Softwaretechnik / Software-Engineering

Lecture 14: Behavioural Software Modelling

2019-07-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content

- Introduction and Vocabulary
- Software Modelling
 - model, views, viewpoints: 4+1 view
 - Modelling structure
 - (simplified) Class & Object diagrams
 - (simplified) Object Constraint Logic (OCL)
- Modelling behaviour
 - Communicating Finite Automata (CFA)
 - Uppaal query language
 - CFA vs. Software
 - Unified Modelling Language (UML)
 - basic state-machines
 - an outlook on hierarchical state-machines
- Principles of Design
 - modularity, separation of concerns
 - information hiding and data encapsulation
 - abstract data types, object orientation
- Design Patterns
- Model-driven/-based Software Engineering

Vocabulary

Techniques

informal

semi-formal

formal
Communicating Finite Automata (CFA)
- concrete and abstract syntax,
- networks of CFA,
- operational semantics.

Transition Sequences

Deadlock, Reachability

Uppaal
- tool demo (simulator),
- query language,
- CFA model-checking.

CFA at Work
- drive to configuration, scenarios, invariants
- tool demo (verifier).

Uppaal Architecture
Example
To define communicating finite automata, we need the following sets of symbols:

- A set \((a, b \in \text{Chan}) \) of channel names or channels.
- For each channel \(a \in \text{Chan} \), two visible actions: \(a? \) and \(a! \) denote input and output on the channel \((a?, a! \notin \text{Chan}) \).
- \(\tau \notin \text{Chan} \) represents an internal action, not visible from outside.
- \((\alpha, \beta \in \text{Act}) \) is the set of actions.

An alphabet \(B \) is a set of channels, i.e. \(B \subseteq \text{Chan} \).

For each alphabet \(B \), we define the corresponding action set
\[
B_{!!} := \{ a? \mid a \in B \} \cup \{ a! \mid a \in B \} \cup \{ \tau \}.
\]

Note: \(\text{Chan}_{!!} = \text{Act} \).

Integer Variables and Expressions, Resets

- Let \((v, w \in \text{V})\) be a set of (finite domain integer) variables.

 By \((\varphi \in \Psi(\text{V}))\) we denote the set of integer expressions over \(V\) using function symbols \(+,-,\ldots\) and relation symbols \(<,\leq,\ldots\)

- A modification on \(v \in \text{V}\) is of the form
\[
v := \varphi, \quad v \in \text{V}; \quad \varphi \in \Psi(\text{V}).
\]

 By \(R(\text{V})\) we denote the set of all modifications.

- By \(\vec{r}\) we denote a finite list \(\langle r_1, \ldots, r_n \rangle\), \(n \in \mathbb{N}_0\), of modifications \(r_i \in R(\text{V})\). \(\vec{r}\) is called reset vector (or update vector).

 \(\langle \rangle\) is the empty list \((n = 0)\).

- By \(R(\text{V})^*\) we denote the set of all such finite lists of modifications.
Definition. A communicating finite automaton is a structure

\[A = (L, B, V, E, \ell_{\text{ini}}) \]

where
- \((\ell \in L)\) is a finite set of locations (or control states),
- \(B \subseteq \text{Chan}\),
- \(V\): a set of data variables,
- \(E \subseteq L \times B \times \Phi(V) \times R(V)^* \times L\): a finite set of directed edges such that
 \[(\ell, \alpha, \varphi, \vec{r}, \ell') \in E \land \text{chan}(\alpha) \in U \implies \varphi = \text{true}. \]

Edges \((\ell, \alpha, \varphi, \vec{r}, \ell')\) from location \(\ell\) to \(\ell'\) are labelled with an action \(\alpha\), a guard \(\varphi\), and a list \(\vec{r}\) of modifications.
- \(\ell_{\text{ini}} \in L\) is the initial location.

Example

Abstract syntax: \(A = (L, B, V, E, \ell_{\text{ini}}) \)

\[A_1 : \]

\[L = \{ 0, 1, 2 \} \]
\[B = \{ A \} \]
\[V = \{ x \} \]
\[\ell_{\text{ini}} = 0 \]
\[E = \{ (0, A), x := 0, x := 2, A \} \]

\[A_2 : \]

\[m_0 \quad A_7 \quad m_1 \]
Definition. Let $A_i = (L_i, B_i, V_i, E_i, \ell_{ini,i}), 1 \leq i \leq n$, be communicating finite automata. The operational semantics of the network of CFA $C(A_1, \ldots, A_n)$ is the labelled transition system $T(C(A_1, \ldots, A_n)) = (\text{Conf}, \text{Chan} \cup \{\tau\}, \{\lambda \rightarrow \lambda \mid \lambda \in \text{Chan} \cup \{\tau\}\}, C_{ini})$ where

- $V = \bigcup_{i=1}^{n} V_i$,
- $\text{Conf} = \{(\vec{\ell}, \nu) \mid \ell_i \in L_i, \nu : V \rightarrow \mathcal{P}(V)\}$,
- $C_{ini} = (\vec{\ell}_{ini}, \nu_{ini})$ with $\nu_{ini}(v) = 0$ for all $v \in V$.

The transition relation consists of transitions of the following two types.

 Helpers: Extended Valuations and Effect of Resets

- $\nu : V \rightarrow \mathcal{P}(V)$ is a valuation of the variables,
- A valuation ν of the variables canonically assigns an integer value $\nu(\phi)$ to each integer expression $\phi \in \Phi(V)$.
- $\models \subseteq (V \rightarrow \mathcal{P}(V)) \times \Phi(V)$ is the canonical satisfaction relation between valuations and integer expressions from $\Phi(V)$.
- Effect of modification $r \in \mathcal{R}(V)$ on ν, denoted by $\nu[r]$:
 $$\nu[r] := \begin{cases} \nu(\phi), & \text{if } a = v, \\ \nu(a), & \text{otherwise} \end{cases}$$
- We set $\nu[r_1, \ldots, r_n] := \nu[r_1]\ldots[r_n] = ((\nu[r_1])[r_2])\ldots[r_n]$.

That is, modifications are executed sequentially from left to right.
An internal transition \(\langle \vec{\ell}, \nu \rangle \xrightarrow{\tau} \langle \vec{\ell}', \nu' \rangle \) occurs if there is \(i \in \{1, \ldots, n\} \) and

- there is a \(\tau \)-edge \((\ell_i, \tau, \varphi, \vec{r}, \ell'_i) \in E_i \) such that
 - \(\nu|_{\vec{r}} = \varphi \), "source valuation satisfies guard"
 - \(\vec{r} = \ell_i \quad \Rightarrow \quad \ell'_i \), "automaton \(i \) changes location"
 - \(\nu' = \nu|_{\vec{r}} \), "\(\nu' \) is the result of applying \(\vec{r} \) on \(\nu \)

A synchronisation transition \(\langle \vec{\ell}, \nu \rangle \xrightarrow{b} \langle \vec{\ell}', \nu' \rangle \) occurs if there are \(i, j \in \{1, \ldots, n\} \) with \(i \neq j \) and

- there are edges \((\ell_i, b!, \varphi_i, \vec{r}_i, \ell'_i) \in E_i \) and \((\ell_j, b?, \varphi_j, \vec{r}_j, \ell'_j) \in E_j \) such that
 - \(\nu|_{\vec{r}_i} = \varphi_i \land \nu|_{\vec{r}_j} = \varphi_j \), "source valuation satisfies guards (0)"
 - \(\vec{r}_i = \ell_i \quad \Rightarrow \quad \ell'_i \), "automaton \(i \) and \(j \) change location"
 - \(\nu' = \nu|_{\vec{r}_i}|\vec{r}_j \), "\(\nu' \) is the result of applying first \(\vec{r}_i \) and then \(\vec{r}_j \) on \(\nu \)

This style of communication is known under the names "rendezvous", "synchronous", "blocking" communication (and possibly many others).
Transition Sequences

- A transition sequence of $C(A_1, \ldots, A_n)$ is any (in)finite sequence of the form

$$\langle \vec{l}_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \vec{l}_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \vec{l}_2, \nu_2 \rangle \xrightarrow{\lambda_3} \ldots$$

with

- $\langle \vec{l}_0, \nu_0 \rangle = C_{\text{ini}}$.
- for all $i \in \mathbb{N}$, there is $\xrightarrow{\lambda_{i+1}}$ in $T(C(A_1, \ldots, A_n))$ with $\langle \vec{l}_i, \nu_i \rangle \xrightarrow{\lambda_{i+1}} \langle \vec{l}_{i+1}, \nu_{i+1} \rangle$.

Example
Reachability

- A configuration \(\langle \vec{\ell}, \nu \rangle\) is called **reachable** (in \(C(A_1, \ldots, A_n)\)) from \(\langle \vec{\ell}_0, \nu_0 \rangle\) if and only if there is a transition sequence of the form
 \[
 \langle \vec{\ell}_0, \nu_0 \rangle \xrightarrow{\lambda_1} \langle \vec{\ell}_1, \nu_1 \rangle \xrightarrow{\lambda_2} \langle \vec{\ell}_2, \nu_2 \rangle \xrightarrow{\lambda_3} \cdots \xrightarrow{\lambda_n} \langle \vec{\ell}_n, \nu_n \rangle = \langle \vec{\ell}, \nu \rangle.
 \]

- A configuration \(\langle \vec{\ell}, \nu \rangle\) is called **reachable** (without “from”!) if and only if it is reachable from \(C_{ini}\).

- A location \(\ell \in L_i\) is called **reachable** if and only if any configuration \(\langle \vec{\ell}, \nu \rangle\) with \(\ell_i = \ell\) is reachable, i.e. there exist \(\vec{\ell}\) and \(\nu\) such that \(\ell_i = \ell\) and \(\langle \vec{\ell}, \nu \rangle\) is reachable.

Deadlock

- A configuration \(\langle \vec{\ell}, \nu \rangle\) of \(C(A_1, \ldots, A_n)\) is called **deadlock** if and only if there are no transitions from \(\langle \vec{\ell}, \nu \rangle\), i.e. if
 \[
 \neg (\exists \lambda \in \Lambda \exists \langle \ell', \nu' \rangle \in Conf \bullet \langle \ell, \nu \rangle \xrightarrow{\lambda} \langle \ell', \nu' \rangle).
 \]
 The network \(C(A_1, \ldots, A_n)\) is said to **have a deadlock** if and only if there is a reachable configuration \(\langle \ell, \nu \rangle\) which is a deadlock.
Uppaal

(Larsen et al., 1997; Behrmann et al., 2004)

Tool Demo
Consider $N = C(A_1, \ldots, A_n)$ over data variables V.

- **basic formula:**

 $\text{atom} ::= A_i.\ell \mid \varphi \mid \text{deadlock}$

 where $\ell \in L_i$ is a location and φ an expression over V.

- **configuration formulae:**

 $\text{term} ::= \text{atom} \mid \text{not term} \mid \text{term}_1 \land \text{term}_2$

- **existential path formulae:**

 $e\text{-formula} ::= \exists^0 \text{term}$ (exists finally)

 $\mid \exists^\infty \text{term}$ (exists globally)

- **universal path formulae:**

 $a\text{-formula} ::= \forall^0 \text{term}$ (always finally)

 $\mid \forall^\infty \text{term}$ (always globally)

 $\mid \text{term}_1 \Rightarrow \text{term}_2$ (leads to)

- **formulae (or queries):**

 $F ::= e\text{-formula} \mid a\text{-formula}$

Satisfaction of Uppaal Queries by Configurations

- The satisfaction relation $\langle \vec{\ell}, \nu \rangle \models F$ between configurations $\langle \vec{\ell}, \nu \rangle = \langle (\ell_1, \ldots, \ell_n), \nu \rangle$ of a network $C(A_1, \ldots, A_n)$ and formulae F of the Uppaal logic is defined inductively as follows:

 - $\langle \vec{\ell}, \nu \rangle \models \text{deadlock}$ if $\langle \vec{\ell}, \nu \rangle$ is a deadlock config.

 - $\langle \vec{\ell}, \nu \rangle \models A_i.\ell$ if $\ell_i = \ell$

 - $\langle \vec{\ell}, \nu \rangle \models \varphi$ if $\nu \models \varphi$

 - $\langle \vec{\ell}, \nu \rangle \models \text{not term}$ if $\nu \not\models \varphi$

 - $\langle \vec{\ell}, \nu \rangle \models \text{term}_1 \land \text{term}_2$ if $\nu \models \text{term}_1$ and $\nu \not\models \text{term}_2$
Example: Computation Paths vs. Computation Tree

Example: Computation Paths vs. Computation Graph
(or: Transition Graph)
Satisfaction of Uppaal Queries by Configurations

Exists finally:

\[\langle \vec{e}_0, \nu_0 \rangle \models \exists \diamond \text{term} \quad \text{iff} \quad \exists \text{path } \xi \text{ of } N \text{ starting in } \langle \vec{e}_0, \nu_0 \rangle \quad \exists i \in \mathbb{N}_0 \quad \xi^i \models \text{term} \]

"some configuration satisfying term is reachable"

Example: \[\langle \vec{e}_0, \nu_0 \rangle \models \exists \diamond \varphi \]

\[\langle \vec{e}_0, \nu_0 \rangle \not\models \varphi \]

\[\lambda_1 \]

\[\lambda_2 \]

\[\lambda_{1,1} \]

\[\lambda_{2,1} \]

\[\lambda_{2,2} \]

\[\lambda_{2,2,1} \]

\[\lambda_{2,2,2} \]

\[\langle \vec{e}, \nu \rangle \]

Exists globally:

\[\langle \vec{e}_0, \nu_0 \rangle \models \exists \square \text{term} \quad \text{iff} \quad \exists \text{path } \xi \text{ of } N \text{ starting in } \langle \vec{e}_0, \nu_0 \rangle \quad \forall i \in \mathbb{N}_0 \quad \xi^i \models \text{term} \]

"on some computation path, all configurations satisfy term"

Example: \[\langle \vec{e}_0, \nu_0 \rangle \models \exists \square \varphi \]
• Always globally:

\[\langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Diamond \text{term} \iff \langle \vec{\ell}_0, \nu_0 \rangle \not\models \exists 0 \neg \text{term} \]

"not (some configuration satisfying \(\neg \text{term} \) is reachable)"

or: "all reachable configurations satisfy \(\text{term} \)"

• Always finally:

\[\langle \vec{\ell}_0, \nu_0 \rangle \models \forall \Box \text{term} \iff \langle \vec{\ell}_0, \nu_0 \rangle \not\models \exists \neg 0 \text{term} \]

"not (on some computation path, all configurations satisfy \(\neg \text{term} \))"

or: "on all computation paths, there is a configuration satisfying \(\text{term} \)"

Leads to:

\[\langle \vec{\ell}_0, \nu_0 \rangle \models \text{term}_1 \longrightarrow \text{term}_2 \iff \forall \text{path } \xi \text{ of } \mathcal{N} \text{ starting in } \langle \vec{\ell}_0, \nu_0 \rangle \forall i \in \mathbb{N}_0 \bullet \]

\[\xi^i \models \text{term}_1 \implies \xi^i \models \forall \Box \text{term}_2 \]

"on all paths, from each configuration satisfying \(\text{term}_1 \),

a configuration satisfying \(\text{term}_2 \) is reachable" (response pattern)

Example: \(\langle \vec{\ell}_0, \nu_0 \rangle \models \varphi_1 \longrightarrow \varphi_2 \)

![Diagram showing a model of Uppaal queries with configurations and paths]

(End of page 26)
Definition. Let $\mathcal{N} = C(A_1, \ldots, A_n)$ be a network and F a query.

(i) We say \mathcal{N} satisfies F, denoted by $\mathcal{N} \models F$, if and only if $C_{ini} \models F$.

(ii) The model-checking problem for \mathcal{N} and F is to decide whether $(\mathcal{N}, F) \in \models$.

Proposition.
The model-checking problem for communicating finite automata is decidable.
Model Architecture — Who Talks What to Whom

- **Shared variables:**
 - bool water_enabled, soft_enabled, tea_enabled;
 - int w = 3, s = 3, t = 3;

- **Note:** Our model does not use scopes ("information hiding") for channels. That is, 'Service' could send 'WATER' if the modeler wanted to.
Design Sanity Check: Drive to Configuration

- **Question**: Is it (at all) possible to have no water in the vending machine model? (Otherwise, the design is definitely broken.)

- **Approach**: Check whether a configuration satisfying
 \[w = 0 \]
 is reachable, i.e. check whether
 \[\mathcal{N}_{VM} \models \exists w = 0. \]
 for the vending machine model \(\mathcal{N}_{VM} \).

Design Check: Scenarios

- **Question**: Is the following existential LSC satisfied by the model? (Otherwise, the design is definitely broken.)

 LSC: buy tea
 AC: true
 AM: initial I: permissive

- **Approach**: Use the following newly created CFA 'Scenario'

 ![Diagram of the vending machine model with locations and transitions]

 instead of User and check whether location `end_of_scenario` is reachable, i.e. check whether
 \[\mathcal{N}'_{VM} \models \exists \text{Scenario}.end_of_scenario. \]
 for the modified vending machine model \(\mathcal{N}'_{VM} \).
Design Verification: Invariants

- **Question**: Is it the case that the “tea” button is *only* enabled if there is €1.50 in the machine? (Otherwise, the design is broken.)

- **Approach**: Check whether the implication

 \[\text{tea_enabled} \implies \text{CoinValidator_have_c150} \]

 holds in all reachable configurations, i.e. check whether

 \[\mathcal{N}_VM \models \forall \square (\text{tea_enabled} \implies \text{CoinValidator_have_c150}) \]

 for the vending machine model \(\mathcal{N}_VM \).

Design Verification: Sanity Check

- **Question**: Is the “tea” button ever enabled? (Otherwise, the considered invariant

 \[\text{tea_enabled} \implies \text{CoinValidator_have_c150} \]

 holds vacuously.)

- **Approach**: Check whether a configuration satisfying \(\text{water_enabled} = 1 \) is reachable. Exactly like we did with \(w = 0 \) earlier (i.e. check whether \(\mathcal{N}_VM \models \exists \diamond \text{water_enabled} = 1 \)).
• **Question:** Is it the case that, if there is money in the machine and water in stock, that the "water" button is enabled?

• **Approach:** Check

\[V_{VM} \models \forall \Box (\text{CoinValidator}.\text{have}_c50 \text{ or CoinValidator}.\text{have}_c100 \text{ or CoinValidator}.\text{have}_c150) \implies \text{water}_{\text{enabled}}. \]

Recall: Universal LSC Example
What Can We Conclude From Verification Results?

- Assume that query \(Q \) corresponds to a requirement on the system under development, and \(\mathcal{N} \) is our design-idea model.
- Assume that the verification tool states \(\mathcal{N} \models Q \). What can we conclude from that?

<table>
<thead>
<tr>
<th>Tool Result</th>
<th>(\mathcal{N} \not\models Q)</th>
<th>(\mathcal{N} \models Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Idea</td>
<td>False Negative</td>
<td>True Positive</td>
</tr>
<tr>
<td>(\text{sat. } Q)</td>
<td>True Negative</td>
<td>False Positive</td>
</tr>
<tr>
<td>(\text{does not sat. } Q)</td>
<td>False Positive</td>
<td>True Positive</td>
</tr>
</tbody>
</table>

Content

- **Communicating Finite Automata (CFA)**
 - concrete and abstract syntax,
 - networks of CFA,
 - operational semantics.

- **Transition Sequences**

- **Deadlock, Reachability**

- **Uppaal**
 - tool demo (simulator),
 - query language,
 - CFA model-checking.

- **CFA at Work**
 - drive to configuration, scenarios, invariants
 - tool demo (verifier).

- **Uppaal Architecture**
Tell Them What You’ve Told Them...

- A network of communicating finite automata
 - describes a labelled transition system,
 - can be used to model software behaviour.

- The Uppaal Query Language can be used to
 - formalize reachability ($\exists CF, \forall CF, \ldots$) and
 - leadsto ($CF_1 \rightarrow CF_2$) properties.

- Since the model-checking problem of CFA is decidable,
 - there are tools which automatically check
 whether a network of CFA satisfies a given query.

- Use model-checking, e.g., to
 - obtain a computation path to a certain configuration
 (drive-to-configuration),
 - check whether a scenario is possible,
 - check whether an invariant is satisfied.
 (If not, analyse the design further using the obtained counter-example).
References