (not in the scale!)

• Minimum and maximum: 0 and 10

• Median: 1 (the value such that 50% of the probands have yields below and above)

• 1st and 3rd Quartile: 1 and 4 (25%, 50%)

• a boxplot visualises 5 aspects of data at once (whiskers sometimes defined differently):

100 % (maximum)

75 % (3rd quartile)

50 % (median)

25 % (1st quartile)

0 % (minimum)

median: 1

average: 2.284

RE Experience 2017

median: 1

avg: 2.091

RE Experience 2016

2017 vs. 2016

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

d
ia

n
–

24/42

median: 1

average: 2.2069

Management 2017 Management 2016

median: 1

average: 2.284

RE Experience 2017

median: 1

avg: 2.0909

RE Experience 2016

median: 3

average: 3.9432

Programming 2017

median: 3
avg: 3.7922

Programming 2016

median: 1

average: 2.1932

Modelling 2017

median: 1
avg: 1.4459

Modelling 2016

median: 1

average: 2.5682

QA 2017

median: 2
avg: 2.3766

QA 2016

Back From Excursion: Scales

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

25/42

Content

–
2

–
2

0
17

-0
4

-2
7

–
S

co
n

te
n

t
–

26/42

• Survey: Expectations on the Course

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Excursion Excursion: Mean, Median, Quartiles

• Example: LOC

• Other Properties of Metrics

• Base Measures vs. Derived Measures

• Subjective and Pseudo Metrics

• Discussion

Requirements on Useful Metrics

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

s2
–

27/42

In order to be useful, a (software) metric should be:

differentiated worst case: same valuation yield for all probands

comparable ordinal scale, better: rational (or absolute) scale

reproducible multiple applications of a metric to the same proband should yield the
same valuation

available valuation yields need to be in place when needed

relevant wrt. overall needs

economical worst case: doing the project gives a perfect prognosis of project duration
— at a high price;
irrelevant metrics are not economical (if not available for free)

plausible (→ pseudo-metric)

robust developers cannot arbitrarily manipulate the yield;
antonym: subvertible

Example: Lines of Code (LOC)

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

s2
–

28/42

1 /* h t t p s : / / de . w i k i p e d i a . o r g / w i k i /
2 * L i s t e _ v o n _ H a l l o−Welt−Programmen /
3 * H%C3%B 6 h e r e _ P r o g r a m m i e r s p r a c h e n#J a v a */
4

5 c l a s s Ha l l o {
6

7 pub l i c s t a t i c void

8 main (S t r i n g [] a r g s) {
9 System . out . p r i n t (

10 " Ha l l o Welt ! ") ; // no n e w l i n e
11 }
12 }

dimension unit measurement procedure

program size LOCtot number of lines in total

net program
size

LOCne number of non-empty lines

code size LOCpars number of lines with not
only comments and
non-printable

delivered
program size

DLOCtot,
DLOCne,
DLOCpars

like LOC, only code
(as source or compiled)
given to customer

(Ludewig and Lichter, 2013)

differentiated

comparable

reproducible

available

relevant

economical

plausible

robust

More Examples

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

s2
–

29/42

characteristic
(‘Merkmal’)

positive example negative example

differentiated program length in LOC CMM/CMMI level below 2

comparable cyclomatic complexity review (text)

reproducible memory consumption grade assigned by inspector

available number of developers number of errors in the code
(not only known ones)

relevant expected development
cost; number of errors

number of subclasses (NOC)

economical number of discovered
errors in code

highly detailed timekeeping

plausible cost estimation
following COCOMO
(to a certain amount)

cyclomatic complexity of a
program with pointer
operations

robust grading by experts almost all pseudo-metrics

(Ludewig and Lichter, 2013)

Other Properties of Metrics

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

30/42

Kinds of Metrics: ISO/IEC 15939:2011

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

ki
n

d
s

–

31/42

base measure — measure defined in terms of an attribute and the method for quanti-
fying it. ISO/IEC 15939 (2011)

Examples:

• lines of code, hours spent on testing, . . .

•

derived measure — measure that is defined as a function of two or more values of base
measures. ISO/IEC 15939 (2011)

Examples:

• average/median lines of code, productivity (lines per hour), . . .

•

Kinds of Metrics: by Measurement Procedure

–
2

–
2

0
17

-0
4

-2
7

–
S

m
e

tr
ic

ki
n

d
s

–

32/42

objective metric pseudo metric subjective metric

Procedure measurement, counting,
possibly standardised

computation (based on
measurements or
assessment)

review by inspector,
verbal or by given scale

Advantages exact, reproducible,
can be obtained
automatically

yields relevant, directly
usable statement on not
directly visible
characteristics

not subvertable,
plausible results,
applicable to complex
characteristics

Disadvantages not always relevant,
often subvertable,
no interpretation

hard to comprehend,
pseudo-objective

assessment costly,
quality of results depends
on inspector

Example,
general

body height, air pressure body mass index (BMI),
weather forecast for the
next day

health condition,
weather condition (“bad
weather”)

Example in
Software
Engineering

size in LOC or NCSI;
number of (known) bugs

productivity;
cost estimation
by COCOMO

usability;
severeness of an error

Usually used for collection of simple
base measures

predictions (cost
estimation);
overall assessments

quality assessment;
error weighting

(Ludewig and Lichter, 2013)

Pseudo-Metrics

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

33/42

Pseudo-Metrics

–
2

–
2

0
17

-0
4

-2
7

–
S

p
se

u
d

o
–

34/42

Some of the most interesting aspects of software development projects
are (today) hard or impossible to measure directly, e.g.:

• how maintainable is the software?

• how much effort is needed until completion?

• how is the productivity of my software people?

• do all modules do appropriate error handling?

• is the documentation sufficient and well
usable?

Due to high relevance, people want
to measure despite the difficulty in
measuring. Two main approaches:

diff
er

en
tia

te
d

co
m

par
ab

le

re
pro

duc
ib

le

av
ail

ab
le

re
le

va
nt

ec
onom

ica
l

pla
usib

le

ro
bust

Expert review,
grading (✔) (✔) (✘) (✔) ✔! (✘) ✔ ✔

Pseudo-metrics,
derived measures ✔ ✔ ✔ ✔ ✔! ✔ ✘ ✘

Note: not every derived measure is a pseudo-metric:

• average LOC per module: derived, not pseudo → we really measure average LOC per module.

• measure maintainability in average LOC per module: derived, pseudo

→ we don’t really measure maintainability; average-LOC is only interpreted as maintainability.

Not robust if easily subvertible (see exercises).

Pseudo-Metrics Example

–
2

–
2

0
17

-0
4

-2
7

–
S

p
se

u
d

o
–

35/42

Example: productivity (derived).

• Team T develops software S with LOC N = 817 in t = 310h.

• Define productivity as p = N/t, here: ca. 2.64 LOC/h.

• Pseudo-metric: measure performance, efficiency, quality, . . .
of teams by productivity (as defined above).

• team may write

x

:=

y

+

z;

instead of x := y + z;

→ 5-time productivity increase, but real efficiency actually decreased.

→ not (at all) plausible.

→ clearly pseudo.

Can Pseudo-Metrics be Useful?

–
2

–
2

0
17

-0
4

-2
7

–
S

p
se

u
d

o
–

36/42

• Pseudo-metrics can be useful if there is a (good) correlation (with few false positives and few
false negatives) between valuation yields and the property to be measured:

valuation yield
low high

q
u

al
it

y

high

false positive

×

true positive

× ×

× × ×

× ×

low

true negative

× ×

×

× ×

false negative

×

× ×

• This may strongly depend on context information:

• If LOC was (or could be made non-subvertible (→ tutorials)),
then productivity could be useful measure for, e.g., team performance.

McCabe Complexity

–
2

–
2

0
17

-0
4

-2
7

–
S

m
cc

ab
e

–

37/42

complexity —

(1) The degree to which a system or component has a design or implementation that is
difficult to understand and verify. Contrast with: simplicity.

(2) Pertaining to any of a set of structure-based metrics that measure the attribute in (1).

IEEE 610.12 (1990)

Definition. [Cyclomatic Number [graph theory]]

Let G = (V,E) be a graph comprising vertices V and edges E.

The cyclomatic number of G is defined as

v(G) = |E| − |V |+ 1.

Intuition: minimum number of edges to be removed to make G cycle free.

McCabe Complexity Cont’d

–
2

–
2

0
17

-0
4

-2
7

–
S

m
cc

ab
e

–

38/42

Definition. [Cyclomatic Complexity [McCabe, 1976]]

Let G = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P) = |E| − |V | + p where p is the
number of entry or exit points.

1 void i n s e r t i o n S o r t (i n t [] a r r a y) {
2 f o r (i n t i = 2 ; i < a r r a y . l e n g t h ; i + +) {
3 tmp = a r r a y [i] ;
4 a r r a y [0] = tmp ;
5 i n t j = i ;
6 whi l e (j > 0 && tmp < a r r a y [j − 1]) {
7 a r r a y [j] = a r r a y [j − 1] ;
8 j −−;
9 }

10 a r r a y [j] = tmp ;
11 }
12 }

Number of edges: |E| = 11
Number of nodes: |V | = 6 + 2 + 2 = 10
External connections: p = 2

→ v(P) = 11 − 10 + 2 = 3

1

2

3

4

5

8

7

6

10

Entry

Exit

McCabe Complexity Cont’d

–
2

–
2

0
17

-0
4

-2
7

–
S

m
cc

ab
e

–

38/42

Definition. [Cyclomatic Complexity [McCabe, 1976]]

Let G = (V,E) be the Control Flow Graph of program P .

Then the cyclomatic complexity of P is defined as v(P) = |E| − |V | + p where p is the
number of entry or exit points.

• Intuition: number of paths, number of decision points.

• Interval scale (not absolute, no zero due to p > 0);
easy to compute

• Somewhat independent from programming language.

• Plausibility:

+ loops and conditions are harder to understand than
sequencing.

− doesn’t consider data.

• Prescriptive use:

“For each procedure, either limit cyclomatic
complexity to [agreed-upon limit] or provide
written explanation of why limit exceeded.”

1

2

3

4

5

8

7

6

10

Entry

Exit

Code Metrics for OO Programs (Chidamber and Kemerer, 1994)

–
2

–
2

0
17

-0
4

-2
7

–
S

m
cc

ab
e

–

39/42

metric computation

weighted methods
per class (WMC)

n∑

i=1

ci , n = number of methods, ci = complexity of method i

depth of inheritance
tree (DIT)

graph distance in inheritance tree (multiple inheritance ?)

number of children
of a class (NOC)

number of direct subclasses of the class

coupling between
object classes (CBO)

CBO(C) = |Ko ∪Ki|,
Ko = set of classes used by C , Ki = set of classes using C

response for a class
(RFC)

RFC = |M ∪
⋃

i
Ri|, M set of methods of C ,

Ri set of all methods calling method i

lack of cohesion in
methods (LCOM)

max(|P | − |Q|, 0), P = methods using no common attribute,
Q = methods using at least one common attribute

• objective metrics: DIT, NOC, CBO; pseudo-metrics: WMC, RFC, LCOM

. . . there seems to be agreement that it is far more important to focus on empirical validation (or
refutation) of the proposed metrics than to propose new ones, . . . (Kan, 2003)

Content

–
2

–
2

0
17

-0
4

-2
7

–
S

co
n

te
n

t
–

40/42

• Survey: Expectations on the Course

• Software Metrics

• Motivation

• Vocabulary

• Requirements on Useful Metrics

• Excursion: Scales

• Excursion Excursion: Mean, Median, Quartiles

• Example: LOC

• Other Properties of Metrics

• Base Measures vs. Derived Measures

• Subjective and Pseudo Metrics

• Discussion

References

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

41/42

References

–
2

–
2

0
17

-0
4

-2
7

–
m

ai
n

–

42/42

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented design. IEEE Transactions on
Software Engineering, 20(6):476–493.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC (2011). Information technology – Software engineering – Software measurement process. 15939:2011.

ISO/IEC FDIS (2000). Information technology – Software product quality – Part 1: Quality model. 9126-1:2000(E).

Kan, S. H. (2003). Metrics and models in Software Quality Engineering. Addison-Wesley, 2nd edition.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

