inductive invariants for example program

>

weakest inductive invariant: true (set of all states)
contains error states

strongest inductive invariant (does not contain error states)

pc =41V
(pc=VlaNy>2z)V
(pc=l3Ny>zAx>y)V
(pc=las Ny >zAXx>y)
a slightly weaker inductive invariant also proves the safety of
our examples:
pc =41V
(pc=VlaNy>2z)V
(pc=l3 Ny >zAXx>y)V
pc =y

can we drop another conjunct in one of the disjuncts?



4:
5:

assume (y >= z);
while (x < y) {
X++;

)

}

assert(x >= z);
exit

error

pLy = Z

1‘%’:} mx<yAxX =x+1
p3 X 2y

(s
/‘\

inductive invariant (strict superset of reachable states):

Preach — (pC — gl V

pc=U ANy >zV
pc=U3ANy>zAx>yV
pc = L)



fixpoint iteration

» computation of reachable program states =

iterative application of post on initial program states until
a fixpoint is reached

l.e., no new program states are obtained by applying post

> in general, iteration process does not converge
I.e., does not reach fixpoint in finite number of iterations



example: fixpoint iteration diverges

p2 = (move(lr, o) Ax+1<yAx =x+1Askip(y,z))

post(at_lr Ax < z,pp) =(at_ loANx—1<zAx<y)
post?(at_ly Ax < z,pp) = (at_lo Ax —2<zAx<y)
post3(at_ly Ax < z,p) = (at_lo Ax —3<zAx<y)

post"(at_lo Ax < z,pp)=(at_. b Ax—n<zAx<y)



example: fixpoint not reached after n steps, n > 1

» set of states reachable after applying post twice not included
in the union of previous two sets:

(at_ o Ax—2<zAx<y)
at_lr ANx<zV
at_lh ANx—1<zAx<y

» set of states reachable after n-fold application of post still
contains previously unreached states:

Vn>1:(at o Ax—n<zAx<y)
at_lr ANx < zV
Vicica(at Lo Ax —i<zAx<y)



abstraction of ©,escn by sof;ch

» instead of computing QY each,
compute over-approximation gof;ch such that gof;ch 2 QYreach

#

reach

» check whether ¢ contains any error states

> if gpf;ch A perr = false holds then @reach A err = false,

and hence the program is safe
#

reach
» instead of iteratively applying post, use
over-approximation post™ such that always

» compute ¢ by applying iteration

post(, p) = post™ (g, p)

» decompose computation of post™ into two steps:
first, apply post and
then, over-approximate result using a function « such that

Vo o Ealy) .



abstraction of post by post™

» given an abstraction function «, define post™:

post™(p,p) = a(post(p, p))
#

> compute @, _ -

SOﬁﬁiach — Oé(gp"”"t) \

post™ (apinit), prR) V

pOSt#(pOSt#(Oé((p,'n,'t), ,OR), pR) V...

— vizo(post#)i(&(winit)a PR)

#

> consequence: Yreach ‘: Spreach



predicate abstraction

» construct abstraction using a given set of building blocks,
so-called predicates

» predicate = formula over the program variables V
» fix finite set of predicates Preds = {p1,...,pn}

» over-approximation of ¢ by conjunction of predicates in Preds

a(p) = \{p € Preds | ¢ = p}

» computation requires n entailment checks
(n = number of predicates)



example: compute a(at_ b Ay > zAx+1<y)

» Preds = {at_{1,...,at_ U5,y > z,x > y}

1. check logical consequence between argument to the
abstraction function and each of the predicates:

y>z | x>y |at_ly | at_ly | at_l3 | at_l, | at_Uls
at_l> N\
y>zA = 7 7 = 7 7 7
x+1<y

2. result of abstraction = conjunction over entailed predicates

at_t> N

— >
yZZ/\X—l-léy) at_lr Ny > z

a



trivial abstraction a(yp) = true

» result of applying predicate abstraction is true if



trivial abstraction a(yp) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)



trivial abstraction a(yp) = true

» result of applying predicate abstraction is true if
none of the predicates is entailed by ¢
(“predicates are too specific”)

... always the case if Preds = ()



example: predicate abstraction to compute gof;ch

> Preds = {false,at_{1,...,at_ {5,y > z,x > y}

> over-approximation of the set of initial states ©jnjt:
p1 = oz(at_él) — at_/¥;
» apply post™ on 1 wrt. each program transition:

Y2 = Post#(gol,m) = a(at_€2 ANy > z) —at_ lo Ny >z

-~

POSt(Q[?l,pl)

post™ (o1, p2) = - - - = post™ (1, ps) = N\{false, ...} = false



apply post™ to ¢, = (at_la Ny > z)

» application of p1, ps, and ps on o results in false
(since p1, pa, and ps are applicable only if either at_¢; or
at_¢3 hold)

» for p» we obtain
post#(gpg,pg) =alat. o ANy >zAx<y)=at loNy >z

result is o and, therefore, is discarded

» for p3 we obtain

post#(goz,m) =afat_l3ANy >zAx>y)
—at 3Ny >zAx>y



apply post™ to @3 = (at_lz3 ANy >z Ax>y)

>

p1, p2, and p3: inconsistency with program counter valuation
In 3

for ps we obtain:
post#(gp3,p4) =aat g Ny >zZAX>yAx> 2Z)
=at laNy>zAXx>y
p— 804

for ps (assertion violation) we obtain:

post™ (o3, ps) = alat_ ls Ay >zAx>yAx+1<z)

= false

any further application of program transitions does not

compute any additional reachable states
#

thus, 7, = @1 V...V @4
since gpﬁach N at_Us [= false, the program is proven safe



algorithm ABSTREACH

begin
a = Ap. \{p € Preds | p = p}

post? = A, p) - a(post(p, p))
ReachStates™ = {a(winit)}

Parent = ()
Worklist := ReachStates™
while Worklist # () do

@ := choose from Worklist
Worklist := Worklist \ {p}
for each p € R do

/

¢ = post’(p,p)
if ¢/ £ \/ ReachStates? then
ReachStates™ := {¢'} U ReachStates™

Parent := {(p, p,¥’)} U Parent
Worklist := {¢'} U Worklist
return (ReachStates™ | Parent)
end



