
inductive invariants for example program

I
weakest inductive invariant: true (set of all states)

contains error states

I
strongest inductive invariant (does not contain error states)

pc = `1 _
(pc = `2 ^ y � z) _
(pc = `3 ^ y � z ^ x � y) _
(pc = `4 ^ y � z ^ x � y)

I
a slightly weaker inductive invariant also proves the safety of

our examples:

pc = `1 _
(pc = `2 ^ y � z) _
(pc = `3 ^ y � z ^ x � y) _
pc = `4

I
can we drop another conjunct in one of the disjuncts?



1: assume(y >= z);

2: while (x < y) {

x++;

}

3: assert(x >= z);

4: exit

5: error

.

`1

`2

⇢1 y � z

⇢2 x < y ^ x

0
= x + 1

`3

⇢3 x � y

`4
⇢4 x � z

`5

⇢5 x < z

inductive invariant (strict superset of reachable states):

'
reach

= (pc = `1 _
pc = `2 ^ y � z _
pc = `3 ^ y � z ^ x � y _
pc = `4)



fixpoint iteration

I
computation of reachable program states =

iterative application of post on initial program states until

a fixpoint is reached

i.e., no new program states are obtained by applying post

I
in general, iteration process does not converge

i.e., does not reach fixpoint in finite number of iterations



example: fixpoint iteration diverges

⇢2 ⌘ (move(`2, `2) ^ x + 1  y ^ x

0
= x + 1 ^ skip(y , z))

post(at `2 ^ x  z , ⇢2) = (at `2 ^ x � 1  z ^ x  y)

post

2
(at `2 ^ x  z , ⇢2) = (at `2 ^ x � 2  z ^ x  y)

post

3
(at `2 ^ x  z , ⇢2) = (at `2 ^ x � 3  z ^ x  y)

. . .

post

n

(at `2 ^ x  z , ⇢2) = (at `2 ^ x � n  z ^ x  y)



example: fixpoint not reached after n steps, n � 1

I
set of states reachable after applying post twice not included

in the union of previous two sets:

(at `2 ^ x � 2  z ^ x  y) 6|=
at `2 ^ x  z _
at `2 ^ x � 1  z ^ x  y

I
set of states reachable after n-fold application of post still

contains previously unreached states:

8n � 1 : (at `2 ^ x � n  z ^ x  y) 6|=
at `2 ^ x  z _
W

1i<n

(at `2 ^ x � i  z ^ x  y)



abstraction of '
reach

by '#

reach

I
instead of computing '

reach

,

compute over-approximation '#
reach

such that '#
reach

◆ '
reach

I
check whether '#

reach

contains any error states

I
if '#

reach

^ '
err

|= false holds then '
reach

^ '
err

|= false,

and hence the program is safe

I
compute '#

reach

by applying iteration

I
instead of iteratively applying post, use

over-approximation post

#
such that always

post(', ⇢) |= post

#
(', ⇢)

I
decompose computation of post

#
into two steps:

first, apply post and

then, over-approximate result using a function ↵ such that

8' : ' |= ↵(') .



abstraction of post by post

#

I
given an abstraction function ↵, define post

#
:

post

#
(', ⇢) = ↵(post(', ⇢))

I
compute '#

reach

:

'#
reach

= ↵('
init

) _
post

#
(↵('

init

), ⇢R) _
post

#
(post

#
(↵('

init

), ⇢R), ⇢R) _ . . .

=

W
i�0(post

#
)

i

(↵('
init

), ⇢R)

I
consequence: '

reach

|= '#
reach



predicate abstraction

I
construct abstraction using a given set of building blocks,

so-called predicates

I
predicate = formula over the program variables V

I
fix finite set of predicates Preds = {p1, . . . , pn}

I
over-approximation of ' by conjunction of predicates in Preds

↵(') =
V
{p 2 Preds | ' |= p}

I
computation requires n entailment checks

(n = number of predicates)



example: compute ↵(at `
2

^ y � z ^ x + 1  y)

I
Preds = {at `1, . . . , at `5, y � z , x � y}

1. check logical consequence between argument to the

abstraction function and each of the predicates:

y � z x � y at `1 at `2 at `3 at `4 at `5
at `2 ^
y � z ^
x + 1  y

|= 6|= 6|= |= 6|= 6|= 6|=

2. result of abstraction = conjunction over entailed predicates

↵(
at `2 ^
y � z ^ x + 1  y

) = at `2 ^ y � z



trivial abstraction ↵(') = true

I
result of applying predicate abstraction is true if

none of the predicates is entailed by '
(“predicates are too specific”)

. . . always the case if Preds = ;



trivial abstraction ↵(') = true

I
result of applying predicate abstraction is true if

none of the predicates is entailed by '
(“predicates are too specific”)

. . . always the case if Preds = ;



trivial abstraction ↵(') = true

I
result of applying predicate abstraction is true if

none of the predicates is entailed by '
(“predicates are too specific”)

. . . always the case if Preds = ;



example: predicate abstraction to compute '#

reach

I
Preds = {false, at `1, . . . , at `5, y � z , x � y}

I
over-approximation of the set of initial states '

init

:

'1 = ↵(at `1) = at `1

I
apply post

#
on '1 wrt. each program transition:

'2 = post

#
('1, ⇢1) = ↵(at `2 ^ y � z| {z }

post('1,⇢1)

) = at `2 ^ y � z

post

#
('1, ⇢2) = · · · = post

#
('1, ⇢5) =

V
{false, . . . } = false



apply post

#

to '
2

= (at `
2

^ y � z)

I
application of ⇢1, ⇢4, and ⇢5 on '2 results in false

(since ⇢1, ⇢4, and ⇢5 are applicable only if either at `1 or

at `3 hold)

I
for ⇢2 we obtain

post

#
('2, ⇢2) = ↵(at `2 ^ y � z ^ x  y) = at `2 ^ y � z

result is '2 and, therefore, is discarded

I
for ⇢3 we obtain

post

#
('2, ⇢3) = ↵(at `3 ^ y � z ^ x � y)

= at `3 ^ y � z ^ x � y

= '3



apply post

#

to '
3

= (at `
3

^ y � z ^ x � y)

I ⇢1, ⇢2, and ⇢3: inconsistency with program counter valuation

in '3

I
for ⇢4 we obtain:

post

#
('3, ⇢4) = ↵(at `4 ^ y � z ^ x � y ^ x � z)

= at `4 ^ y � z ^ x � y

= '4

I
for ⇢5 (assertion violation) we obtain:

post

#
('3, ⇢5) = ↵(at `5 ^ y � z ^ x � y ^ x + 1  z)

= false

I
any further application of program transitions does not

compute any additional reachable states

I
thus, '#

reach

= '1 _ . . . _ '4

I
since '#

reach

^ at `5 |= false, the program is proven safe



algorithm AbstReach

begin

↵ := �' .
V
{p 2 Preds | ' |= p}

post

#
:= �(', ⇢) . ↵(post(', ⇢))

ReachStates

#
:= {↵('

init

)}
Parent := ;
Worklist := ReachStates

#

while Worklist 6= ; do

' := choose from Worklist

Worklist := Worklist \ {'}
for each ⇢ 2 R do

'0
:= post

#
(', ⇢)

if '0 6|=
W
ReachStates

#
then

ReachStates

#
:= {'0} [ ReachStates

#

Parent := {(', ⇢,'0
)} [ Parent

Worklist := {'0} [Worklist

return (ReachStates

#,Parent)
end


