relations as formulas

- formula with free variables in V and $V' = \text{binary relation over program states}$
 - first component of each pair assigns values to V
 - second component of the pair assigns values to V'
program $P = (V, pc, \varphi_{\text{init}}, R, \varphi_{\text{err}})$

- V - finite tuple of program variables
- pc - program counter variable (pc included in V)
- φ_{init} - initiation condition given by formula over V
- R - a finite set of transition relations
- φ_{err} - an error condition given by a formula over V
- transition relation $\rho \in R$ given by
 formula over the variables V and their primed versions V'
transition relation ρ expressed by logica formula

\[
\begin{align*}
\rho_1 &\equiv (\text{move}(l_1, l_2) \land y \geq z \land \text{skip}(x, y, z)), \\
\rho_2 &\equiv (\text{move}(l_2, l_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z)), \\
\rho_3 &\equiv (\text{move}(l_2, l_3) \land x \geq y \land \text{skip}(x, y, z)), \\
\rho_4 &\equiv (\text{move}(l_3, l_4) \land x \geq z \land \text{skip}(x, y, z)), \\
\rho_5 &\equiv (\text{move}(l_3, l_5) \land x + 1 \leq z \land \text{skip}(x, y, z))
\end{align*}
\]

abbreviations:

\[
\begin{align*}
\text{move}(l, l') &\equiv (pc = l \land pc' = l') \\
\text{skip}(v_1, \ldots, v_n) &\equiv (v'_1 = v_1 \land \ldots \land v'_n = v_n)
\end{align*}
\]
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

\[\rho_1 = (\text{move}(\ell_1, \ell_2) \land y \geq z \land \text{skip}(x, y, z)) \]
\[\rho_2 = (\text{move}(\ell_2, \ell_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z)) \]
\[\rho_3 = (\text{move}(\ell_2, \ell_3) \land x \geq y \land \text{skip}(x, y, z)) \]
\[\rho_4 = (\text{move}(\ell_3, \ell_4) \land x \geq z \land \text{skip}(x, y, z)) \]
\[\rho_5 = (\text{move}(\ell_3, \ell_5) \land x + 1 \leq z \land \text{skip}(x, y, z)) \]
correctness: safety

- a state is *reachable* if it occurs in some program computation
- a program is *safe* if no error state is reachable
- ... if and only if no error state lies in φ_{reach},

$$
\varphi_{err} \land \varphi_{reach} \models false.
$$

where $\varphi_{reach} = \text{set of reachable program states}$
1: assume(y >= z);
2: while (x < y) {
 x++;
}
3: assert(x >= z);
4: exit
5: error

set of reachable states:

\[\varphi_{reach} = (pc = l_1 \lor \]
\[pc = l_2 \land y \geq z \lor \]
\[pc = l_3 \land y \geq z \land x \geq y \lor \]
\[pc = l_4 \land y \geq z \land x \geq y) \]
post operator

- let φ be a formula over V and ρ a formula over V and V'
- define a *post-condition* function $post$ by:

$$post(\varphi, \rho) = (\exists V : \varphi \land \rho)[V/V']$$

an application $post(\varphi, \rho)$ computes the image of the set φ under the relation ρ
- post distributes over disjunction wrt. each argument:

$$post(\varphi, \rho_1 \lor \rho_2) = (post(\varphi, \rho_1) \lor post(\varphi, \rho_2))$$
$$post(\varphi_1 \lor \varphi_2, \rho) = (post(\varphi_1, \rho) \lor post(\varphi_2, \rho))$$
application of $post(\phi, \rho)$ in examples

- ρ has no primed variables
application of $post(\phi, \rho)$ in examples

- ρ has no primed variables
 $post(\phi, \rho) = \phi \land \rho$
application of $post(\phi, \rho)$ in examples

- ρ has no primed variables

 $post(\phi, \rho) = \phi \land \rho$

- ρ has only primed variables
application of $post(\phi, \rho)$ in examples

- ρ has no primed variables
 $post(\phi, \rho) = \phi \land \rho$

- ρ has only primed variables
 $post(\phi, \rho) = \rho[V/V']$
application of \(post(\phi, \rho) \) in examples

- \(\rho \) has no primed variables
 \[post(\phi, \rho) = \phi \land \rho \]

- \(\rho \) has only primed variables
 \[post(\phi, \rho) = \rho[V/V'] \]

- \(\rho \) is an update of \(x \) by an expression \(e \) without \(x \), say
 \[\rho = x := e(y, z) \]
application of $post(\phi, \rho)$ in examples

- ρ has no primed variables

 \[post(\phi, \rho) = \phi \land \rho \]

- ρ has only primed variables

 \[post(\phi, \rho) = \rho[V/V'] \]

- ρ is an update of x by an expression e without x, say

 \[
 \rho = x := e(y, z) \\
 post(\phi, \rho) = \exists x \phi \land x = e
 \]
iteration of post

\[post^n(\varphi, \rho) = n\text{-fold application of } post \text{ to } \varphi \text{ under } \rho \]

\[
post^n(\varphi, \rho) = \begin{cases}
\varphi & \text{if } n = 0 \\
post(post^{n-1}(\varphi, \rho), \rho) & \text{otherwise}
\end{cases}
\]

characterize \(\varphi_{\text{reach}} \) using iterates of \(post \):

\[
\varphi_{\text{reach}} = \varphi_{\text{init}} \lor post(\varphi_{\text{init}}, \rho_\mathcal{R}) \lor post(post(\varphi_{\text{init}}, \rho_\mathcal{R}), \rho_\mathcal{R}) \lor \ldots \\
= \lor_{i \geq 0} post^i(\varphi_{\text{init}}, \rho_\mathcal{R})
\]

\(n \)-th disjunct = iterate for natural number \(n \) (disjunction = “\(\omega \) iteration”)
finite iteration post may suffice

“fixpoint reached in n steps” if

$$\forall i = 0 \ post^i(\varphi_{init}, \rho_{\mathcal{R}}) = \forall i = 0 \ post^{i+1}(\varphi_{init}, \rho_{\mathcal{R}})$$

then

$$\forall i = 0 \ post^i(\varphi_{init}, \rho_{\mathcal{R}}) = \forall i \geq 0 \ post^i(\varphi_{init}, \rho_{\mathcal{R}})$$
‘distributed’ iteration of $\text{post}(\cdot, \rho_R)$

- ρ_R is itself a disjunction: $\rho_R = \rho_1 \lor \ldots \lor \rho_m$
- $\text{post}(\phi, \rho)$ distributes over disjunction in both arguments
- in ‘distributed’ disjunction $\Phi = \{\phi_k \mid k \in M\}$, every disjunct ϕ_k corresponds to a sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$

$$\phi_k = \text{post}(\text{post}(\ldots \text{post}(\varphi_{\text{init}}, \rho_{j_1}), \ldots), \rho_{j_n})$$

- $\phi_k \not= \emptyset$ only if sequence of transitions $\rho_{j_1}, \ldots, \rho_{j_n}$ corresponds to path in control flow graph of program since:

$$\text{post}(pc = \ell_i \land \ldots, \text{move}(\ell_j, \ell_{\ldots}) \land \ldots) = \emptyset \text{ if } i \not= j$$

- chaotic fixpoint iteration follows paths in control flow graph
‘distributed’ fixpoint test: ‘local’ entailment

► “fixpoint reached in \(n\) steps” if (but not only if):

every application of \(post(\cdot, \cdot)\) to any disjunct \(\phi_k\) in \(\Phi\) is contained in one of the disjuncts \(\phi_{k'}\) in \(\Phi\) is

\[
\forall k \in M \ \forall j = 1, \ldots, m \ \exists k' \in M : \ post(\phi_k, \rho_j) \subseteq \phi_{k'}
\]
compute φ_{reach} for example program (1)

apply post on set of initial states:

$$post(pc = l_1, \rho_R) = post(pc = l_1, \rho_1) = pc = l_2 \land y \geq z$$

apply post on successor states:

$$post(pc = l_2 \land y \geq z, \rho_R) = post(pc = l_2 \land y \geq z, \rho_2) \lor post(pc = l_2 \land y \geq z, \rho_3) = pc = l_2 \land y \geq z \land x \leq y \lor pc = l_3 \land y \geq z \land x \geq y$$
compute φ_{reach} for example program (2)

repeat the application step once again:

$$post(pc = l_2 \land y \geq z \land x \leq y \lor$$

$$pc = l_3 \land y \geq z \land x \geq y, \rho_R)$$

$$= post(pc = l_2 \land y \geq z \land x \leq y, \rho_R) \lor$$

$$post(pc = l_3 \land y \geq z \land x \geq y, \rho_R)$$

$$= post(pc = l_2 \land y \geq z \land x \leq y, \rho_2) \lor$$

$$post(pc = l_2 \land y \geq z \land x \leq y, \rho_3) \lor$$

$$post(pc = l_3 \land y \geq z \land x \geq y, \rho_4) \lor$$

$$post(pc = l_3 \land y \geq z \land x \geq y, \rho_5)$$

$$= pc = l_2 \land y \geq z \land x \leq y \lor$$

$$pc = l_3 \land y \geq z \land x = y \lor$$

$$pc = l_4 \land y \geq z \land x \geq y$$
compute φ_{reach} for example program

disjunction obtained by iteratively applying post to φ_{init}:

\[
\begin{align*}
 pc &= \ell_1 \lor \\
 pc &= \ell_2 \land y \geq z \lor \\
 pc &= \ell_2 \land y \geq z \land x \leq y \lor pc = \ell_3 \land y \geq z \land x \geq y \lor \\
 pc &= \ell_2 \land y \geq z \land x \leq y \lor pc = \ell_3 \land y \geq z \land x = y \lor \\
 pc &= \ell_4 \land y \geq z \land x \geq y
\end{align*}
\]

disjunction in a logically equivalent, simplified form:

\[
\begin{align*}
 pc &= \ell_1 \lor \\
 pc &= \ell_2 \land y \geq z \lor \\
 pc &= \ell_3 \land y \geq z \land x \geq y \lor \\
 pc &= \ell_4 \land y \geq z \land x \geq y
\end{align*}
\]

above disjunction $= \varphi_{reach}$ since any further application of post does not produce any additional disjuncts
checking safety = finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
checking safety \equiv finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
- inductive:

$$
\varphi_{\text{init}} \models \varphi \quad \text{and} \quad \text{post}(\varphi, \rho_R) \models \varphi.
$$
checking safety \Rightarrow finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
- inductive:
 \[
 \varphi_{\text{init}} \models \varphi \quad \text{and} \quad \text{post}(\varphi, \rho_R) \models \varphi.
 \]
- safe:
 \[
 \varphi \land \varphi_{\text{err}} \models \text{false}
 \]
checking safety = finding safe inductive invariant

- program is safe if there exists a safe inductive invariant φ
 - inductive:

 $\varphi_{init} \models \varphi \quad \text{and} \quad post(\varphi, \rho_R) \models \varphi$

- safe:

 $\varphi \land \varphi_{err} \models false$

- justification:
 1. "φ_{reach} is the strongest inductive invariant"

 $\varphi_{reach} \models \varphi$

 2. program safe if φ_{reach} does not contain an error state:

 $\varphi_{reach} \land \varphi_{err} \models false$
inductive invariants for example program

- weakest inductive invariant:
inductive invariants for example program

- weakest inductive invariant: *true* (set of all states)
 contains error states
- strongest inductive invariant (does not contain error states)
 \[
 pc = l_1 \lor (pc = l_2 \land y \geq z) \lor (pc = l_3 \land y \geq z \land x \geq y) \lor (pc = l_4 \land y \geq z \land x \geq y)
 \]
inductive invariants for example program

- weakest inductive invariant: \textit{true} (set of all states) contains error states
- strongest inductive invariant (does not contain error states)
 \[
 pc = l_1 \lor \\
 (pc = l_2 \land y \geq z) \lor \\
 (pc = l_3 \land y \geq z \land x \geq y) \lor \\
 (pc = l_4 \land y \geq z \land x \geq y)
 \]

- a slightly weaker inductive invariant also proves the safety of our examples:
 \[
 pc = l_1 \lor \\
 (pc = l_2 \land y \geq z) \lor \\
 (pc = l_3 \land y \geq z \land x \geq y) \lor \\
 pc = l_4
 \]
inductive invariants for example program

- weakest inductive invariant: \textit{true} (set of all states) contains error states
- strongest inductive invariant (does not contain error states)

\[
pc = \ell_1 \lor \\
(pc = \ell_2 \land y \geq z) \lor \\
(pc = \ell_3 \land y \geq z \land x \geq y) \lor \\
(pc = \ell_4 \land y \geq z \land x \geq y)
\]

- a slightly weaker inductive invariant also proves the safety of our examples:

\[
pc = \ell_1 \lor \\
(pc = \ell_2 \land y \geq z) \lor \\
(pc = \ell_3 \land y \geq z \land x \geq y) \lor \\
pc = \ell_4
\]

- can we drop another conjunct in one of the disjuncts?
1. assume(y >= z);
2. while (x < y) {
 x++;
}
3. assert(x >= z);
4. exit
5. error

inductive invariant (strict superset of reachable states):

\[\varphi_{reach} = (pc = l_1 \lor \]
\[pc = l_2 \land y \geq z \lor \]
\[pc = l_3 \land y \geq z \land x \geq y \lor \]
\[pc = l_4) \]
fixpoint iteration

- computation of reachable program states = iterative application of post on initial program states until a fixpoint is reached
 i.e., no new program states are obtained by applying post
- in general, iteration process does not converge
 i.e., does not reach fixpoint in finite number of iterations
example: fixpoint iteration *diverges*

\[\rho_2 \equiv (\text{move}(l_2, l_2) \land x + 1 \leq y \land x' = x + 1 \land \text{skip}(y, z)) \]

\[
\text{post}(\text{at}_l \land x \leq z, \rho_2) = (\text{at}_l \land x - 1 \leq z \land x \leq y)
\]

\[
\text{post}^2(\text{at}_l \land x \leq z, \rho_2) = (\text{at}_l \land x - 2 \leq z \land x \leq y)
\]

\[
\text{post}^3(\text{at}_l \land x \leq z, \rho_2) = (\text{at}_l \land x - 3 \leq z \land x \leq y)
\]

\[\ldots \]

\[
\text{post}^n(\text{at}_l \land x \leq z, \rho_2) = (\text{at}_l \land x - n \leq z \land x \leq y)
\]
example: fixpoint not reached after n steps, $n \geq 1$

- set of states reachable after applying post twice not included in the union of previous two sets:

\[
(at_l_2 \land x - 2 \leq z \land x \leq y) \not\subseteq
\]
\[
\begin{align*}
at_l_2 \land x & \leq z \lor \\
& \\
& at_l_2 \land x - 1 \leq z \land x \leq y
\end{align*}
\]

- set of states reachable after n-fold application of post still contains previously unreached states:

\[
\forall n \geq 1 : (at_l_2 \land x - n \leq z \land x \leq y) \not\subseteq
\]
\[
\begin{align*}
& at_l_2 \land x \leq z \lor \\
& \lor_{1 \leq i < n}(at_l_2 \land x - i \leq z \land x \leq y)
\end{align*}
\]