Softwaretechnik / Software-Engineering

Lecture 3: More Metrics & Cost Estimation

Content

2018-04-23

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

« Software Metrics
W. Subjective Metrics
e Goal-Question-Metric Approach

+ Cost Estimation

“(Software) Economics in a Nutshell”

Cost Estimation
 Experts Estimation
Lie The delphi Method

Algorithmic Estimation

Survey: Softwarepraktikum

participate

Kinds of Metrics: by Measurement Procedure

Procedure
¥
assessment)
Example, body height,air pressure | body massindex(8MI), | health condition.
general weather forecast forthe | weather condition
nextday ('bad weather)
Example in size i LOC or NS productivity. usabilty
Software tmati
Engineering by COCOMO
Usually used for | collection of simple. predictions (cost qualty assessment;
base meastres estimation}: ermor weighting
overalassessments
Advantages exact, reproducibl. yields relevant, directly | not subvertable
automatically dirctly visile applicable to complex
characterstics characteristics
Disadvantages
nointerpretation oninspector

(Ludewig and Lichter, 2013)

360

23

S

Topic Area Project Management: Content

VL2 e Software Metrics
e Properties of Metrics
i~ Scales

Lo Examples

VL3 . Cost Estimation
e “(Software) Economics in a Nutshell”
e ExpertsE:

ation
e Algorithmic Estimation

Project Management

e Project

e Process and Process Modelling
{~e Procedure Models

e Process Models

© Process Metrics

L cm, Spice
£
Pseudo-Metrics

Some of the most interesting aspects of software development projects
are (today) hard or impossible to measure directly, e g.
« how maintainabl + doall modules do appropriate error handling?
« how much eff leti s
« howis the productivity of my software people? usable?
Due to high relevance. people want
to measure despite the difficulty in
measuring. Two main approaches:

T,

=]

Pieudo-metiics.

derived measures
Note: not every derived measure is a pseudo-metric:
« average LOC per module: derived, not pseudo — we really measure average LOC per module.
« measure maintair in average LOC per module: derived, pseudo

— we dont -LOCs only
Not robust if easily subvertible (see exercises). 380
61

Kinds of Metrics: by Measurement Procedure

objective metric pseudo metric subjective metric
Procedure counting, y insps
possi Y g
assessment)
Advantages exact. reproducible, yields relevant, directly | not subvertable,
i on not it
automatically directly visible applicable to complex
characteristics characteristics
hard
veriab pseud TR
nointerpretation oninspector
Example, body height,air pressure | body massindex (BMJ, | health condition,
general weather forecast for the weather condition ("bad
next day weather')
Examplein sizein LOC or NCSI; productivity; usability;
Software nber of e an error
Engineering by COCOMO
Usually used for | collection of simple predictions (cost quality assessment;
base measures error weighting

(Ludewig and Li

2013)

Information Overload!?

Now we have mentioned nearly 60 attributes one could measure. .
Which ones should we measure?

It depends...

One approach: Goal-Question-Metric (GQM).

Subjective Metrics

example problems countermeasures.
Statement | “The specification | Termsmaybe | Allow only certain
3 ambiguous, statements, characterise
conclusions are | them precisely.
hardly possible.

Assessment | “Themoduleis | Notnecessarily | Only offer particular
implementedina | comparable. outcomes; put them on an
clever way! (at least ordinal) scale.

Grading “Readabilty is Subjective: Define criteria for grades:
graded 4.0 grading not give examples how to grade:

practi isting artefacts

(Ludewig and Lich

. 2013)

813

Goal-Question-Metric (Basili and Weiss, 1984)

n Software and process measurements may yield

The three steps of GQM:

Define the goals relevant for a project or an organisation.

From each goal, derive questions

which need to be answered to check whether the goal is reached.
For each question, choose (or develop) metrics

which contribute to finding answers.

We usually want to optimise wrt. goals, not wrt. metrics.
In particular cri

n Being good wrt. to a certain metric is (in general) not an asset on its own.

al: pseudo-metrics for quality.

personal data (“personenbezogene Daten’
Their collection may be regulated by laws.

s

The Goal-Question-Metric Approach

9

Example: A Metric for Maintainability

« Goal: assess maintainability.
» One approach: grade the following aspects, e.g., with scale S = {0,
(Some aspects may be objective, some subjective (conduct revi

« Norm Conformance « Locality

iy size of units (modules etc) 11: use of parameters 41: test driver

ny: labeling formation hiding. 12 testdata

e namingof dentifirs local flow of control L3 preparation for test evaluation
Ly: design of interfaces 14: diagnostic components

na: design (layout) t5: dynamic consistency checks

n: separation of literals * Read: y N
ne: style of comments 1y data types * Typing
2+ structure of control flow ¢ type differentiation
r3: comments 12 type restriction
S ith weishte: m, — a1 w0 (520
o Define:m = mbedur (with weights: mg = G =X"7).

o Procedure:
« Train reviewers on existing examples
« Do not over-interpret reslts of first appli

o Evaluate and adjust before putting to use, adjust regularly. (Ludewig and Lichter, 2013)
123

Example: A Metric for Maintainability

« Goal: assess maintainability.
+ One approach: grade the following Development of a pseudo-metrics:
(Some aspects may be objective, some (i) Identify aspect to be represented.
Devise a model of the aspect.

Fix a scale for the metric.

¢ Norm Conformance * Locy V) Develop a definition of the pseudo-metric,
n1: size of units (modules etc) It us iie., how to compute the metric.
iz labelling o (v) Develop base measures for all parameters of
na: naming of identifiers b the definition.
4
na: design (ayout) (i) Apply and improve the metric.
ns: separation of literals * Reac
n: style of comments ¢ datatypes “iyping
¢ structure of control flow 1+ type differentiation
74 comments 2+ type restiction
o Define:m = Mtzcbiz (with weights: mg = Sotbtonn ¢ = 52 g).
« Procedure:
« Train reviewers on existing examples.
+ Do not over-interpret results of first applications.
+ Evaluate and adjust before putting to use, adjust regularly. (Ludewigand Lichter, 2013)
1243
And Which Metrics Should One Use?
Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:
o size..
... of newly created and changed code, etc
(automatically provided by revision control software),
o effort..
. for coding, review, te ing, maintenance, etc.
o errors..
... atleast errors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)
Measures derived from such basic measures may indicate problems ahead early enough
and buy time to take appropriate counter-measures. E.g., track
« error rate per release, error density (errors per LOC),
+ average effort for error detection and correction,
. etc
over time. In case of unusual values: investigate further (maybe using ad
13783

And Which Metrics Should One Use?

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.:

o size...

... of newly created and changed code, etc.
(automatically provided by revision control software),

o effort.

... for coding, review, testing, verification, fixing, maintenance, etc.

o errors...

at least erfors found during quality assurance, and errors reported by customer
(can be recorded via standardised revision control messages)

ES

And Which Metrics Should-Qune Llca?

Offten useful: collect some basic meas|
(in particular if collection is cheap / au

o size...

... of newly created and changed code,
(automatically provided by revision cq -

o effort...

for coding, review, testing, ve
o errors

... atleast errors found during quality as:
(can be recorded via standardised revi

Measures derived from such basic mey Tool support for software metrics e.g, SonarCube.

and buy time to take iate c -
« error rate per release, error density (errors per LOC),
« average effort for error detection and correction,

o etc

over time. In case of unusual values: investigate further (maybe using additional metrics).

134

And Which Metrics Should One Use?

Often useful: collect some basic measures in advance
(in particular if collection is cheap / automatic), e.g.

* size...

of newly created and changed code, etc.
(automatically provided by revision control software),

o effort...

for coding, review, testing, verificatiol Iteaching/swt/swivELines of Code and Churm Level
o errors...

at least errors found during quality as
(can be recorded via standardised revi

.

LOC and changed lines over time (obtained by statsvnli).

130

Content

« Software Metrics
W. Subjective Metrics
o Goal-Questi

Cost Estimation

« “(Software) Economics in a Nutshell”
Cost Estimation

Expert’s Estimation
Lo The Delphi Method
Algorithmic Estimation

* cocoMo
 Function Points

144

Topic Area Project Management: Content

VL2 Software Metrics

e Properties of Metrics

Lo Examples

VL3 Cost Estimation

Software) Economics in a Nutshell”
I-te Experts Estimation

Lie Algorithmic Estimation

o Software Metrics
W. Subjective Metrics
« Goal-Question-Metric Approach

« Cost Estimation
W. “(Software) Economics in a Nutshell”
+ Cost Estimation
Expert’s Estimation
Lie The Detphimethod

“(Software) Economics in a Nutshell”

vig
Project Management Algorithmic Estimation

[Project cocomo

[te Process and Process Modelling © Function Points

e Procedure Models

VLS L. process Models

o Process Metrics

i Lo cmm spice
15/43 16/43 173
Costs Costs vs. Benefits: A Closer Look Costs: Economics in a Nutshell
“Next to ‘Software; ‘Costs' is one of the terms occurring most often in this book." The benefit of a software is ined by the i using the software; Distinguish current cost (laufende Kosten)), e.g.
Ludewig and Lichter (2013) nfluenced by: + wages, business
« the degree of coincidence between product and requirements, adliinictocbin

cost (Kosten) all disadvantages of a solution

benefit (Nutzen)

. all benefits of a solution.
(or: negative costs)

Note: costs / benefits can be subjective ~ and not necessarily quantifiable in terms of money...

Super-ordinate goal of many projects:

ize overall costs, i.e. maximise difference between benefits and costs.

(Equivalent: ze sum of positive and negative costs)

« additional services, comfort, flexi

ity etc.

Some other examples of cost/benefit pairs: (inspired by Jones (1990)

Costs

Labor during development
(e.g. develop new test
machinery)

New equipment
(purchase, maintenance,

Possible Benefits
Use of result
(eg. fastertesting)

Better equipment
(maintenance:

y! ing old)

New software purchases

(Other) use of new software

<

system to new

yst
maybe easier maintenance

Increased data gathering

Increased control

Training for employees

Increased productivity

1943

o (business) management, marketing,

o rooms,

» computers, networks, software as part of infrastructure,

..

and project-related cost (projektbezogene Kosten), e.g. E\W\m

+ additional temporary personnel, badder
auofiea]

o contract costs,
o expenses,
o hardware and software as part of product or system,

2075

Software Costs in a Narrower Sense

software costs

TN

net. va%nac: DS:Q costs thﬁnwmﬂwﬂ.
error prevention analyse-and-fix /ﬂ.s/aﬁa& od beneiit
s s
as.i assurance
error localisation error removal error caused costs
costs costs (in operation]
[—)

during and after development

Software Engi and use of
ware that is reliable and works effi

Why Estimate Cost? v
&= /°
IO U i

Guatomer_Devioer Customer Devlper Cisomer Dercoer e
‘announcement offer software contract
ettty ety n et et ey

« Develoy

Lastenheft (Requirements Specification) Vo Auftraggeber festgelegte Gesamtheit
der e L halb
eines Auftrages.

ated by the customer) DIN 69901-5(2009)

per can help with writing the requirements specification,

in particular if customer is lacking technical background,

Pllichtenheft (Feature Specification] Vom Auftragnehmer erarbeitete Reali-
sierungsvorgaben aufgrund der Umsetzung des vom Auftraggeber vorgegebenen
Lastenhefts.

DIN 69901-5 (2009)

Jone and the same content can serve both purposes; then only the title defines the purpose.

1 O—- ay of getting the feature specification: a pre-project (may be subject of a designated contract).

2473

Cost Estimation

2w

The “Estimation Funnel”

A

effort estimated to real
effort (log, scale)

v B ki

12 —times

os

[

Pre-Project /4 Analysis A Design A Coding & Test , A

Uncertainty with estimations (following (Boehm et 21, 2000). p. 10).
Visualisation: Ludewig and Lichter (2013)

2543

Content

© Software Metrics
W. Subjective Metrics
« Goal-Question-Metric Approach

« Cost Estimation
“(Software) Economics in a Nutshell”
o Cost Estimation

o Experts Estimation
Lie The Delphi Method
(o Algorithmic Estimation

* cocomMo
(e Function Points

23/

Expert’s Estimation

26113

Expert’s Estimation

One approach: the Delphi method.

- St %m“ﬂu_s s . 2 . _”_
) M%@ P20

estmte agunt

I 2o0=2g

« Then take the median, for example.

Algorithmic Estimation: Principle

PP P P P Rt

Approach, more general:
) Identify (measurable) factors F,
) Take a big sample of data from previous projects.
) Try to come up with a formula f such that /(1 .
. F, foranew project

+, Fy, which influence overall cost, like size in LOC.

.., Fy) matches previous costs.

) Estimate values for F,
(v) Take f(F1,..., Fy) as cost estimate C for the new project.
i) Conduct new project, measure F, . .., F, and cost C'

(vii) Adjust f i C'is too different from C'.

Note:
© The need for (experts) esti
-« Rationale: itis often easier to estimate technical aspects than to estimate cost directly.

2

29753

Algorithmic Estimation

Algorithmic Estimation: COCOMO

28/43

30/

Algorithmic Estimation: Principle

P P P P P Bt

Assume:
P5 took place in the past,
. and kinds k; (0 = blue-ish, 1 = y:

o Projects Py,
« Sizes S;, costs

ish) have been measured and recorded.

Question: What s the cost of the new project Ps?
Approach:

Try to find a function f such that f(S;, k;) = Cy,for1 < i <5,
Estimate size 5 and kind k.

Estimate cost C as Cs = (S, ko).

(In the artificial example above, £(S, k) = S 1.8 + k - 0.3 would work, ie.

if Pg is of kind (thus k = 1) and size estimate is 55 = 2.7 then estimate C as f(Ss, kg) =

29/

Algorithmic Estimation: COCOMO

« Constructive Cost Model:

Formulae which fit a huge set of archived project data (from the late 707s).
Flavours:

« COCOMO 81 (Bochm, 1981): variants basic,
« COCOMO Il (Boehm etal, 2000)

termediate, detailed

 All flavours are based on estimated program size S measured in
DSl (Delivered Source Instructions) or kDSI (1000 DSI).

Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

+ COCOMO examples:
= textbooks like Ludewig and Lichter (2013) (most probably made up)

+ an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

: 3

COCOMO 81

Characteristics of the Type. alw Software
Sie inovato | Dendines/ Dew BT
ol Litde Nottight Stable 32 | 105 | organic
(50 KLOO)
saoRioq Medum | Medum Medum 30 | 112 | Semi-detached
Large Greater Tight s 2.8 | 120 | Embedded
hacded 2o
Basic COCOMO: \

o effortrequired: E =a-(S/kDSI)" [PM (person-months)|

o timetodevelop: T =c-E? [months]

« headcount: H=E/T [FTE (full time employee)]

o productiv P=S/E [DSIperPM] (+ useto checkfor plausibility)

Intermediate COCOMO:
E=M-a-(S/kDSI)" [person-months]
M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

COCOMO II: Post-Architecture

E=294.-5%.M

« Program size: § = (1 + REVL) - (Suew + Sequin)
« requirements volatility REVL:
eg. if new requirements make 10% of code unusable, then REVL = 0.1
© Snew: estimated size minus size w of re-used code,
g new code takes g-times the effort of re-use.

© Sequiv = w/q.if wr

« Scaling factors:
X =0+w w=091, §= k- (PREC + FLEX + RESL+ TEAM + PMAT)

normal high
PREC precedentness (experience with 620 | 496 | 372 | 248 | 124 | 000
similar projects)
FLEX development flexibility 507 | 405 | 304 [203 [101 | 000
(development process fixed by
customer)
RESL Architecture/risk resolution ik~ 707 | 565 | 424 | 283 | 141 | 000

management. architecture size)

TEAM Team cohesion (communication 548 | 438 | 329 [219 [110 | 000
effortin team)
PMAT _ Process maturity (see CMMi] 780 | 624 | 469 [312 [156 | 000

32

353

COCOMO 81: Some Cost Drivers

M = RELY - CPLX - TIME - ACAP - PCAP - LEXP - TOOL - SCED

RELY required software reliability | 075 088 | 1 140
CPLX_ product complexity o070 o085 |1 130 | 165
TIME__ execution time constraint 1 130 | 166
ACAP analyst capabiity 146 119 1 on
PCAP programmer capability 142 17 1 o7
LEXP programming language 107 1 095

experience
TOOL use of software tools 124 110 1 091 083
SCED required development 123 108 |1 104 110

schedule

» Note: what, e.g., “extra hi

TIME means, may depend on project context.

33/

COCOMO II: Post-Architecture Cont’d

Product factors

M = RELY - DATA - --- - SCED

description

required software reliability

size of database

complexity of system

degree of g

amount of required documentation

Platform factors.

‘execution time constraint
memory consumption constraint

stability of

Team factors

analyst capability

programmer capability

continuity of involved personnel

experience with application domain

experience with development environment
experience with programming languagels) and tools

Project factors

(also in COCOMO 81,

use of software tools

degree of di

vequired development schedule

36/3

Consists of

« Application Composition Model - project work is configuring components, rather than

« Early Design Model

P

programming
- adaption of Function Point approach (in a minute);
does not need completed architecture design

Model —imp of COCOMO 81; needs completed archi-
tecture design, and size of components estimatable

340

Algorithmic Estimation: Function Points

37

Algorithmic Estimation: Function Points

[
I Complexity Sum
Type low medium | high
input 4= 6=
output 5= 7=
query 3= __4= 6=
user data _ 7= 0= 15 =
reference data 5= 7= 10 =
Unadjusted function points UFP -
Value adjustment factor VAF VAF = o.m,_.:rQ.Mw GSC;,
Adjusted function points AFP = UFP - VAF

0< GSC: <5.

Discussion

Ludewig and Lichter (2013) says:
« Function Point approach used in practice,

in particular for ial software (business softwar
+ COCOMO tends to overestimate in this domain;

needs to be adjusted by corresponding factors.
In the end, it's experience, experience, experience:

SSXpETaNE Spe N TP
“Estimate, document, estimate better." (Ludewig and Lichter, 2013)

Suggestion: start to explicate your experience now.
« Take notes on your projects:

(e.g.. Softwarepraktikum, Bachelor Projekt, Master Bacherlor's Thesis, Master Projekt, Masters Thesis, ...)

« timestamps, size of program created, number of errors found, number of pages written,
« Try to identify factors: what hindered productivity, what boosted productivity, ...
« Which detours and mistakes were avoidable in hindsight? How?

40,

Algorithmic Estimation: Function Points

M
w
1BM
Co| - — - — A~
100 }\@\
Type m

- 50

input — ! AFP
output .| 0 500 1060 1500 2000

3=

L) = IBMand VW curve for the conversion from AFPs to PM according to
user data | (Noth and Kretzschmar, 1984) and (Kno|

reference data 5= =] 10 =

Unadjusted function points UFP .
Value adjustment factor VAF VAF = o.m?*g .
Adjusted function points AFP = UFP . VAF

Tell Them What You've Told Them. ..

« Goal-Question-Metric approach:

0<GSCi <

« Define goals, derive questions, choose metrics.

o Evaluate and adjust.

Recall: It's about the goal, not the metrics.

» For software costs, we can distinguish

« net production, quality costs, maintenance.

Software engineering is about being economic i all three aspects.

= Why estimate?

« Requirements specification (Lastenheft)

« Feature specification (Pflichtenheft

The latter (plus budget)is usually part of software contracts

« Approaches:
o Expert’s Estim

n

o Algorithmic Estimation: COCOMO, Function Points
— estimate cost indirectly, by estimating more technical aspects.

In the end, its experience (and experience (and experience))

38/43

e

COCOMO vs. Function Points

Reference

394

4213

References

Basili, V. R and Weiss, D. M. (1984). A methodology for collecting valid software engineering data. EEE
Transactions of Software Engineering, 10(6):728-738

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1) pages 530-538.
Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy. R., Reifer, D., Clark, B. K. Steece,
(2000). Software Cost Estimation with COCOMO Il. Prentice-Hall.

. Brown, A. W., Chulani, S., and Abts, C.

DIN (2009) DIN 69901-5.

Jones, G. W. (1990). Software Engineering. John Wiley & Sons.

Knéll, H.-D. and Busse, J. (1991). Aufwandsschdtzung von Software-Projekten in der Praxis: Methoden,
ispiele. Number 8 in Reihe Informatik. BI Wissenschaftsverlag.

Ludewig, |.and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition

Noth, T.and M. (1984). von DV-Projekten, D ich der
wichtigsten Verfahren. Springer-Verlag.

Wheeler, D. A. (2006). Linux kernel 2.6: It's worth more!

430

