
�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

Softwaretechnik / Software-Engineering

Lecture 15: UML State Machines
& Software Quality Assurance

2018-07-02

Prof. Dr. Andreas Podelski,Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content

�1
5

�2
01

8-
07

-0
2

�S
bl

oc
kc

on
te

nt
�

2/67

� Introduction and Vocabulary
� Software Modelling

� model; views / viewpoints; 4+1 view

� Modelling structure
� (simplified) class & object diagrams

� (simplified) object constraint logic (OCL)

� Principles of Design
� modularity, separation of concerns

� information hiding and data encapsulation

� abstract data types, object orientation

� Design Patterns

� Modelling behaviour
� communicating finite automata (CFA)

� Uppaal query language

� CFA vs. Software

� Model-driven/-based Software Engineering

� Unified Modelling Language(UML)
� basic and hierarchical state-machines

VL 11

...

VL 12
...

VL 13

...

VL 14
...

VL 15

...

Content I (Architecture & Design)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t�

3/67

� CFA vs. Software

� a CFA model is software

� CFA at Work

� drive to configuration, scenarios, invariants
� tool demo (verifier).

� Model-based/-driven Software Engineering

� Unified Modelling Language

� Brief History

� Sub-Languages

� UML Modes

� UML State Machines

� Hierarchical State Machines
� CoreState Machines
� steps and run-to-completion steps
� Rhapsody

CFA vs. Software

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

4/67

A CFA Model Is Software

�1
5

�2
01

8-
07

-0
2

�S
cf

as
w

�

5/67

Definition. Software is a finite descriptionS of a (possibly infinite)
set JSKof (finite or infinite) computation pathsof the form

� 0
� 1�! � 1

� 2�! � 2 � � �

where

� � i 2 � , i 2 N0, is calledstate (or configuration), and

� � i 2 A, i 2 N0, is calledaction (orevent).

The (possibly partial) functionJ� K: S 7! JSKis calledinterpreta-
tion of S.

� Let C(A 1 ; : : : ; A n) be a network of CFA.

� � = Conf

� A = Act

� JCK= f � = h~̀0 ; � 0 i
� 1��! h ~̀1 ; � 1 i

� 2��! h ~̀2 ; � 2 i
� 3��! � � � j � is a computation path ofCg.

� Note: the structural model just consists of the set of variables and the locations of C.

Example: Software Speci�cation

�1
5

�2
01

8-
07

-0
2

�S
cf

as
w

�

6/67

ht
tp

://
co

m
m

on
s.

w
ik

im
ed

ia
.o

rg
(C

C
-b

y-
sa

4.
0,

D
irk

In
go

Fra
nk

e)

Alphabet:

� M � dispense cash only,

� C � return card only,

� M
C � dispense cash and return card.

� Customer: �I don't care about the order ofM and C�

S 1 =
�

M:C
�
�
�C:M

�
�
� M

C

� !

� Refined Specification: �be consistent: either alwaysM:C or alwaysC:M �

S 2 = (M:C)! or (C:M) !

� Design Idea: �consider human errors: always doC:M �

S1 = (C:M) !

� Implementation (goal): softwareS2 behaves according to the design idea.

CFA and Queries at Work

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

8/67

Example: Vending Machine — Model Architecture

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

9/67

CoinValidator User

ChoicePanel

WaterDispenser SoftDispenser TeaDispenser Service

C50, E1

WATER, SOFT, TEA

OK

DWATER
DSOFT

DTEA

DOK

FILLUP

ENVIRONMENTSYSTEM

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

� Shared variables:

� bool water_enabled, soft_enabled, tea_enabled;

� int w = 3, s = 3, t = 3;

� Note: Our model does not use scopes (�information hiding�) for channels.
That is, `Service' could send `WATER' if the modeler wanted to.

Design Sanity Check: Drive to Con�guration

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

10/67

� Question: Is is (at all) possible to have no water in the vending machine model?
(Otherwise, the design is definitely broken.)

� Approach: Check whether a configuration satisfying

w = 0

is reachable, i.e. check
N VM j= 9� w = 0 :

for the vending machine modelN VM .

Design Check: Scenarios

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

11/67

� Question: Is the following existential LSC satisfied by the model?
(Otherwise, the design is definitely broken.)

LSC: buy tea
AC: true
AM: initial I: permissive

User Coin Validator Choice Panel

C50

C50

C50

TEA

: E1 !

� Approach: Use the following newly created CFA `Scenario'

end_of_scenario

TEA!C50!C50!C50!

instead ofUserand check whether locationend_of_scenario is reachable, i.e. check

N 0
VM j= 9� Scenario:end_of_scenario :

for the modified vending machine modelN 0
VM .

Design Veri�cation: Invariants

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

12/67

� Question: Is it the case that the �tea� button isonly enabled
if there ise 1.50 in the machine?
(Otherwise, the design is broken.)

� Approach: Check whether the implication

tea _enabled =) CoinValidator:have_c150

holds in all reachable configurations, i.e. check

N VM j= 8� tea _enabled imply CoinValidator:have_c150

for the vending machine modelN VM .

drink_ready

have_c150

have_e1

have_c100

have_c50idle

OK?OK? OK?OK?

E1?

tea_enabled := (t > 0)

C50?

water_enabled := (w > 0),
tea_enabled := (t > 0)

C50?

tea_enabled := (t > 0)

E1?

soft_enabled := (s > 0)

C50?

soft_enabled := (s > 0)

C50?

water_enabled := (w>0)

Design Veri�cation: Sanity Check

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

13/67

� Question: Is the �tea� button ever enabled?
(Otherwise, the considered invariant

tea _enabled =) CoinValidator:have_c150

holds vacuously.)

� Approach: Check whether a configuration satisfyingwater _enabled = 1 is reachable.

Exactly like we did withw = 0 earlier.

Design Veri�cation: Another Invariant

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

14/67

� Question: Is it the case that, if there is money in the machine
and water in stock, that the �water� button is enabled?

� Approach: Check

N VM j= 8� (CoinValidator:have_c50or CoinValidator:have_c100or CoinValidator:have_c150)

imply water _enabled :

drink_ready

have_c150

have_e1

have_c100

have_c50idle

OK?OK? OK?OK?

E1?

tea_enabled := (t > 0)

C50?

water_enabled := (w > 0),
tea_enabled := (t > 0)

C50?

tea_enabled := (t > 0)

E1?

soft_enabled := (s > 0)

C50?

soft_enabled := (s > 0)

C50?

water_enabled := (w>0)

Recall: Universal LSC Example

�1
5

�2
01

8-
07

-0
2

�S
cf

aa
tw

or
k

�

15/67

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

: (C50 ! _ E1 ! _ pSOFT !

_ pTEA ! _ pFILLUP !)

water_in _stock

dWATER

OK
: (dSoft ! _ dTEA !)

Content I (Architecture & Design)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t�

16/67

� CFA vs. Software

� a CFA model is software

� CFA at Work

� drive to configuration, scenarios, invariants
� tool demo (verifier).

� Model-based/-driven Software Engineering

� Unified Modelling Language

� Brief History

� Sub-Languages

� UML Modes

� UML State Machines

� Hierarchical State Machines
� CoreState Machines
� steps and run-to-completion steps
� Rhapsody

Model-based/-driven Software Engineering

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

17/67

�1
5

�2
01

8-
07

-0
2

�S
m

ds
e

�

18/67

Model-Driven Software Engineering

�1
5

�2
01

8-
07

-0
2

�S
m

ds
e

�

19/67

� (Jacobson et al., 1992): �System development is model building.�

� Model basedsoftware engineering (MBSE):some (formal) models are used.

� Model driven software engineering (MDSE):all artefacts are (formal) models.

Idea

Structure Declarative
Behaviour

|
{z

}

Declarative
Behaviour0

|
{z

}

Structure0 Constructive
Behaviour

|
{z

}

Structure00 Constructive
Behaviour0

|
{z

}

Implementation

elicit

refine

refine

refine refine

requirements
model

requirements/
constraints

design

system model

j=
?

j=
?

generate/
program

�1
5

�2
01

8-
07

-0
2

�S
m

ds
e

�

20 /67

Development Approaches

�1
5

�2
01

8-
07

-0
2

�S
m

ds
e

�

21/67

task, problem

outside-in

inside-out

top-down

bottom-up

us
er

in
te

rf
ac

e

system software, hardware

� top-down risk: needed functionality hard to realise on target platform.

� bottom-up risk: lower-level units do not �fit together�.

� inside-out risk: user interface needed by customer hard to realise with existing system,

� outside-in risk: elegant system design not reflected nicely in (already fixed) UI.

Transform vs. Write-Down-and-Check

�1
5

�2
01

8-
07

-0
2

�S
m

ds
e

�

22/67

Code Generation from CFA: A Simple Example

�1
5

�2
01

8-
07

-0
2

�S
im

pl
�

23/67

W0dispense

Wi
FILLUP?
w := 3

FILLUP?
w := 3

w == 0
DOK!

w > 0
DOK! DWATER?

w := w - 1

int w := 3;

typedef f Wi ; dispense; W0 g st_T ;
st_T st := Wi ;

SethAct i take_action(Act �) {
SethAct i R := ; ;
if
� st = Wi : if

� � = DWATER ? : w := w � 1;
st := dispense;
if (w = 0) R := R [f DOK !g;
if (w > 0) R := R [f DOK !g;

� � = FILLUP ? : w := 3;
st := Wi ;
R := R [f DWATER ?; FILLUP ?g;

� else : R := R [f DWATER ?; FILLUP ?g
� ;

� st = dispense: if
� � = DOK ! ^ w = 0 : st := W0 ;

R := R [f FILLUP ?g;
� � = DOK ! ^ w > 0 : st := Wi ;

R := R [f FILLUP ?g;
� else : R := R [f DOK ?g
� ;

� st = W0 : if
� � = FILLUP ? : w := 3;

st := Wi ;
R := R [f DWATER ?; FILLUP ?g;

� else : R := R [f FILLUP ?g
� ;

� ;
return R;

}

Content I (Architecture & Design)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t�

24/67

� CFA vs. Software

� a CFA model is software

� CFA at Work

� drive to configuration, scenarios, invariants
� tool demo (verifier).

� Model-based/-driven Software Engineering

� Unified Modelling Language

� Brief History

� Sub-Languages

� UML Modes

� UML State Machines

� Hierarchical State Machines
� CoreState Machines
� steps and run-to-completion steps
� Rhapsody

Uni�ed Modelling Language

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

25/67

A Brief History of the Uni�ed Modelling Language (UML)

�1
5

�2
01

8-
07

-0
2

�S
um

lo
ut

lo
ok

�

26/67

ht
tp

://
w

ik
im

ed
ia

.o
rg

(C
C

nc
-s

a
3.

0,
U

se
r:

A
ut

um
nS

no
w

)

ht
tp

://
w

ik
im

ed
ia

.o
rg

(C
C

nc
-s

a
3.

0,
U

se
r:

A
ut

um
nS

no
w

)

ht
tp

://
w

ik
im

ed
ia

.o
rg

(P
ub

lic
do

m
ai

n,
Jo

ha
nn

es
Fa

so
lt)

use case model

domain object
model

analysis model design model

class. . .

implementation
model

. . .

testing model

may be expressed in terms of

structured by

realized by

implemented by

tested in

� Boxes/lines and automata are used to visualise softwarefor ages.

� 1970's, Software Crisis— � Idea: learn from engineering disciplines
in order to handle growing complexity.
Modelling languages:
Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrams

� Mid 1980's:Statecharts(Harel, 1987),StateMate— (Harel et al., 1990)

� Early1990's, advent of Object-Oriented-Analysis/Design/Programming
� Inflation of notations and methods, most prominent:

� Object-Modeling Technique(OMT) (Rumbaugh et al., 1990)

� Booch Method and Notation (Booch, 1993)

� Object-Oriented Software Engineering(OOSE) (Jacobson et al., 1992)

Each �persuasion� selling books, tools, seminars. . .

� Late1990's: joint effort of �the three amigos� UML 0.x and 1.x

Standards published byObject Management Group(OMG):

� international, open membership, not-for-profit
computer industry consortium�.

Much criticised for lack of formality.

� Since2005 : UML 2.x, split into infra- and superstructure documents.

� Syntax: pretty precisely defined.

� Semantics: natural language, thus informal.

UML Overview(OMG, 2007b, 684)

�1
5

�2
01

8-
07

-0
2

�S
um

lo
ut

lo
ok

�

27/67

Figure A.5 - The taxonomy of structure and behavior diagram

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram
Component

Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

OCL

Dobing and Parsons(2006)

UML and the Pragmatic Attribute

�1
5

�2
01

8-
07

-0
2

�S
um

lm
od

e
�

28/67

Recall: definition �model� (Glinz, 2008 , 425):

(iii) thepragmatic attribute,
i.e. the model is built in a specific context for a specificpurpose.

Examples for context/purpose:

Floorplan as sketch: Floorplan as blueprint: Floorplan as program:

+ wiringplan + windows

+ ...

With UML it's the Same[http://martinfowler.com/bliki]

�1
5

�2
01

8-
07

-0
2

�S
um

lm
od

e
�

29/67

The last slide is inspired byMartin Fowler, who puts it like this:

�[...] people differ about what should be in the UML
because there arediffering fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, andUmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

So when someone else's view of the UML seemsrather different to yours,
it may be because they use a differentUmlMode to you.�

Claim:

� This not only applies to UMLas a language(what should be in it etc.?),

� but at least as well to each individual UMLmodel.

UML-Mode of the Lecture: As Blueprint

�1
5

�2
01

8-
07

-0
2

�S
um

lm
od

e
�

30 /67

+ wiringplan + windows

+ ...

Sketch
In this UmlMode developers use the UML
to help communicate some aspects of a
system. [...]
Sketches are also useful in documents, in
which case the focus is communication
ra- ther than completeness. [...]
The tools used for sketching are
lightweight drawing tools and often
people aren't too particular about
keeping to every strict rule of the UML.
Most UML diagrams shown in books,
such as mine, are sketches.
Their emphasis is on selective
communication rather than complete
specification.

Hence my sound-bite �comprehensive-

ness is the enemy of comprehensibility�

Blueprint

[...] In forward engineering the idea is
that blueprints are developed by a
designer whose job is to build a detailed
design for a programmer to code up.
That design should be sufficiently
complete that all design decisions are
laid out and the programming should
follow as a pretty straightforward
activity that requires little thought. [...]
Blueprints require much more
sophisticated tools than sketches in
order to handle the details required for
the task. [...]

Forward engineering tools support dia-

gram drawing and back it up with a

repository to hold the information. [...]

ProgrammingLanguage

If you can detail the UML enough, and
provide semantics for everything you
need in software, you can make the UML
be your programming language.
Tools can take the UML diagrams you
draw and compile them into executable
code.
The promise of this is that UML is a
higher level language and thus more
productive than current programming
languages.
The question, of course, is whether this
promise is true.

I don't believe that graphical program-

ming will succeed just because it's graph-

ical. [...]

Our goal:

� be precise toavoid misunderstandings.

� allow formal analysis of consistency/implication on the design level� find errors early.

Yet we tried to be consistent with the (informal semantics) fromOMG(2007a ,b) as far as possible.

UML State Machines

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

31/67

Composite (or Hierarchical) States

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

32/67

� OR-states, AND-statesHarel (1987).

� Composite states are aboutabbreviation, structuring, andavoiding redundancy.

n

�
w e

s

resigned

X=
X=

X=

X=

�

n

�
w e

s

resigned

X=

n

fastN

�

wfastW e

fastE

s

fastS

F=

F=

�

n

�
w e

s

�
slow

fast

F=F=

Example

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

33/67

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser
->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

Would be Too Easy. . .

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

34/67

�
�

s1

s2

�
s3

s8
s4

�

s5

s6

E=

F=

F=
E=

G=

s7

[true]=
F=

! � Software Design, Modelling, and Analysis with UML� in some winter semesters.

UML Core State Machines

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

35/67

C
D

x : Int = 27

itsD
0::1

itsC
0::1

hhsignal ii

E

hhsignal ii

F

hhsignal ii

G

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

annot ::=
�

heventi [.heventi]�
| {z }

trigger

[[hguard i]] [/ haction i]
�

with

� event 2 E, (optional)

� guard 2 Expr S (default:true, assumed to be inExpr S)

� action 2 Act S (default:skip , assumed to be inAct S)

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready foru1

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready foru1

4.a s2 1 0 s1 1 G ready foru1

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready foru1

4.a s2 1 0 s1 1 G ready foru1

5.a s1 1 0 s1 1

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready foru1

4.a s2 1 0 s1 1 G ready foru1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0

Event Pool and Run-To-Completion

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

36/67

s1 s2
E=itsD ! F

G

s1 s2
F [x > 0]

s3 =itsC ! G=x := 0

u1 : C
state : f s1 ; s2g

stable : Bool

u2 : D
x = 27

state : f s1 ; s2 ; s3g

stable : Bool

itsD

itsC

u1 u2
step state stable x state stable event pool
0 s1 1 27 s1 1 E ready foru1

1 s2 1 27 s1 1 F ready foru2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready foru1

4.a s2 1 0 s1 1 G ready foru1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0
5.b s1 1 0 s1 1

Rhapsody Architecture

�1
5

�2
01

8-
07

-0
2

�S
um

ls
tm

�

37/67

C.h D.h

C.cpp D.cpp

MainDefaultComponent.cpp

DfltCmp.exe

generate

build / make

(compiler)

run

E!

go

�D just
stepped from
s1 to s2 by
transition t �

Content I (Architecture & Design)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t�

38/67

� CFA vs. Software

� a CFA model is software

� CFA at Work

� drive to configuration, scenarios, invariants
� tool demo (verifier).

� Model-based/-driven Software Engineering

� Unified Modelling Language

� Brief History

� Sub-Languages

� UML Modes

� UML State Machines

� Hierarchical State Machines
� CoreState Machines
� steps and run-to-completion steps
� Rhapsody

Tell Them What You've Told Them. . .

�1
5

�2
01

8-
07

-0
2

�S
ttw

yt
t�

39/67

� We can usetools like Uppaal to

� checkand verify CFAdesign modelsagainst requirements.

� CFA(and state charts)

� can easily beimplemented using the translation scheme.

� Wanted: verification resultscarry over to the implementation.

� if code isnot generated automatically,

verify code againstmodel.

� UML State Machinesare

� principally the same thing as CFA,
yet provide more convenient syntax.

� Semanticsuses

� asynchronouscommunication,

� run-to-completion steps

in contrast to CFA.

(We could define the same for CFA, but then
the Uppaal simulator would not be useful any more.)

� Mind UML Modes.

Code Quality Assurance
�1

5
�2

01
8-

07
-0

2
�m

ai
n

�

40 /67

Topic Area Code Quality Assurance: Content

�1
5

�2
01

8-
07

-0
2

�S
bl

oc
kc

on
te

nt
2

�

41/67

� Introduction and Vocabulary

� Test case, test suite, test execution.
� Positive and negative outcomes.

� Limits of Software Testing

� Glass-Box Testing

� Statement-, branch-, term-coverage.

� Other Approaches

� Model-based testing,
� Runtime verification.

� Program Verification

� partial and totalcorrectness,
� Proof System PD.

� Review

VL 15

...

VL 16

...

VL 17
...

VL 18...

Content (Part II)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t2
�

42/67

� Introduction

� quotes on testing,
� systematic testing vs. `rumprobieren'.

� Test Case

� definition,
� execution,
� positive and negative.

� Test Suite

� Limits of Software Testing

� Software examination paths
� Is exhaustive testing feasible?
� Range vs. point errors

� More Vocabulary

Testing: Introduction

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

43/67

Quotes On Testing

�1
5

�2
01

8-
07

-0
2

�S
te

st
qu

ot
es

�

44/67

�Testing is the execution of a program with the goal to discover errors.�

(G. J. Myers, 1979)

�Testing is the demonstration of a program or system with the goal toshow that it does
what it is supposed to do.� (W. Hetzel, 1984)

�Software testing can be used to show the presence of bugs,
but never to show their absence!� (E. W. Dijkstra, 1970)

Rule-of-thumb : (fairly systematic) tests discover half of all errors.

(Ludewig and Lichter, 2013)

Preliminaries

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

45/67

Recall:

Definition. Software is a finite descriptionS of a (possibly infinite) setJSKof (finite or

infinite) computation pathsof the form � 0
� 1��! � 1

� 2��! � 2 � � � where

� � i 2 � , i 2 N 0 , is calledstate (orconfiguration), and

� � i 2 A, i 2 N 0 , is calledaction (orevent).

The (possibly partial) functionJ� K: S 7! JSKis calledinterpretation of S.

� From now on, we assume thatstatesconsist of aninput and anoutput/internal part, i.e.,
there are� in and � out such that

� = � in � � out :

� Computation paths are then of the form

� =
�

� i
0

� o
0

�
� 1��!

�
� i

1

� o
1

�
� 2��! � � �

� We use� # � in to denote � = � i
0

� 1��! � i
1

� 2��! � � � ; i.e. theprojection of � onto � in .

Test Case

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

46/67

Definition. A test caseT over � and A is a pair(In ; Soll) consisting of

� a descriptionIn of sets of finite input sequences,

� a descriptionSoll of expected outcomes,

and an interpretationJ�Kof these descriptions:

� JIn K� (� in � A) � , JSollK� (� � A) � [(� � A) !

Examples:

� Test case for procedurestrlen : String ! N , s denotes parameter,r return value:

T = (s = "abc" ; r = 3)

Js = "abc" K= f � i
0

��! � i
1 j � 0(s) = "abc" g, Jr = 3 K= f � 0

��! � 1 j � 1(r) = 3 g,

Shorthand notation: T = ("abc" ; 3).

� �Call strlen () with string "abc" , expect return value3.�

Test Case

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

46/67

Definition. A test caseT over � and A is a pair(In ; Soll) consisting of

� a descriptionIn of sets of finite input sequences,

� a descriptionSoll of expected outcomes,

and an interpretationJ�Kof these descriptions:

� JIn K� (� in � A) � , JSollK� (� � A) � [(� � A) !

Examples:

� Test case for vending machine.

T = (C50; WATER ; DWATER)

JC50; WATER K= f � i
0

C50��! � i
1

��! � � � ��! � i
j � 1

WATER�����! � i
j g,

JDWATER K= f � 0
� 1��! � � �

� k��! � k � 1
DWATER������! � k j k � 10g,

� �Send event C50 and any time laterWATER , expectDWATER after 10 steps the latest.�

Test Case

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

46/67

Definition. A test caseT over � and A is a pair(In ; Soll) consisting of

� a descriptionIn of sets of finite input sequences,

� a descriptionSoll of expected outcomes,

and an interpretationJ�Kof these descriptions:

� JIn K� (� in � A) � , JSollK� (� � A) � [(� � A) !

Note:

� Input sequencescan consider

� input data, possibly with timing constraints,

� other interaction, e.g., from network,

� initial memory content,

� etc.

� Input sequencesmay leave degrees of freedom to tester.

� Expected outcomesmay leave degrees of freedom to system.

Executing Test Cases

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

47/67

� A computation path

� =
�

� i
0

� o
0

�
� 1��!

�
� i

1

� o
1

�
� 2��! � � �

from JSKis calledexecution of test case(In ; Soll) if and only if

� there isn 2 N such that� 0
� 1��! : : :

� n��! � n # � in 2 JIn K.

(�A prefix of � corresponds to an input sequence�).

Execution� of test caseT is called

� successful(orpositive) if and only if � =2 JSollK.

� Intuition: an an error has been discovered.

� Alternative: test itemS failed to pass the test.

� Confusing: �test failed�.

� unsuccessful(ornegative) if and only if � 2 JSollK.

� Intuition: no error has been discovered.

� Alternative: test itemS passed the test.

� Okay: �test passed�.

Test Suite

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

48/67

� A test suite is a finite set of test casesf T1 ; : : : ; Tn g.

� An execution of a test suite is a set of computation paths,
such that there is at least one execution for each test case.

� An execution of a test suite is calledpositive
if and only if at least one test case execution ispositive.

Otherwise, it is callednegative.

Not Executing Test Cases

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

49/67

� Consider the test case
T = ("" ; 0)

for procedurestrlen .

(�Empty string has length 0.�)

� A tester observes the following software behaviour:

� = f s 7! NULL; r 7! 0g
| {z }

= � 0

��! program-abortion
| {z }

� 1

� Test executionpositive or negative?

Note:

� If a tester does not adhere to an allowed input sequence ofT , � is not a test execution.

Thus� is neither positive nor negative (only defined for test executions).

� Same case: power outage (if continuous power supply is considered in input sequence).

Tests vs. Systematic Tests

�1
5

�2
01

8-
07

-0
2

�S
te

st
in

tr
o

�

50 /67

Test � (one or multiple) execution(s) of a program on a computer with the goal to find
errors. (Ludewig and Lichter, 2013)

Not (even) a test(in the sense of this weak definition):

� any inspection of the program (no execution),
� demo of the program (other goal),
� analysis by software-tools for, e.g., values ofmetrics (other goal),
� investigation of the program with a debugger(other goal).

Systematic Test� a test such that

� (environment) conditions are defined or precisely documented,

� inputs have been chosen systematically,

� results are documented and assessed according to criteria
that have been fixed before. (Ludewig and Lichter, 2013)

(Our) Synonymsfor non-systematic tests: Experiment, `Rumprobieren'.

In the following : test means systematic test; if not systematic, call itexperiment.

So Simple?

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

51/67

Environmental Conditions

�1
5

�2
01

8-
07

-0
2

�S
te

st
to

oe
as

y
�

52/67

Strictly speaking, a test case is a triple(In ; Soll; Env)

comprising a descriptionEnv of (environmental) conditions.

Env describes any aspects whichcould have an effect
on the outcome of a test execution and cannot
be specified as part ofIn , such as:

� Which program (version) is tested?

� Built with which compiler, linker, etc.?

� Test host(OS, architecture, memory size, connected devices (configuration?), etc.)?

� Which other software (in which version, configuration) is involved?

� Who is supposed to testwhen?

� etc. etc.

! test executions should be (as)reproducible and objective (as possible).

Full reproducibility is hardly possiblein practice � obviously (err, why. . .?).

� Stepstowardsreproducibility and objectivity :

� have a fixed build environment,

� use a fixed test host which does not do any other jobs,

� execute test casesautomatically (test scripts).

Content (Part II)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t2
�

53/67

� Introduction

� quotes on testing,
� systematic testing vs. `rumprobieren'.

� Test Case

� definition,
� execution,
� positive and negative.

� Test Suite

� Limits of Software Testing

� Software examination paths
� Is exhaustive testing feasible?
� Range vs. point errors

� More Vocabulary

The Limits of Software Testing

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

54/67

Software Examination(in Particular Testing)

�1
5

�2
01

8-
07

-0
2

�S
lim

its
�

55/67

� In each examination, there aretwo paths from
the specification to results:

� the production path (using model, source code,
executable, etc.), and

� the examination path
(using requirements specifications).

� A check can only discover errors
on exactly one of the paths.

� If a difference is detected:
examination result ispositive.

� What is not on the paths, is not checked;
crucial:specificationand comparison.

Recall: checking procedure
shows no error reports error

ar
te

fa
ct

ha
s

er
ro

r

yes

false negative true positive

no

true negative false positive

specification

implement
specification

comprehend
specification

�is�-result
requirements

on result

compare

examination
result4 / 8 /?

information flow development
information flow examination

(Ludewig and Lichter, 2013)

Recall: Quotes On Testing

�1
5

�2
01

8-
07

-0
2

�S
lim

its
�

56/67

�Software testing can be used to show the presence of bugs,
but never to show their absence!� (E. W. Dijkstra, 1970)

Why Can't We Show The Absence of Errors (in General)?

�1
5

�2
01

8-
07

-0
2

�S
lim

its
�

57/67

Consider asimple pocket calculator for adding 8-digit decimals:
12345678

+ 27

7 8 9 0

4 5 6 +

1 2 3 =

� Requirement: If the display showsx, + , andy, then after pressing = ,

� the sum of x and y is displayed ifx + y has at most 8 digits,

� otherwise �-E-� is displayed.

� With 8 digits, both x and y range over[0; 108 � 1].

� Thus there are1016 = 10 ; 000; 000; 000; 000; 000 possible input pairs(x; y) to be
considered
for exhaustive testing, i.e. testing every possible case!

� And if we restart the pocket calculator for each test,
we do not know anything about problems withsequencesof inputs. . .

(Local variables may not be re-initialised properly, for example.)

Observation: Software Usually Has Many Inputs

�1
5

�2
01

8-
07

-0
2

�S
lim

its
�

58/67

� Example: Simple Pocket Calculator.

With ten thousand (10,000) different test cases (that's a lot!),

9,999,999,999,990,000 of the 1016 possible inputs remainuncovered.

In other words:
Only 0:0000000001%of the possible inputs are covered,99:9999999999%not touched.

� In diagrams: (red: uncovered,blue: covered)

108

108

Point vs. Range Errors

�1
5

�2
01

8-
07

-0
2

�S
po

in
tr

an
ge

�

59/67

� Software is (in general)not continous.

� Consider a continuous function, e.g. the one to the right:

"

�For sufficiently small" -environments of an input,
the outputs differ only by a small amount � .

� Physical systems are (to a certain extent) continous:

� For example, if a bridge endures a single car of 1000 kg,
we strongly expect the bridge to endure cars of 990 kg or 1010 kg.

� And anything of weight smaller than 1000 kg can be expected to be endured.

� For software, adjacent inputsmay yield

�

arbitrarily distant output values.

Vocabulary:

� Point error: an isolated input value triggers the error.

� Range error: multiple �neighbouring� inputs trigger the error.

� For software, (in general, without extra information)
we can notconclude from some values to others.

Content (Part II)

�1
5

�2
01

8-
07

-0
2

�S
co

nt
en

t2
�

60 /67

� Introduction

� quotes on testing,
� systematic testing vs. `rumprobieren'.

� Test Case

� definition,
� execution,
� positive and negative.

� Test Suite

� Limits of Software Testing

� Software examination paths
� Is exhaustive testing feasible?
� Range vs. point errors

� More Vocabulary

Tell Them What You've Told Them. . .

�1
5

�2
01

8-
07

-0
2

�S
ttw

yt
t2

�

65/67

� Testingis about

� finding errors, or

� demonstrating scenarios.

� A test caseconsists of

� input sequencesand

� expected outcome(s).

� A test caseexecution is

� positive if an error is found,

� negativeif no error is found.

� A test suite is a set of test cases.

� Distinguish (among others),

� glass-box test: structure (or source code) of test item available,

� black-box test: structure not available.

References

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

66/67

References

�1
5

�2
01

8-
07

-0
2

�m
ai

n
�

67/67

Booch, G. (1993).Object-oriented Analysis and Design with Applications. Prentice-Hall.

Dobing, B. and Parsons, J. (2006). How UML is used.Communications of the ACM, 49(5):109�114.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen.Informatik Spektrum,
31(5):425�434.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231�274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development of complex
reactive systems.IEEE Transactions on Software Engineering, 16(4):403�414.

Jacobson, I., Christerson, M., and Jonsson, P. (1992).Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

Ludewig, J. and Lichter, H. (2013).Software Engineering. dpunkt.verlag, 3. edition.

OMG (2007a). Unified modeling language: Infrastructure, version 2.1.2. Technical Report formal/07-11-04.

OMG (2007b). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen,W. (1990).Object-Oriented Modeling and Design.
Prentice Hall.

