15 2018-07-02 main

Softwaretechnik / Software-Engineering

Lecture 15: UML State Machines
& Software Quality Assurance

2018-07-02

Prof. Dr. Andreas PodelskiDr. Bernd Westphal

Albert-Ludwigs-Universitét Freiburg, Germany

Topic Area Architecture & Design: Content

7-02 Sblockcontent

VL11

VL 12

VL 13

VL 14

VL 15

Introduction and Vocabulary
Software Modelling

model; views / viewpoints; 4+1 view

Modelling structure
(simplified) class & object diagrams
(simplified) object constraint logic (OCL)
Principles of Design
modularity, separation of concerns
information hiding and data encapsulation
abstract data types, object orientation

Design Patterns
Modelling behaviour
communicating finite automata (CFA)
Uppaal query language
CFA vs. Software
Model-driven/-based Software Engineering
Unified Modelling Language(UML)

basic and hierarchical state-machines

Content | (Architecture & Design)

Scontent

15 2018-07-02

CFA vs. Software
a CFA model is software

CFA at Work
drive to configuration, scenarios, invariants

tool demo (verifier).

Model-based/-driven Software Engineering

Unified Modelling Language

- Brief History
— Sub-Languages
“{ UML Modes

UML State Machines

Hierarchical State Machines

Core State Machines

steps and run-to-completion steps
Rhapsody

S

CFA vs. Software

@

367

die7

A CFA Model Is Software

15 2018-07-02 Scfasw

Definition. Software is a finite descriptionS of a (possibly infinite)
set JSKof (finite or infinite) computation paths of the form

o’ 1° 2
where

i 2 ,i2 No,is calledstate (or configuration), and
i 2 A,i 2 Ny, is calledaction (orevent).

The (possibly partial) functiond K: S 7! JSKis calledinterpreta-
tion of S.

= Conf
A = Act
JCK= f = K%o; oith' ™1; 1ith? ~; it 3¥j is a computation path ofCg

Note: the structural model just consists of the set of variables and the lations of C.

Example: Software Speci cation

[[|
5 Geldautomat 5

Alphabet:

M dispense cash only,
C return card only,
'\é dispense cash and return card.

Customer. | don't care about the order ofM andC

si= mccm Y
Refined Specificatiort be consistent: either alwaysM:C or alwaysC:M
S, =(M:C)" or(C:M)'
Design Idea consider human errors: always d€:M
S =(CM)

Implementation (goal): softwareS, behaves according to the design idea.

Formal Methods in the Software Development Process

15 2018-07-02 main

15 - 2018-07-02 - Scfasw -

Development
Process/ Project
Management

analyse

CFA and Queries at Work

7767

867

Example: Vending Machine — Model Architecture

OLDENBURG

==
=
=
=
=
_
=
=
—
=
=

e

)) C50,E1 1 1
CoinValidator i

-

1

1

e ~eh 1

25 1
WK it

1

1

1

1

|
]

- i L

SYSTEM] : ENVIRONMENTy

I I
1 1
1 1
1 1
1 service | |
1 1
1 1
1 1

d

~l

DWATER DTEA
DSOFT

I [|
‘ WaterDispenser

i f 1

FILLUP

‘ SoftDispenser

‘ TeaDispenser

i

/

/

9
/g
o
C
8
o
5%

it

Shared variables

bool water_enabled, soft_enabled, tea_enabled;
intw=3,s=3,t=3;

Note: Our model does not use scopes (information hiding) for chanels.
That s, "Service' could send "WATER' if the modeler wanted to.

A 967

Design Sanity Check: Drive to Con guration

OLDENBURG

=
=
=
=
=
_
=
=
—
=
=

Question: Is is (at all) possible to have no water in the vending machine motte
(Otherwise, the design is definitely broken.)

i

Approach: Check whether a configuration satisfying
w=0

is reachable, i.e. check
NVM F 9 w=0:

for the vending machine modelN vy .

2 1067

Design Check: Scenarios

OLDENBURG

==
=
=
—
=
]
=
=
=
=3

Question: Is the following existential LSC satisfied by the model?
(Otherwise, the design is definitely broken.)

[SC: buytea
ACT e
AM:__initial I: _permissive

[e | [comvatsoor | [cmeerare |

cs0

cs0

Approach: Use the following newly created CFA “Scenario'
C50! C50! C50! TEA!

© O O O O

end_of_scenario

instead of Userand check whether locatiorend_of_scenario is reachable, i.e. check
N\(,’,\,I E 9 Scenarioend_of_scenario :

for the modified vending machine modelN \9M .

1%

Design Veri cation: Invariants

=
=
=
=
=
_
=
=
—
=
=

Question: Is it the case that the tea button isonly enabled
if there ise 1.50 in the machine?
(Otherwise, the design is broken.)

Approach: Check whether the implication
tea_enabled =) CoinValidatorhave_c150
holds in all reachable configurations, i.e. check
Nym F 8 tea_enabled imply CoinValidatorhave_c150

for the vending machine modelN vy .

2 have_el ~502
El A C50
soft_enabled = (s > 0) L/\ water_enabled := (w >\Q),
tea_enabled := (t > 0)
idle

. have_c50 - -

© 50 50 ~ C50
water_enabled := (w>0) soft_enabled = (s>0) tea_enabled = (t> 0)

have_c100 hayé_ 150

E1?

tea_enabled := (> 0)

?
OK OK? OoK? OK?

Ay
drink_ready

. 1267

Design Veri cation: Sanity

Check

-07-02 Scfaatwork

2018

15

Question: Is the tea button ever enabled?
(Otherwise, the considered invariant

tea _enabled

holds vacuously.)

Approach: Check whether a configuration satisfyingzater _enabled = 1 is reachable.

Exactly like we did withw = 0 earlier.

=) CoinValidatorhave_c150

Design Veri cation: Another Invariant

jork

20180702 Scfaatw

15

Question: Is it the case that, if there is money in the machine
and water in stock, that the water button is enabled?

Approach: Check

Nvm jF 8 (CoinValidatorhave_c500r CoinValidatorhave_c100or CoinValidatorhave_c150)

imply water _enabled:

E1? havﬁael €507
soft_enabled = (s > 0) L/\ water_enabled := (w >\Q),
tea_enabled := (t > 0)

idle

© C50? have_c50 Cc50? PN Cc50?

water_enabled := (w>0) soft_enabled = (s>0) tea_enabled = (t> 0)
have_c100 ayé’ £150
E1?
tea_enabled := (1> 0)
OK?, OK? OK? OK?

Ay
drink_ready

==
=
=
—
=
]
=
=
=
=3

=
=
=
=
=
_
=
=
—
=
=

OLDENBURG

B

OLDENBURG

B

1367

1467

Recall: Universal LSC Example —

-07-02 Scfaatwork

2018

15

OLDENBURS
" lEE

LSC: buy water

AC: true
AM: invariant |: strict
, - \
// ‘ User ‘ ‘ CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser ‘ ‘\
/ T T T \
/ < c50 I I I \
/ v ‘ | !
/\ ; | | } 1 (C50!_E1!_pSOFT!
\ z PWATER | | _PTEA!_ pFILLUP 1)
\ |
I "
\ i
\ water_in _stock | /)
\\ | /
/ d
; WATER
7 ! : (dSoft! _ dTEA'Y)
? o N —
7 | !
7 !
7 | |
7/ |

1567

Content | (Architecture & Design)

Scontent

15 2018-07-02

CFA vs. Software

(a CFA model is software

CFA at Work

(drive to configuration, scenarios, invariants
(tool demo (verifier).

Model-based/-driven Software Engineering

Unified Modelling Language

- Brief History
— Sub-Languages
UML Modes

UML State Machines

Hierarchical State Machines

Core State Machines

steps and run-to-completion steps
Rhapsody

[

[

Lol

[

16e7

Model-based/-driven Software Engineering

1767

1867

Model-Driven Software Engineering

-07-02 Smdse

2018

15

(Jacobson et a)1992): System development is model building.

Model basedsoftware engineering (MBSE3ome (formal) models are used.
Model driven software engineering (MDSEj Il artefacts are (formal) models.
_ ~———

elicit /
-

~ e
~ "
Structure™| .| Declas N req#:)edn;lems
Behaviour
| | -
} } refine
| ¥ -~
} refine Decla o requirem_ems/
Eieuiel? constraints
v ~ AL
I\ <
Structure”
Behaviour
[o - o
refine
- XN, system model

~_ generate/ g

N -
program_

N
Implementation

15 2018-07-02 Smdse

197

20167

Development Approaches

task, problem

outside-in
top-down

bottom-up

user interface

inside-out

system software, hardware

top-down risk: needed functionality hard to realise on target platform.

bottom-up risk: lower-level units do not fit together.

inside-out risk: user interface needed by customer hard to realise with exisg system,
outside-in @(elegant system design not reflected nicely in (already &) Ul.

27

Transform vs. Write-Down-and-Check

2267

2018-07-02 Simpl

15

intw := 3;
typedef fWi;dispenseWO0gst_T; w>0
st_T st ;== Wi; DOK! Wo=w-1
SethActi take_action(Act) {
SethActi R == ;;
if dispense
st= Wi : if
= DWATER ?: wi=w 1;
st:= dispense
if (w=0) R:= R[f DOK lg;
if (w>0)R:= R[f DOKlg;
= FILLUP ?: w:= 3;
st:= Wi;
R:= R[f DWATER ?;FILLUP ?g;

else: R:= R[f DWATER ?;FILLUP ?g

st = dispense: if

= DOK!"w=0: st:= WO,
R:= R[f FILLUP ?g;
= DOK!Mw>0: st:= Wi;
R:= R[f FILLUP ?g;
else: R:= R[f DOK ?g
st= WO : if
= FILLUP ?: w:= 3;
st:= Wi;
R:= R[f DWATER ?;FILLUP ?g;
else: R:= R[f FILLUP ?g
return R;

}

Content | (Architecture & Design)

Scontent

15 2018-07-02

CFA vs. Software

a CFA model is software

CFA at Work

drive to configuration, scenarios, invariants
tool demo (verifier).

Model-based/-driven Software Engineering

Unified Modelling Language

- Brief History
— Sub-Languages
UML Modes

UML State Machines

Hierarchical State Machines

Core State Machines

steps and run-to-completion steps
Rhapsody

Lol

FILLUP?

2367

2467

Uni ed Modelling Language

“ 2567

A Brief History of the Uni ed Modelling Language

Boxes/lines and automata are used to visualise softwarffer ages

1970's, Software Crisis— Idea: learn from engineering disciplines
in order to handle growing complexity.

Modelling languages:
Flowcharts, Nassi-Shneiderman, Entity-Relation Diagrara

Mid 1980's: Statecharts (Harel, 1987), StateMate— Harel et al, 1

Early1990's, advent of Object-Oriented-Analysis/DeSign/Programming

Object-Oriented Software EngineeringfOOSE)Jacobson et 31992

Each persuasion selling books, tools, seminars. .

Late 1990's: joint effort of the three amigos UML 0.x and 1.x
—
Standards published byObject Management Group(OMG):

international, open membership, not-for-profit

computer industry consortium

Much criticised for lack of formality.
——— ~

Since2005 : UML 2. splitinto infra- and superstructure documents.

Syntax: pretty precisely defined.

Semantics natural language, thus informal. N _
2 2667

UML Overviewows, 2007, 684)

JAY
Diagram Diagram
A Y
T] ‘
e I Y ERRE B2
EEEEE R
N
=R NES
Communication Timing
Diagram Diagram
Figure A.5 - The taxonomy of structure and behavior diagram
. [Dobing and Parsong2006)]
2767
UML and the Pragmatic Attribute
Recalt definition model (Glinz 2008 , 425}
(iii) thepragmatic attribute,
i.e. the model is built in a specific context for a specifipurpose
Examples for context/purpose:
Floorplan as sketch Floorplan as blueprint: Floorplan as program
=+| wiringplan | 4| windows
9 2867

With UML it's the Sam@ttp:/martinfowler.combliki]

The last slide is inspired by/artin Fowler, who puts it like this:

[...] people differ about what should be in the UML
because there argiffering fundamental views about what the UML should be

| came up with three primary classifications for thinkingatithe UML:
UmlAsSketch UmlIAsBIueprint, andUmlAsProgramminglLanguage
([...] S. Mellor independently came up with the same claasins.)

So when someone else's view of the UML seeither different to yours,
it may be because they use a differésninlMode to you.

but at least as well to each individual UMImodel.

Sketch

In this UmIMode developers use the U
to help communicate some aspects of g
system. [...]

Sketches are also useful in documents,
which case the focus is communication
ra- ther than completeness. [...]

The tools used for sketching are
lightweight drawing tools and often
people aren't too particular about
keeping to every strict rule of the UML.
Most UML diagrams shown in books,
such as mine, are sketches.

Their emphasis is on selective
communication rather than complete
specification.

Hence my sound-bite comprehensive-

ness is the enemy of comprehensibility

L[..4] In forward engineering the idea is
that blueprints are developed by a

. designer whose job is to build a detailec

Ndesign for a programmer to code up.
That design should be sufficiently
complete that all design decisions are
laid out and the programming should
follow as a pretty straightforward
activity that requires little thought. [....]
Blueprints require much more
sophisticated tools than sketches in
order to handle the details required for
the task. [...]

Forward engineering tools support di
gram drawing and back it up with g
repository to hold the information. [...]

This not only applies to UMLas a languaggwhat should be in it etc.?),

UML-Mode of the Lecture: As Blueprint

ProgrammingLanguage

If you can detail the UML enough, and
provide semantics for everything you
need in software, you can make the UML
be your programming language.

Tools can take the UML diagrams you
draw and compile them into executable
code.

The promise of this is that UML is a
higher level language and thus more
productive than current programming
languages.

The question, of course, is whether this
promise is true.

- | don't believe that graphical program-

ming will succeed just because it's graph-

ical. [...]

2967

)7-02 Sumimode

2018-C

Our goal:

be precise toavoid misunderstandings
allow formal analysis of consistency/implication on the design level find errors early.

Yet we tried to be consistent with the (informal semantics) fronDMG (2007a ,b) as far as possible.
30167

15 2018-07-02 main

UML State Machines

31e7

Composite (or Hierarchical) States

15 2018-07-02 Sumistm

OR-states, AND-statesHarel (1987).
Composite states are aboutbbreviation, structuring, andavoiding redundancy.

Y/

NS

327

15 20180702 S

Example

Entry Action: B

itsChoicePanel
~>enable_Soft();

/ waitOK

Entry Action:
itsChoicePanel
~>enable_Water()|

have_c100_or_e1>

1litsChanger
~>giveback_100()

C50fitsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
~>enable_Tea();

1

I EY

I itsChanger

| ->giveback_1000
1

C50 have_c100

have_c150>

El/itsChoicePanel->enableSoft();

C50/
itsChanger

->giveback_50() /

\

fisDrkDispenser
if itsCoinvalidator->IS Iifhave_c150)
isChanger->geback 1

else i (ISCoinValidator IS, IN(have_c100))
isChanger giveback_500;

WATER|Water_enabled

TisDrinkDispenser
SGEN(DSOFT)

have 150
isCharge Syvbac 500:

|SOFT(Soft_enabled]

Request_sent

JEA(Tea_enabled]

Would be Too Easy...

@
<
<
2
B
w0

'

FiLLUPRsConvaldator
Supdate_ChoicePanel();
on

o

owATER) owarery wiER,
it — B e it —
Al et Al

n ZEENON s n ZEENON

geoery psor georry
Prepre Sof Prapare sof Prepre Sof
iSComVaIalor A TsCoinvadator
SCEN(OK) EN(OK), CEN(OK)

oren oren

Blepare Tea0: Prdpare Tea:
Al A

Ef

Sataatn itsCoinValidator
SR

DTER

Prepat

HeConvaldator
SCEN(OK).

K)

-

m
1

I Software Design, Modelling, and Analysis with UMLin some winter semesters.

3367

3467

UML Core State Machines el
itsD D —
C itsC 0:1 [yt int =27 ”"9'23' :
) Hsignal i
G
a‘za,\
20 a
H,: 4"% §Lr@.~ 3““""‘/
2
=x '= -|tsC 1G
annot = Ireventi[{.zreventi]} [[hguardi]] [/ hactioni]
trigger
with
event 2 E, (optional)
guard 2 Expr g (default:trug, assumed to be inExpr g)
action 2 Acts (default: skip , assumed to be inAct 5)
3567
Event Pool and Run-To- Completlon
» =
\ E=itsD IF s Flx> 0
() E
AN 7 \ /
~_ G . pa
=x:=0 —Ss) =itsC!G
:D
stat::'Lf:sC'S ﬁtSD)l(JZ: 27
stabI;e: I;)olzg = state : fs1;52; 539
stable : Bool
i step ‘ state | stable ‘ state stable || event pool
0 [[s 1 7 Sy 1 || E readyforu;

A 36167

Event Pool and Run-To-Completion

Sumlstm

-07-02

F[x> 0]

/

/

« =itsC 1G

N E=itsD !|F N
N\ . E - S AN .
=x:=0
u, :D
u;:C itsD
state:'LfS's fs x =27
181,820 | itsC state : fs1;52;539
stable : Bool
stable : Bool
uy uz
step || state | stable X state | stable || eventpool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foru;

Event Pool and Run-To-Completion

)7-02 Sumlstm

3667

N E=itsD !F ~ F[x> 0
L
=0 f/ =itsC |G
u, :D
u;:C itsD =
state:'Lfs ; fs x =27
S181:820 | itsC state : fs1;S2;539
stable : Bool
stable : Bool
uip uz
step || state | stable X state | stable || eventpool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foru;
2 So 1 27 Sp 0

36167

Event Pool and Run-To-Completion

Sumlstm

E=itsD !F %3 F[x> 0]
- G) \ Y

e ::6‘ (s “SitsC 1G

. u,:D
u;:C itsD
state:'Lfs ;820 . x =217
fsiis2 itsC P
stable : Bool state : fs1;52:539
stable : Bool
Ui Uz
step || state | stable X state | stable || eventpool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foru;
2 S2 1 27 %) 0
3 Sp 1 27 S3 0 G ready foruj

3667

Event Pool and Run-To-Completion

E=itsD IF Flx> 0
[) L
o =x:=0 ~—[Ss) =itsC!G
- u, :D
u;:C itsD =
state:'Lfs ;820 . x =217
181,82 itsC . -
stable : Bool state : fs1;52; 539
stable : Bool
uz uz
step || state | stable X state | stable || eventpool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foru;
2 Sz 1 27 S2 0
3 Sp 1 27 S3 0 G ready foruj
4a][s2 | 1 JJ O] st | 1 [Greadyforus

)7-02 Sumlstm

A 36i67

Event Pool and Run-To-Completion

E=itsD !F
G
=x:=0
. u,:D
u;:C itsD
state:'Lfs ;820 . x =217
181,82 itsC . Ca-
stable : Bool state : f51:52: 530
stable : Bool
uy uz
step || state | stable X state | stable || event pool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foruy
2 S2 1 27 S2 0
3 Sp 1 27 S3 0 G ready forug
4a S2 1 0 S1 1 G ready foruy
5.a S1 1 0 S1 1

Event Pool and Run-To-Completion

Sumlst

E=itsD !F
G
=x:=0
- u, :D
u;:C itsD =
state:'Lfs ;820 . x =27
181,82 itsC . -
stable : Bool state : f51:52: 530
stable : Bool
up uz
step || state | stable X state | stable || event pool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foru;
2 S2 1 27 S2 0
3 Sp 1 27 S3 0 G ready forug
4.a Sp 1 0 S1 1 G ready foruy
5.a S1 1 0 S1 1
b | s | L [[27] s [0]

=itsC I G

36167

=itsC I G

3667

Event Pool and Run-To-Completion

E=itsD !F
x\\ 77277 /,/
: tulf: C itsD :2::2D7
state : fs1;s29 itsC . .
stable : Bool state : fs1;S2;S30
stable : Bool
uy uz
step || state | stable X state | stable || event pool
0 S1 1 27 S1 1 E ready foruy
1 S2 1 27 S1 1 F ready foruy
2 S2 1 27 S2 0
3 Sp 1 27 S3 0 G ready forug
4a S2 1 0 S1 1 G ready foruy
i 5.a S1 1 0 S1 1
; 4b S1 1 27 S3 0
g 5.b S1 1 0 S1 1
Rhapsody Architecture
E!
_————
go
_————

)7-02 Sumlstm

= = e -

D just
stepped from
s; to s2 by
transitiont
generate run
] o]
o 2= build / make
Srcmpee 1)

(compiler)
MainDefaultComponent.cpp

F[x> 0]

/

=X = 0\\ ""'*«" B 'ﬂ:itSC G

3667

37e7

Content | (Architecture & Design)

ntent

@
0

CFA vs. Software

¢ a CFA model is software

CFA at Work

(drive to configuration, scenarios, invariants
(tool demo (verifier).

Model-based/-driven Software Engineering

Unified Modelling Language
- Brief History
— Sub-Languages
UML Modes

UML State Machines

Hierarchical State Machines

Core State Machines

steps and run-to-completion steps
Rhapsody

Lol

[

Tell Them What You've Told Them...

15 2018-07-02 Sttwytt

We can usetools like Uppaal to

checkand verify CFAdesign modelsagainst requirements.

CFA(and state charts)

can easily beéimplemented using the translation scheme.
1eaxy DepreneTred

\Wanted: verification resultscarry overto the implementation.

if code isnot generated automatically,
verify code againstmodel.

UML State Machinesare

principally the same thing as CFA,
e e] .
yet provide more convenient syntax.

Semanticsuses
asynchronouscommunication,
run-to-completion steps

in contrast to CFA.

(We could define the same for CFA, but then

the Uppaal simulator would not be useful any more.)

Mind UML Modes.
A ——

3867

3967

15 2018-07-02 main

Code Quality Assurance

Topic Area Code Quality Assurance: Content

15 2018-07-02 Shlockcontent2

Introduction and Vocabulary

Test case, test suite, test execution.

Positive and negative outcomes.
Limits of Software Testing
Glass-Box Testing

Statement-, branch-, term-coverage
Other Approaches

Model-based testing,
Runtime verification.

Program Verification

partial and total correctness
Proof System PD.

Review

40767

4167

Content (Part II)

ntent2

15 2018-07-02 Scol

Introduction

quotes on testing,

systematic testing vs. ‘rumprobieren.
Test Case

definition,
execution,
positive and negative.

Test Suite
Limits of Software Testing

Software examination paths
Is exhaustive testing feasible?
Range vs. point errors

More Vocabulary

Testing: Introduction

15 2018-07-02 main

4267

4367

Quotes On Testing

Testing is the execution of a program with the goal to discover eors.
(G.J. Myers, 1979

~ oteorosdul

Testing is the demonstration of a program or system with the goal t@how that it does
what it is supposed to do. (W. Hetzel, 1984)

»_ﬁb’\h&
Software testing can be used to show the presence of bugs,

but never to show their absence! (E. W. Dijkstra, 1979

Rule-of-thumb : (fairly systematic) tests discover half of all errors.
(Ludewig and Lichter, 2013)

4467

Preliminaries

Recall:

Definition. Software is a finite descriptionS of a (possibly infinite) setISKof (finite or
infinite) computation pathsoftheform ! * ;' 2 , where

i 2 ,i2 Np,is calledstate (or configuration), and

i 2 A,i 2 No, is calledaction (orevent).
The (possibly partial) functiod K: S 7! JSKis calledinterpretation of S.

From now on, we assume thastates consist of aninput and anoutput/internal part, i.e.,
there are i» and ou such that

- in out

Computation paths are then of the form

oo~
RO R

Weuse # i todenote = § * I 2 ;i.e. theprojection of onto i, .
W
4567

Stestintro

Test Case

Definition. Atest caseT over andA is a pair(In ; Soll) consisting of
= ey Y

a descriptionIn of sets of finite input sequences Y
a descriptionSoll of expected outcomes,

and an interpretationJ Kof these descriptions:
JnK (1w A), JSolK (A [(A)

Examples
Test case for procedurgstrlen : String ! N, s denotes parameter,r return value:

T=(s="abc"ir =3)
—u "o — i i — n _ _ H —_
Js = "abc" K= f ¢ 1]3(3)-39’0“9, J =3K=1f ¢ ‘_Q/_l(r)-Sg,
Shorthand notation: T = (Lzlb_(L ;3).

Call strlen () with string "abc" , expect return values.

46167

Test Case

Definition. Atest caseT over andA is_a_ggi,[(m_;LSiHD) consisting of
a descriptionin of sets of finite input sequences ¢
a descriptionSoll of expected outcomes,

and an interpretationJ Kof these descriptions:
JnK (i A), JSollk (A [(A)

Examples

Test case for vending machine.
<© (ks
T = (C50; WATER ; DWATER)

JC50;WATER K= f 5190 41 1 1 WAER g

JDWATER K= f ¢ ! L. 1!DWATER ik

Send event C50 and any time laterWATER , expectDWATER after 10 steps the latest.

Stestintro

15 2018-07-02

46167

Test Case

Definition. Atest caseT over andA is a pair(In ; Soll) consisting of
a descriptionIn of sets of finite input sequences
a descriptionSoll of expected outcomes,

and an interpretationJ Kof these descriptions:
JnK (1w A), JSolK (A [(A)

Note:
Input sequencescan consider

input data, possibly with timing constraints,
other interaction, e.g., from network,

initial memory content,

etc.

Input sequencesmay leave degrees of freedom to tester.
Expected outcomesmay leave degrees of freedom to system.

Stestintro

15 2018-07-02

46167

Executing Test Cases

A computation path

i i
= gty
0 1
from JSKis calledexecution of test case(In_; Soll)
thereisn 2 N such tha(d o n))# in 2 JnK
— AN~

(A prefix of corresponds to an input sequence.)

Execution of test caseT is called

successful(or positive) if and only if 2 JSollK

Intuition: an an error has been discovered.
Alternative: test itemS failed to pass the test.

W(ornegative) ifand onlyif 2 JSollK

Intuition: no error has been discovered.
Alternative: test itemS passed the test

Okay: testpassed.

47567

Test Suite

An execution of a test sulite is a set of computation paths,
such that there is at least one execution for each test case.

An execution of a test suite is calledpositive
if and only if at least one test case execution ipositive.

Otherwise, it is called

2 4867

Not Executing Test Cases

Consider the test case
T=(";0)

for procedurestrlen .
(Empty string has length 0.)

A tester observes the following softwarg behaviour:

il;/ﬂr 7! O? Prograrg-aborti?n
=0 1

Test eéutionpositive or negative’?@ vio Azeglel-
| o (\(o

Note:

:[57!

If a tester does not adhere to an allowed input sequence of , a test execution.
Thus is neither positive nor negative (only defined for test exedions).

Same case: power outage (if continuous power supply is consigd in input sequence).

8 4967

Tests vs. Systematic Tests

Test (one or multiple) execution(s) of a program on a computer vith the goal to find
errors. (Ludewig and Lichter, 2013)

Not (even) a test(in the sense of this weak definitiort)
any inspection of the program (no execution)
demo of the program (other goal)
analysis by software-tools for, e.g., values afietrics (other goal)
investigation of the program with a debugger(other goal)

Systematic Test atest such that
(environment) conditions are defined or precisely documesd,
inputs have been chosen systematically,

results are documented and assessed according to criteria. _
that have been fixed before. (Ludewig and Lichter, 2013)

(Our) Synonymsfor non-systematic tests: Experiment, "Rumprobieren.

In the following : test means systematic test; if not systematic, call iexperiment.
“ 50/67

So Simple?

“ 5%e7

Environmental Conditions

Strictly speaking, a test case is a tripléIn ; Soll; Env)
comprising a descriptiorEnv of (environmental) conditions.

Env describes any aspects whichould have an effect
on the outcome of a test execution and cannot
be specified as part ofin, such as:
Which program (version) is tested?
Built with which compiler, linker, etc.?
Test host(OS, architecture, memory size, connected devices (configtion?), etc.)?
Which other software (in which version, configuration) is involved?
Who is supposed to testwhen?
etc. etc.

I test executions should be (agkeproducible and objective (as possible).

Full reproducibility is hardly possiblen practice obviously (err, why...?).

Stepstowards reproducibility and objectivity :
have a fixed build environment,
use a fixed test host which does not do any other jobs,

execute test casesautomatically (test scripts).
9 527

Content (Part II)

Introduction

{guotes on testing,

(systematic testing vs. ‘rumprobieren.
Test Case

(definition,
(execution,
(positive and negative.

Test Suite

Limits of Software Testing

(Software examination paths
(¢ Is exhaustive testing feasible?
(Range vs. point errors

More Vocabulary

- 5367

main

15 2018-07-02

The Limits of Software Testing

5467

Software Examinatiop Particular Testing)

7-02 Slimits

g

15

In each examination, there aréwo paths from
the specification to results:
the production path (using model, source code,
executable, etc.), and

the examination path
(using requirements specifications).

A check can only discover errors
on exactly one of the paths.

If a difference is detected:
examination result ispositive.

What is not on the paths, is not checked;
crucial:specification and comparison.

St brbe., .
Lxec . MﬂWAM
(:5 . mb&s SOé
Recalt checking procedure
shows no error reports error
false negative True positive
\ o
g yes| —e
°
£
G true negative
O ohay g
dest exec —

\

comprehend
specification

implement
specification

¥

— requirements
on result

.= compare |« .

¥

examination
result4 /8/?

—> information flow development
— —> information flow examination

(Ludewig and Lichter2013)

S bsvtze., -
Yot erec paSYe

f;\/é 2@%‘&7\,\ f@‘?é\‘ﬁ/
&g Lty Sot)

5567

Recall: Quotes On Testing

15 2018-07-02 Slimits

Software testing can be used to show the presence of bugs,
but never to show their absence! (E. W. Dijkstra, 1979

Why Can't We Show The Absence of Errors (in General)?

Consider asimple pocket calculator for adding 8-digit decimals:

12345678
27

Requirement: If the display showsx, +, andy, then after pressing = ,
the sum of x andy is displayed ifx + y has at most 8 digits,
otherwise -E- is displayed.

With 8 digits, both x andy range over[0; 10° 1].

Thus there are10'® = 10; 000; 000; 000; 00C; 000 possible input pairg(x; y) to be

considered
for exhaustive testing i.e. testing every possible case!
e

And if we restart the pocket calculator for each test,
we do not know anything about problems with sequencesof inputs. ..

(Local variables may not be re-initialised properly, for exaple.)

5667

5767

Observation: Software Usually Has Many Inputs

Example: Simple Pocket Calculator.
With ten thousand (10,000) different test cases (that's a lot!),
9,999,999,999,990,000 of the 10'° possible inputs remairnuncovered.

In other words:
Only 0:0000000001%of the possible inputs are covered99:9999999999%not touched.

In diagrams (red: uncovered blue: covered)

7

v

5867

Point vs. Range Errors

Software is (in generalhot continous.
Consider a continuous function, e.g. the one to the right:

For sufficiently small"-environments of an input, I
the outputs differ only by a small amount

Physical systems are (to a certain extent) continous:

For example, if a bridge endures a single car of 1000 kg,
we strongly expect the bridge to endure cars of 990 kg or 1010 kg.

And anything of weight smaller than 1000 kg can be expected to be adured.

For software, adjacent inputsnay yield
arbitrarily distant output values.

Vocabulary:

Point error: an isolated input value triggers the error.
Range error multiple neighbouring inputs trigger the error.

For software, (in general, without extra information)
we can notconclude from some values to others

15 2018-07-02 Spointrange

5967

Content (Part II)

Introduction

{guotes on testing,

(systematic testing vs. ‘rumprobieren.
Test Case

(definition,
(execution,
(positive and negative.

Test Suite

Limits of Software Testing

(Software examination paths
(Is exhaustive testing feasible?
(Range vs. point errors

More Vocabulary

8 60767

Tell Them What You've Told Them...

Testingis about

finding errors, or
demonstrating scenarios.

Atest caseconsists of

input sequencesand
1pUt SEqUENCE:

expected outcome!s!

A test caseexecution is

positive if an error is found,
negativeif no error is found.

Atest suite is a set of test cases.

Distinguish (among others),

glass-box test structure (or source code) of test item available,
black-box test: structure not available.

6567

2018-07-02 main

15

References

66167

References

2018-07-02 main

15

Booch, G. (1993)0Object-oriented Analysis and Design with Applicatidhrentice-Hall.
Dobing, B. and Parsons, J. (2006). How UML is usedommunications of the AGM9(5):109 114.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thasend Erfahrungen.Informatik Spektrum
31(5):425 434.

Harel, D. (1987). Statecharts: A visual formalism for complex sgsts. Science of Computer Programming
8(3):231 274.

Harel, D., Lachover, H., etal. (1990). Statemate: A workingvoonment for the development of complex
reactive systems.|EEE Transactions on Software Engineefi6#):403 414.

Jacobson, |., Christerson, M., and Jonsson, P. (199&ject-Oriented Software Engineering - A Use Case Driven
Approach Addison-Wesley.

Ludewig, J. and Lichter, H. (2013 oftware Engineeringlpunkt.verlag, 3. edition.
OMG (2007a). Unified modeling language: Infrastructure, vgion 2.1.2. Technical Report formal/07-11-04.
OMG (2007b). Unified modeling language: Superstructure, v&on 2.1.2. Technical Report formal/07-11-02.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensei(1990). Object-Oriented Modeling and Design
Prentice Hall.

6767

