Topic Area Code Quality Assurance: Content

- **VL 14**
 - Introduction and Vocabulary
 - Test case, test suite, test execution.
 - Positive and negative outcomes.

- **VL 15**
 - Limits of Software Testing
 - Glass-Box Testing
 - Statement-, branch-, term-coverage.
 - Other Approaches
 - Model-based testing.

- **VL 16**
 - Program Verification
 - partial and total correctness,
 - Proof System PD.
 - Runtime verification.

- **VL 17**
 - Review
Concepts of Software Quality Assurance

Software Quality Assurance

- **Project management**
 - **Examination by humans**
 - **Inspection**
 - **Review**
 - **Manual proof**
- **Software examination**
 - **Analytic**
 - **Non-mech.**
 - **Semi-mech.**
 - **Mechanical**
 - **Constructive software engineering**
 - **Formal verification**
 - **Static checking**
 - **Consistency checks**
 - **Dynamic checking (test)**
 - **Quantitative examination**
 - **Examine**
 - **Execute**
 - **Prove**
- **Constructive**
 - **Code generation**

Validation

The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements. Contrast with: **Verification**.

IEEE 610.12 (1990)

Verification

1. The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase. Contrast with: **validation**.

2. Formal proof of program correctness.

IEEE 610.12 (1990)

Ludewig and Lichter, 2013
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness
 - total correctness
 - Proof System PD

- The Verifier for Concurrent C
 - modular reasoning
 - return values / old values

- Assertions
Sequential, Deterministic While-Programs
Deterministic Programs

Syntax:

\[S ::= \text{skip} \mid u ::= t \mid S_1; S_2 \mid \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi} \mid \text{while } B \text{ do } S_1 \text{ od} \]

where \(u \in V \) is a variable, \(t \) is a type-compatible expression, \(B \) is a Boolean expression.

Semantics: (is induced by the following transition relation) \(- \sigma : V \rightarrow D(V)\)

(i) \((\text{skip}, \sigma) \rightarrow (E, \sigma) \)
(ii) \((u ::= t, \sigma) \rightarrow (E, \sigma[u ::= \sigma(t)]) \)
(iii) \((S_1, \sigma) \rightarrow (S_2, \tau) \)
(iv) \((S_1; S, \sigma) \rightarrow (S_2; S, \tau) \)
(v) \((\text{if } B \text{ then } S_1 \text{ else } S_2, \sigma) \rightarrow (S_1, \sigma), \text{if } \sigma \models B \)
(vi) \((\text{if } B \text{ then } S_1 \text{ else } S_2, \sigma) \rightarrow (S_2, \sigma), \text{if } \sigma \not\models B \)
(vii) \((\text{while } B \text{ do } S \text{ od}, \sigma) \rightarrow (S; \text{while } B \text{ do } S \text{ od}, \sigma), \text{if } \sigma \not\models B \), \(E \) denotes the empty program; define \(E; S \equiv S; E \equiv S \).

Note: the first component of \((S, \sigma) \) is a program (structural operational semantics (SOS)).

Example

Consider program

\[S \equiv a[0] := 1; a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x ::= x + 1 \text{ od} \]

and a state \(\sigma \) with \(\sigma \models x = 0 \),

\[(S, \sigma) \xrightarrow{(i),(ii)} (a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x ::= x + 1 \text{ od}, \sigma[a[0] := 1]) \]
Example

Consider program
\[
S \equiv a[0] := 1; a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}
\]
and a state \(\sigma \) with \(\sigma \models x = 0 \).

\[
\langle S, \sigma \rangle \xrightarrow{(i),(iii)} \langle a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma[a[0] := 1] \rangle
\]

where \(\sigma' = [a[0] := 1][a[1] := 0] \).

Example

Consider program
\[
S \equiv a[0] := 1; a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}
\]
and a state \(\sigma \) with \(\sigma \models x = 0 \).

\[
\langle S, \sigma \rangle \xrightarrow{(ii),(iii)} \langle a[1] := 0; \text{while } a[x] \neq 0 \text{ do } x := x + 1 \text{ od}, \sigma[a[0] := 1] \rangle
\]

where \(\sigma' = [a[0] := 1][a[1] := 0] \).
Consider program
\[S_1 \equiv y := x; \ y := (x - 1) \cdot x + y \]
and a state \(\sigma \) with \(\sigma \models x = 3 \).

\[\langle S_1, \sigma \rangle \xrightarrow{(i),(iii)} \langle y := (x - 1) \cdot x + y, \{x \mapsto 3, y \mapsto 3\} \rangle \xrightarrow{(i)} \langle E, \{x \mapsto 3, y \mapsto 9\} \rangle \]

Consider program
\[S_3 \equiv y := x; \ y := (x - 1) \cdot x + y; \ \text{while} \ 1 \ \text{do} \ \text{skip} \ \text{od}. \]

\[\langle S_3, \sigma \rangle \xrightarrow{(i),(iii)} \langle y := (x - 1) \cdot x + y; \ \text{while} \ 1 \ \text{do} \ \text{skip} \ \text{od}, \{x \mapsto 3, y \mapsto 3\} \rangle \xrightarrow{(vi)} \langle \text{skip; while} \ 1 \ \text{do} \ \text{skip} \ \text{od}, \{x \mapsto 3, y \mapsto 9\} \rangle \]

\[\langle S_3, \sigma \rangle \xrightarrow{(i),(iii)} \langle \text{while} \ 1 \ \text{do} \ \text{skip} \ \text{od}, \{x \mapsto 3, y \mapsto 9\} \rangle \xrightarrow{(vi)} \langle \text{while} \ 1 \ \text{do} \ \text{skip} \ \text{od}, \{x \mapsto 3, y \mapsto 9\} \rangle \xrightarrow{(vi)} \ldots \]

Computations of Deterministic Programs

Definition. Let \(S \) be a deterministic program.

(i) A **transition sequence** of \(S \) (starting in \(\sigma \)) is a finite or infinite sequence

\[\langle S, \sigma \rangle = \langle S_0, \sigma_0 \rangle \rightarrow \langle S_1, \sigma_1 \rangle \rightarrow \ldots \]

(that is, \(\langle S_i, \sigma_i \rangle \) and \(\langle S_{i+1}, \sigma_{i+1} \rangle \) are in transition relation for all \(i \)).

(ii) A **computation (path)** of \(S \) (starting in \(\sigma \)) is a maximal transition sequence of \(S \) (starting in \(\sigma \)), i.e. infinite or not extendible.

(iii) A computation of \(S \) is said to

a) **terminate** in \(\sigma \) if and only if it is finite and ends with \(\langle E, \tau \rangle \),

b) **diverge** if and only if it is infinite.

\(S \) **can diverge from** \(\sigma \) if and only if a diverging computation starts in \(\sigma \).

(iv) We use \(\rightarrow^* \) to denote the transitive, reflexive closure of \(\rightarrow \).

Lemma. For each deterministic program \(S \) and each state \(\sigma \), there is exactly one computation of \(S \) which starts in \(\sigma \).
Definition.
Let S be a deterministic program.

(i) The semantics of partial correctness is the function
$$
\mathcal{M}[S] : \Sigma \rightarrow 2^{\Sigma}
$$
with
$$\mathcal{M}[S](\sigma) = \{ \tau | \langle S, \sigma \rangle \rightarrow^{*} \langle E, \tau \rangle \}.
$$

(ii) The semantics of total correctness is the function
$$
\mathcal{M}_{\text{tot}}[S] : \Sigma \rightarrow 2^{\Sigma} \cup \{ \infty \}
$$
with \(\mathcal{M}_{\text{tot}}[S](\sigma) = \mathcal{M}[S](\sigma) \cup \{ \infty \ | \ S \text{ can diverge from } \sigma \} \).

∞ is an error state representing divergence.

Note: $\mathcal{M}_{\text{tot}}[S](\sigma)$ has exactly one element, $\mathcal{M}[S](\sigma)$ at most one.

Example: $\mathcal{M}[S_1](\sigma) = \mathcal{M}_{\text{tot}}[S_1](\sigma) = \{ \tau | \tau(x) = \sigma(x) \land \tau(y) = \sigma(x)^2 \}$, $\sigma \in \Sigma$.

(Recall: $S_1 \equiv y := x; y := (x - 1) \cdot x + y$)

Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness,
 - total correctness.
 - Proof System PD
- The Verifier for Concurrent C
 - modular reasoning
 - return values / old values
- Assertions
Correctness of While-Programs

Correctness of Deterministic Programs

Definition.
Let S be a program over variables V, and p and q Boolean expressions over V.

(i) The correctness formula
\[\{ p \} S \{ q \} \]
holds in the sense of partial correctness, denoted by $\models \{ p \} S \{ q \}$, if and only if
\[\mathcal{M}[S](\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket. \]
We say S is partially correct wrt. p and q.

(ii) A correctness formula
\[\{ p \} S \{ q \} \]
holds in the sense of total correctness, denoted by $\models_{\text{tot}} \{ p \} S \{ q \}$, if and only if
\[\mathcal{M}_{\text{tot}}[S](\llbracket p \rrbracket) \subseteq \llbracket q \rrbracket. \]
We say S is totally correct wrt. p and q.
Example: Computing squares (of numbers 0, . . . , 27)

- **Pre-condition**: \(p \equiv 0 \leq x \leq 27 \).
- **Post-condition**: \(q \equiv y = x^2 \).

Program \(S_1 \):

\[
\begin{align*}
\text{int } y = x; \\
y = (x - 1) \times x + y;
\end{align*}
\]

\(\models \{ p \} S_1 \{ q \} \)

\(\models_{\text{tot}} \{ p \} S_1 \{ q \} \)

Program \(S_3 \):

\[
\begin{align*}
\text{int } x; \\
\text{while } (1): \\
y = x \times x; \\
\text{int } y = x \times (x-1) \times x + y;
\end{align*}
\]

\(\not\models \{ p \} S_3 \{ q \} \)

\(\not\models_{\text{tot}} \{ p \} S_3 \{ q \} \)

Program \(S_4 \):

\[
\begin{align*}
\text{int } x = \text{read_input}(); \\
y = x + (x - 1) \times x;
\end{align*}
\]

\(\models \{ p \} S_4 \{ q \} \)

\(\models_{\text{tot}} \{ p \} S_4 \{ q \} \)

\(\not\models \{ x \} \)

\(\not\models_{\text{tot}} \{ x \} \)

Example: Correctness

- By the example, we have shown
 \[
 \models \{ x = 0 \} S \{ x = 1 \}
 \]
 and
 \[
 \models_{\text{tot}} \{ x = 0 \} S \{ x = 1 \}.
 \]
 (because we only assumed \(\sigma \models x = 0 \) for the example, which is exactly the pre-condition.)

- We have also shown (= proved (!)):
 \[
 \models \{ x = 0 \} S \{ x = 1 \wedge a[x] = 0 \}.
 \]

- The correctness formula \(\{ x = 2 \} S \{ \text{true} \} \) does not hold for \(S \).
 (For example, if \(\sigma \models a[i] \neq 0 \) for all \(i > 2 \).)

- In the sense of partial correctness, \(\{ x = 2 \wedge \forall i \geq 2 \rightarrow a[i] = 1 \} S \{ \text{false} \} \) also holds.
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness,
 - total correctness.

- Proof System PD
 - The Verifier for Concurrent C
 - modular reasoning
 - return values / old values

- Assertions

Proof-System PD
Proof-System PD (for sequential, deterministic programs)

Axiom 1: **Skip-Statement**

\[
\{p\} \text{skip} \{p\}
\]

Axiom 2: **Assignment**

\[
\{p[u := t]\} \ u := t \ \{p\}
\]

Rule 3: **Sequential Composition**

\[
\frac{\{p\} S_1 \{r\}, \{r\} S_2 \{q\}}{\{p\} S_1 ; S_2 \{q\}}
\]

Rule 4: **Conditional Statement**

\[
\{p \land B\} S_1 \{q\}, \{p \land \neg B\} S_2 \{q\}, \{p\} \text{if } B \text{ then } S_1 \text{ else } S_2 \text{ fi} \{q\}
\]

Rule 5: **While-Loop**

\[
\{p \land B\} S \{p\}, \{p\} \text{ while } B \text{ do } S \text{ od} \{p \land \neg B\}
\]

Rule 6: **Consequence**

\[
p \rightarrow p_1, \{p_1\} S \{q_1\}, q_1 \rightarrow q, \{p\} S \{q\}
\]

Theorem. PD is correct ("sound") and (relative) complete for partial correctness of deterministic programs, i.e. \(\vdash_{PD} \{p\} S \{q\}\) if and only if \(\models \{p\} S \{q\}\).
Example Proof

\[\text{DIV} \equiv a := 0; \; b := x; \; \text{while } b \geq y \; \text{do } b := b - y; \; a := a + 1 \; \text{od} \]

(2)

(3)

We can prove \(\vdash \{ x \geq 0 \land y \geq 0 \} \; \text{DIV} \; \{ a \cdot y + b = x \land b < y \} \)
by showing \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \; \text{DIV} \; \{ a \cdot y + b = x \land b < y \} \), i.e., derivability in PD:
In the following, we show

1. \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x \{ P \} \),
2. \(\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \{ P \} \),
3. \(\models P \land \neg (b \geq y) \rightarrow a \cdot y + b = x \land b < y. \)

As loop invariant, we choose (creative act!):

\[P \equiv a \cdot y + b = x \land b \geq 0. \]

Proof of (1)

- (1) claims:
 \[\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; \ b := x \{ P \} \]
 where \(P \equiv a \cdot y + b = x \land b \geq 0. \)
Proof of (1)

• (1) claims:
 \[\vdash_D \{ x \geq 0 \land y \geq 0 \} a := 0; b := x \{ P \} \]
 where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

• (1) claims:
 \[\vdash_D \{ 0 \cdot y + x = x \land x \geq 0 \} a := 0 \{ a \cdot y + x = x \land x \geq 0 \} \]
 by \(A2 \).

\[a \cdot y + x \]

\[p \]

\[\left[x := t \right] \]

\[p[\]
Proof of (1)

• (1) claims:
 \[\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0 \ ; \ b := x \ \{ P \} \]
 where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

• \[\vdash_{PD} \{ 0 \cdot y + x = x \land x \geq 0 \} \ a := 0 \ \{ a \cdot y + x = x \land x \geq 0 \} \]
 by (A2).

• \[\vdash_{PD} \{ a \cdot y + x = x \land x \geq 0 \} \ b := x \ \{ a \cdot y + b = x \land b \geq 0 \} \]
 by (A2),
 \[\equiv P \]

• thus, \[\vdash_{PD} \{ 0 \cdot y + x = x \land x \geq 0 \} \ a := 0 \ ; \ b := x \ \{ P \} \]
 by (R3).

\[\square \]
The rule 'Assignment' uses (syntactical) substitution: \(p[u := t] \) \(u ::= t \{p\} \)
(In formula \(p \), replace all (free) occurrences of (program or logical) variable \(u \) by term \(t \).
Defined as usual, only indexed and bound variables need to be treated specially:

Expressions:
- plain variable \(x \): \(x[u := t] \equiv \begin{cases} t & \text{if } x = u \\ x & \text{otherwise} \end{cases} \)
- constant \(c \):
 \(c[u := t] \equiv c \).
- constant \(op \), terms \(s_i \):
 \(op(s_1, \ldots, s_n)[u := t] \equiv op(s_1[u := t], \ldots, s_n[u := t]). \)
- conditional expression:
 \((B ? s_1 : s_2)[u := t] \equiv (B[u := t] ? s_1[u := t] : s_2[u := t]) \)
The rule 'Assignment' uses (syntactical) substitution:
\[\{ p[u := t] \} \ u := t \ \{ p \} \]
(In formula \(p \), replace all (free) occurrences of (program or logical) variable \(u \) by term \(t \).)

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions:
- plain variable \(x \): \(x[u := t] \equiv \begin{cases} t & \text{if } x = u \\ x & \text{otherwise} \end{cases} \)
- constant \(c \): \(c[u := t] \equiv c \).
- constant \(op \), terms \(s_i \): \(op(s_1, \ldots, s_n)[u := t] \equiv op(s_1[u := t], \ldots, s_n[u := t]) \).
- conditional expression: \((B \ ? \ s_1 \ : \ s_2)[u := t] \equiv (B[u := t] \ ? \ s_1[u := t] : s_2[u := t]) \)

Formulae:
- boolean expression \(p \equiv s \):
 \(p[u := t] \equiv s[u := t] \)
- negation: \((\neg q)[u := t] \equiv \neg(q[u := t]) \)
- conjunction etc.: \((q \land r)[u := t] \equiv q[u := t] \land r[u := t] \)
- quantifier: \((\forall x : q)[u := t] \equiv \forall y : q[x := y][u := t] \)
 \(y \) fresh (not in \(q \), \(t \), \(u \), same type as \(x \).)
The rule ‘Assignment’ uses (syntactical) substitution: \(\{ p[u := t] \} u := t \{ p \} \)

(In formula \(p \), replace all (free) occurrences of (program or logical) variable \(u \) by term \(t \).)

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions:
- plain variable \(x ; x[u := t] \equiv \begin{cases} t & \text{if } x = u \\ x & \text{otherwise} \end{cases} \)
- constant \(c \); \(c[u := t] \equiv c \).
- constant \(op \), terms \(s_i \): \(op(s_1, \ldots, s_n)[u := t] \equiv op(s_1[u := t], \ldots, s_n[u := t]) \).
- conditional expression: \((B ? s_1 : s_2)[u := t] \equiv (B[u := t] \land s_1[u := t] \lor \neg s_2[u := t]) \).

Indexed variable:
- \(u \) plain or \(u \equiv b[t_1, \ldots, t_m] \) and \(a \neq b \):
 \((a[s_1, \ldots, s_n])[u := t] \equiv a[s_1[u := t], \ldots, s_n[u := t]] \)
- \(u \) \(\equiv a[t_1, \ldots, t_m] \):
 \((a[s_1, \ldots, s_n])[u := t] \equiv (\land_{i=1}^n s_i[u := t] = t_i \land t : a[s_1[u := t], \ldots, s_n[u := t]]) \)

Formulae:
- boolean expression \(p \equiv \land \)
 \(p[u := t] \equiv s[u := t] \)
- negation: \(\neg q[u := t] \equiv \neg(q[u := t]) \)
- conjunction etc.: \((q \land r)[u := t] \equiv q[u := t] \land r[u := t] \)
- quantifier: \((\forall x : q)[u := t] \equiv (\forall x : q(x := u))[u := t] \)

Example Proof Cont’d

```
(1) P \rightarrow P \rightarrow P \land (x \geq y \land y \geq 0) \\
(2) P \land (x \geq y \land y \geq 0) \\
(3) P \land (b \geq y) \land b = x \land b < y
```

In the following, we show

(1) \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; b := x \{ P \} \).

(2) \(\vdash_{PD} \{ P \land b \geq y \} b := b - y; a := a + 1 \{ P \} \).

(3) \(\vdash P \land (b \geq y) \rightarrow a \cdot y + b = x \land b < y. \)

As loop invariant, we choose (creative act):

\(P \equiv a \cdot y + b = x \land b \geq 0 \)

```
(\{A\} (p) skip [p] \{R3\} \( p \lor \{ r \} \lor \{ q \} \{R5\} (p \land \{ B \} S \{ p \} \{R6\} (p \land \{ B \} S \{ p \} \lor \{ p \} S \{ q \} \lor \{ q \} S \{ p \} \lor \{ q \} \rightarrow \{ p \} \rightarrow \{ q \} \{ p \} \lor \{ p \} \rightarrow \{ q \})
```
Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \ \{ P \} \]
 where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

\[\vdash_{PD} \{ (a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \} b := b - y \ \{ (a + 1) \cdot y + b = x \land b \geq 0 \} \]
by (A2),
Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]

Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]

Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{P \land b \geq y\} \]
 where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

\[b := b - y; a := a + 1 \{P\} \]

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]

Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]

Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]

Proof of (2)

• (2) claims:
 \[\vdash_{PD} \{(a+1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \]
 by (A2),

\[b := b - y; a := a + 1 \{P\} \]
Proof of (2)

(2) claims:
\[\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \ \{ P \} \]
where \(P \equiv a \cdot y + b = x \land b \geq 0 \).

\[\vdash_{PD} \{(a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \ b := b - y \ \{ (a + 1) \cdot y + b = x \land b \geq 0 \} \]
by (A2),

\[\vdash_{PD} \{(a + 1) \cdot y + b = x \land b \geq 0 \} \ a := a + 1 \ \{ a \cdot y + b = x \land b \geq 0 \} \]
by (A2),

\[\vdash_{PD} \{(a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0\} \ b := b - y; \ a := a + 1 \ \{ P \} \]
by (R3),

using \(P \land b \geq y \rightarrow (a + 1) \cdot y + (b - y) = x \land (b - y) \geq 0 \) and \(P \rightarrow P \) we obtain,

\[\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \ \{ P \} \]
by (R6).

Example Proof Cont’d

\[\begin{array}{c}
| (1) \quad P \rightarrow P \text{ while } \forall x \forall y \exists k \forall a \exists b (x + y = a + 1 \lor y + x = b + k \land a < b) \\
| (2) \quad P \rightarrow P \text{ while } \forall x \forall y \forall k \forall a \exists b (x + y = a + 1 \lor y + x = b + k \land a < b) \\
| (3) \quad P \rightarrow P \text{ while } \forall x \forall y \forall k \forall a \exists b (x + y = a + 1 \lor y + x = b + k \land a < b) \\
| (4) \quad P \rightarrow P \text{ while } \forall x \forall y \forall k \forall a \exists b (x + y = a + 1 \lor y + x = b + k \land a < b) \\
\end{array} \]

In the following, we show

(1) \[\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} a := 0; \ b := x \ \{ P \}, \]

(2) \[\vdash_{PD} \{ P \land b \geq y \} b := b - y; \ a := a + 1 \ \{ P \}, \]

(3) \[\vdash_{PD} \{ P \land \neg(b \geq y) \rightarrow a \cdot y + b = x \land b < y \}, \]

As loop invariant, we choose (creative act!):

\[P \equiv a \cdot y + b = x \land b \geq 0 \]
Proof of (3)

(3) claims

\[P \land \neg (b \geq y) \rightarrow a \cdot y + b = x \land b < y. \]

where \(P \equiv a \cdot y + b = x \land b \geq 0. \)

Proof: easy.

Back to the Example Proof

We have shown:

(1) \(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x \{ P \}. \)

(2) \(\vdash_{PD} \{ P \land b \geq y \} \ b := b - y; \ a := a + 1 \{ P \}. \)

(3) \(P \land \neg (b \geq y) \rightarrow a \cdot y + b = x \land b < y. \)

and

\[
\begin{array}{l}
\{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x \{ P \} \\
\{ P \land (b \geq y) \} \ b := b - y; \ a := a + 1 \{ P \} \\
\{ P \land (b < y) \} \\
\{ a \cdot y + b = x \land b < y \}
\end{array}
\]

thus

\(\vdash_{PD} \{ x \geq 0 \land y \geq 0 \} \ a := 0; \ b := x; \ \text{while} \ b \geq y \ \text{do} \ b := b - y; \ a := a + 1 \ \text{od} \ \{ a \cdot y + b = x \land b < y \} \equiv DIV \)

and thus (since PD is sound) \(DIV \) is partially correct wrt.

* pre-condition: \(x \geq 0 \land y \geq 0 \),

* post-condition: \(a \cdot y + b = x \land b < y \).

IOW: whenever \(DIV \) is called with \(x \) and \(y \) such that \(x \geq 0 \land y \geq 0 \),
then (if \(DIV \) terminates) \(a \cdot y + b = x \land b < y \) will hold.
Once Again

- \(P \equiv a \cdot y + b = x \land b \geq 0 \)

\[
\begin{align*}
\{ x \geq 0 \land y \geq 0 \} \\
\{ 0 \cdot y + x = x \land x \geq 0 \}
\end{align*}
\]

- \(a := 0; \)

\[
\{ a \cdot y + x = x \land x \geq 0 \}
\]

- \(b := x; \)

\[
\{ a \cdot y + b = x \land b \geq 0 \}
\]

\[
\{ P \}
\]

- while \(b \geq y \) do

\[
\{ P \land b \geq y \}
\]

\[
\{ (a+1) \cdot y + (b-y) = x \land (b-y) \geq 0 \}
\]

- \(b := b - y; \)

\[
\{ (a+1) \cdot y + b = x \land b \geq 0 \}
\]

- \(a := a + 1 \)

\[
\{ a \cdot y + b = x \land b \geq 0 \}
\]

\[
\{ P \}
\]

- od

\[
\{ P \land \neg (b \geq y) \}
\]

\[
\{ a \cdot y + b = x \land b < y \}
\]

Literature Recommendation

Programmverifikation
Sequentielle, parallele und verteilte Programme
Springer-Lehrbuch

Verification of Sequential and Concurrent Programs
Kees Doets
Frank de Boer
Erik-Jan Oudeg
Springer

31/47

32/47
Content

- Formal Program Verification
 - Deterministic Programs
 - Syntax
 - Semantics
 - Termination, Divergence
 - Correctness of deterministic programs
 - partial correctness,
 - total correctness.
 - Proof System PD

- The Verifier for Concurrent C
 - modular reasoning
 - return values / old values

- Assertions
- The Verifier for Concurrent C (VCC) basically implements Hoare-style reasoning.

- Special syntax:
 - `#include <vcc.h>`
 - `_ (requires p)` — pre-condition, `p` is (basically) a C expression
 - `_ (ensures q)` — post-condition, `q` is (basically) a C expression
 - `_ (invariant expr)` — loop invariant, `expr` is (basically) a C expression
 - `_ (assert p)` — intermediate invariant, `p` is (basically) a C expression
 - `_ (writes &v)` — VCC considers concurrent C programs; we need to declare for each procedure which global variables it is allowed to write to (also checked by VCC)

- Special expressions:
 - `\thread_local(&v)` — no other thread writes to variable `v` (in pre-conditions)
 - `\old(v)` — the value of `v` when procedure was called (useful for post-conditions)
 - `\result` — return value of procedure (useful for post-conditions)

VCC Syntax Example

```c
#include <vcc.h>

int a, b;

void div(int x, int y) {
  _ (requires x >= 0 && y >= 0)
  _ (ensures a * y + b == x && b >= 0)
  _ (writes &a)
  _ (writes &b)
  {
    a = 0;
    b = x;
    while (b >= y)
      _ (invariant a * y + b == x && b >= 0)
      {
        b = b - y;
        a = a + 1;
      }
  }
}
```

\[
DIV \equiv a := 0; \ b := x; \ while \ b \geq y \ do \ b := b - y; \ a := a + 1 \ od \ \\
\{ x \geq 0 \land y \geq 0 \} \ DIV \{ x \geq 0 \land y \geq 0 \}
\]
Interpretation of Results

- VCC result: "verification succeeded"
- VCC result: "verification failed"
- Other case: "timeout" etc.
Interpretation of Results

- VCC result: "verification succeeded"
 - We can only conclude that the tool
 — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. —
 claims that there is a proof for $\models \{p\} \text{DIV} \{q\}$.

- VCC result: "verification failed"

- Other case: "timeout" etc.

Interpretation of Results

- VCC result: "verification succeeded"
 - We can only conclude that the tool
 — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. —
 claims that there is a proof for $\models \{p\} \text{DIV} \{q\}$.

 - May be due to an error in the tool! (That's a false negative then.)
 Yet we can ask for a printout of the proof and check it manually
 (hardly possible in practice) or with other tools like interactive theorem provers.

- VCC result: "verification failed"

- Other case: "timeout" etc.
Interpretation of Results

- VCC result: “verification succeeded”
 - We can **only** conclude that the tool — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. — claims that there is a proof for $\models \{p\} \text{DIV} \{q\}$.
 - **May be due to an error in the tool!** (That’s a **false negative** then.)
 Yet we can ask for a *printout of the proof* and check it manually (hardly possible in practice) or with other tools like interactive theorem provers.
 - **Note:** $\models \{false\} \not{f} \{q\}$ always holds.
 That is, a mistake in writing down the pre-condition can make errors in the program go undetected!

- VCC result: “verification failed”

- Other case: “timeout” etc.

Interpretation of Results

- VCC result: “verification succeeded”
 - We can **only** conclude that the tool — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. — claims that there is a proof for $\models \{p\} \text{DIV} \{q\}$.
 - **May be due to an error in the tool!** (That’s a **false negative** then.)
 Yet we can ask for a *printout of the proof* and check it manually (hardly possible in practice) or with other tools like interactive theorem provers.
 - **Note:** $\models \{false\} \not{f} \{q\}$ always holds.
 That is, a mistake in writing down the pre-condition can make errors in the program go undetected!

- VCC result: “verification failed”
 - **May be a false positive** (wrt. the goal of finding errors).
 The tool does not provide counter-examples in the form of a computation path, it (only) gives hints on input values satisfying p and causing a violation of q.

- Other case: “timeout” etc.
Interpretation of Results

- **VCC result: “verification succeeded”**
 - We can **only** conclude that the tool
 — under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. —
 claims that there is a proof for \(\models \{ p \} \text{DIV} \{ q \} \).
 - May be due to an error in the tool! (That’s a **false negative** then.)
 Yet we can ask **for a printout of the proof** and check it manually
 (hardly possible in practice) or with other tools like interactive theorem provers.
 - **Note:** \(\models \{ \text{false} \} f \{ q \} \) **always** holds.
 That is, a **mistake** in writing down the pre-condition can make errors in the program go undetected!

- **VCC result: “verification failed”**
 - May be a **false positive** (wrt. the goal of finding errors).
 The tool **does not provide counter-examples** in the form of a computation path,
 it (only) gives **hints on input values** satisfying \(p \) and causing a violation of \(q \).
 - \(\rightarrow \) try to construct a (true) counter-example from the hints.
 or: make loop-invariant(s) (or pre-condition \(p \)) stronger, and try again.
 - **Other case: “timeout” etc.**
• For the exercises, we use VCC only for sequential, single-thread programs.
• VCC checks a number of implicit assertions:
 • no arithmetic overflow in expressions (according to C-standard),
 • array-out-of-bounds access,
 • NULL-pointer dereference,
 • and many more.

• Verification does not always succeed:
 • The backend SMT-solver may not be able to discharge proof-obligations
 (in particular non-linear multiplication and division are challenging);
 • In many cases, we need to provide loop invariants manually.
VCC Features

- For the exercises, we use VCC only for sequential, single-thread programs.
- VCC checks a number of implicit assertions:
 - no arithmetic overflow in expressions (according to C-standard),
 - array-out-of-bounds access,
 - NULL-pointer dereference,
 - and many more.
- Verification does not always succeed:
 - The backend SMT-solver may not be able to discharge proof-obligations (in particular non-linear multiplication and division are challenging);
 - In many cases, we need to provide loop invariants manually.
- VCC also supports:
 - concurrency:
 different threads may write to shared global variables; VCC can check whether concurrent access to shared variables is properly managed;
 - data structure invariants:
 we may declare invariants that have to hold for, e.g., records (e.g. the length field \(l \) is always equal to the length of the string field \(s \)); those invariants may temporarily be violated when updating the data structure.
 - and much more.

Modular Reasoning
Modular Reasoning

We can add another rule for calls of functions \(f : F \) (simplest case: only global variables):

\[
\begin{array}{c}
\{p\} F \{ q \} \\
\{p\} f() \{ q \}
\end{array}
\]

"If we have \(\vdash \{ p \} F \{ q \} \) for the implementation of function \(f \),
then if \(f \) is called in a state satisfying \(p \), the state after return of \(f \) will satisfy \(q \)."

\(p \) is called pre-condition and \(q \) is called post-condition of \(f \).

Example: if we have

- \{true\} read_number \{0 ≤ result < 10^8\}
- \{0 ≤ x ∧ 0 ≤ y\} add \{(old(x) + old(y) < 10^8 ∧ result = old(x) + old(y)) ∨ result < 0\}
- \{true\} display \{(0 ≤ old(sum) < 10^8 ⇒ "old(sum)") ∧ (old(sum) < 0 ⇒ "-E-"\}

we may be able to prove our pocket calculator correct.

![Pocket Calculator Example](image)

Return Values and Old Values

- For modular reasoning, it's often useful to refer in the post-condition to
 - the return value as \(\text{result} \),
 - the values of variable \(x \) at calling time as \(\text{old}(x) \).

- Can be defined using auxiliary variables:
 - Transform function
 \[
 T f() \{ \ldots ; \text{return expr}; \}
 \]
 (over variables \(V = \{ v_1, \ldots, v_n \} \); where \(\text{result}, v_i^{\text{old}} \notin V \)) into
 \[
 T f() \{
 v_1^{\text{old}} := v_1; \ldots ; v_n^{\text{old}} := v_n;
 \ldots ;
 \text{result} := \text{expr};
 \}
 \]
 return \(\text{result} \);
 - over \(V' = V \cup \{ v^{\text{old}} \mid v \in V \} \cup \{ \text{result} \} \).
 - Then \(\text{old}(x) \) is just an abbreviation for \(x^{\text{old}} \).
• Extend the syntax of deterministic programs by

\[S := \cdots | \text{assert}(B) \]

• and the semantics by rule

\[\langle \text{assert}(B), \sigma \rangle \to \langle E, \sigma \rangle \text{ if } \sigma \models B. \]

(If the asserted boolean expression \(B \) does not hold in state \(\sigma \), the empty program is not reached; otherwise the assertion remains in the first component: abnormal program termination).

Extend PD by axiom:

\[(A7) \{ p \} \text{ assert}(p) \{ p \} \]

• That is, if \(p \) holds before the assertion, then we can continue with the derivation in PD.

If \(p \) does not hold, we “get stuck” (and cannot complete the derivation).

• So we cannot derive \(\{ \text{true} \} \ x := 0; \text{ assert}(x = 27) \{ \text{true} \} \) in PD.
Formal Verification:

- **Program verification** is another approach to software quality assurance.

- **Proof System PD** can be used
 - to prove
 - that a given program is
 - correct wrt. its specification.

 This approach considers all inputs inside the specification!

- Tools like **VCC** implement this approach.

References
References

