Softwaretechnik / Software-Engineering

Lecture 17: Wrapup & Questions

2019-07-22

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Proof-System PD (for sequential, determi

programs)

Rule 4: Conditional Statement

{p} skip {p} {1 B} Si{a} {p A ~B} Sz {q}.
{p} if B then 5, else 55 fi {q}

Axiom 2: Assignment Rule 5: While-Loop
{plu =t} u:=t{p} {pA B} S {p}
p} while Bdo S od {p A =B}
Rule 3: Sequential Composition
{p} S {r}, {r} S2 {a}
» popudn} S{nta =g
{p} S1; 82 {q} B Y

Rule 6: Consequence

Theorem. PD is correct (*sound) and (relative) complete for partial correctness of deter-
ministic programs, ie. - {p} S {q} it and only if = {p} S {q}.

Topic Area Code Quality Assurance: Content

Example Proof

troduction and Vocabulary

T Test case, test suite, test execution.

« Positive and negative outcomes.
 Limits of Software Testing

o Glass-Box Testing

Lo Statement-, branch-, term-coverage.
» Other Approaches

L+ Model-based test 2

o Program Verification

« partial and total correctness,
« Proof System PD.
« Runtime verification.

* Review

P _pp
—_—— —~— —_—
E_\mfuoﬂ?uﬁsz_iw@%?u@\@fuatca

(The fi y represented) program rmally veri . 1969).

Wecanprove |={x>0Ay >0} DIV {a-y+b=xAb<y}
byshowing Fpp {z>0Ay >0} DIV {a-y+b=2Ab<y},
g=02u=25 NCRRAEILAS/

, derivability in PD:

{PA(BP)}SP (P} ®s) @)
PP {Phwhile B doSP od (P AS(BP)}), PA(BP) 5 aP
(P} SP (P}, {P} while B” do SP od {q"} ®3)
{pP} SP; while B do SP od {q”}
7} sk {5} @ERAREID o S o
B e e e P
S

Proof-System PD Cont’d

£
Example Proof
[l A _.p
—_—— e —_—
DIV =a:=0; b:=x; while b>y do b ca=a+1od
(The first (textually repr program that has by (Hoare, 1969).
Wecanprove |={r >0Ay >0} DIV{a-y+b=zAb<y}
byshowing tpp {&>0Ay >0} DIV{a-y+b=xAb<y}, ie,derivabilityinPD:
b —ap
)
[
[P Jrbmxnbe)
(520002 0= 0; b 5 whileb 2 b b 0- 0+ o ay+ b= A6 <)
3 851 (1), {7} 82 () (p7 B} S {5)
: CUXEDDE O 1 51 52 {0} %) () while 5 do S 0d {5 A -5}
DAB)Y S {ah pA~B}S2 {0} o = i} Sk ;4
e A P T e = 1 Grstar B
: ”

Example Proof Cont’d

ra

P (P)whilen>y

() Fpp{z>0Ay >0}a:=
@) Frp {PAbZytbi=b—yia:=

a+1{P},

B) EPA-(b>y) wa-y+b=azAb<y.

As loop invariant, we choose (creative act!):

P=

Proof of (1)

o (1) claims:
Fpo{z>0Ay>0}a:=0;b:
where P=a-y+b=aAb>0.

a-y+b=aAb>0

R0 {phskip (b} R S on 1 olse 52 A {4}

B)s

(82 {plu =)} u = p} RS Ty zz_ﬁw %w ﬁm v¢.> —B}

w0 P GO % g r—m o) Stah a2
©)51:5:))t}

y A B Si{ah, (pA=B) S (g}

Proof of (1)

o (1)

s:

(ABY S) (0 ABYS: 4}
{9} if B then 5, olse 5, A {q]
s
W la= i) 09 ORI

(0151403, {152 4} gy p— 712 1} Sk =
G e ey O (0} (0}

W)} skin (7} RA)

Proof of (1)) A BY S (a), (9AB) 53 (o}
{7} If B then 5, clse 52 A {q}
W= G0 O)
195), 4} S2ab gy 7= 1 4} S {arhy 1
®sisw ")5 (a)

(A1) {p} skip {p} (R4)

Frp {e>0Ay >0} a:=0; b=z {P}

where P=a-y+b=xAb>0.

Proof of (1)

(1) claims:

» (1) claims:
Frp {2 0Ay>0ya:=0; b=z {P}

where P=a-y+b=xAb>0.

¢
T
ebpp{0-ytr=aArr>0ta:=0{a-y+z=aAz>0} by(Ad,
7
ﬂm&uew

a-
o
«

W {p} skip () R S on By o0 52 ()

0B S)
o} while B do 5 od (p A ~B]
(5151 1, 112 {ab gy p 1, {1} S) @ 0
B s sm ")5 (a)

(82 (ol = =t {p} RS

9AB) 51 (a), (pA=B) S fa}

Substitution

The rule ‘Assi ’ uses (syntactical) {plu = t]}u:=t{p}

(In formula p, replace all(free) occurences of (program or logical) variable u by term t)

Frp {&20Ay 20} a:=0;b:=x{P}
where P=a-y+b=xAb>0.

by (R6).

-,
o usings = 0 Ay > 0) gwavL P, we obtain

Defined as usual, only indexed and bound variables need to be treated specially:
azx Tin?r& r s w3

(azxn ¥ee b) [z 3] i ?

%

wren Yoo bt iy arutda Vasboe

Substitution

The rule ‘Assi ' uses i itution: {p[u :=]} u := t {p}
(In formula p, replace all (free) occurences of (program or logical) variable u by term ¢

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions: Formulae:
« plain variable z: afu =] = 4 L = « boolean expression p = s:
x ,otherwise plu=t]=slu:=t
« constant « negation:
cu=1t] = (g)u = 1] = ~(qfu:=1])
* constant op, terms s, . n etc.:
op(st, ... sn)[u (gAr)[ui=1]
= op(si[u:= salu:=t]). =qlu=tArfu:=t
« conditional expression: o quantifier:
(B?s1:82)[ui=1] (Va:q)ui=1] =Vy: qlx =y
= (Blu=1]?s1[u:=t] : safu = 1]) y fresh (notin g, t, u), same type as z.

dexed variable, u plain or u = b1, . ., tm] and a # b:
(afst,...,sn])u:=t] = als1

« indexed variable, u = alt1,
(@lsn, sl =] = (N sibui= 1] =17

»snlui=1]])

Proof of (2)) (A BYS: (0}, (A =B) 5 la)
{(PFif B then 5 else 5 f {4
B}s
(A2) {plu =]} u o= t {p} ag%
3} 1 {r},) 2 {0} gy » = 21 21} S)
B wsisw ") (o)

(A {p} skip {p) (R4)

© (2) claims:
Fep {PAbZ>y}bi=b—y; a:=a+1{P}
where P=d-y+b=xnb>0.

-

ekpp{la+1) y+(b-—y)=aA(b-y)>0tb:=b-y{(a+1)-y+b=aAb>0}
by (R2),

obpp{la+1)-y+b=aAb>0la=a+1{a-y+b=xAb>0} by(A2),
NI

=k,

10564

Example Proof Cont’d

2 (7).

In the following, Smcmmmﬁ

(1) Frp ?chwaa.Ho;nuiwr\
2) Fpp {PAbZ>yhbi=b—y; a:=a+1{P},
B) EPA-(b>y)—a-y+b=arb<y.

As loop invariant, we choose (creative act!):

P=a-y+b=zAb>0

e) wvﬁu Mumw s W sz_wm hﬁh V:‘ =
T
Proof of (2) (A {r} skip (9} 2%
(A2) {plu = t]} u =t {p} Ew%
2 P12 150 gy e
« (2) claims:

Fpp {PAbZy}bi=b—y:a:=a+1{P}
where P=a-y+b=xAb>0.

by (A2),

Fep{(a+1)-y+b=2Ab>0ta:=a+1{a-y+b=xAb>0} by(A2),
N

=P

Fep {la+1)-y+(b-y)=azA(b—y) >0} b:=b—y; a:=a+1{P} byR3),

o usingPAb>y > (a+1)-y+(b—y)=xA(b—y)>0and P — P weobtain,

Fpo {PAb>ytbi=b—y; a:=a+1{P}
by (R6).

Fep {(a+1)-y+(b-y)=aA(b-y)>20}b:=b-y{(a+1)-y+b=xAb>0}

10564

Proof of (2)) A BY S (a), (9AB) 53 (o}
{7} If B then 5, clse 52 A {q}
{rn B} S {p}
{p} while Bdo S od {p A ~B}
)51), {7} S2 {a} g P = 71, {1} S{ar), a1 =
® s st)5 (a)

(A1) {p} skip {p} (R4)

(A (plu =]} w = ¢ {p} (RS)

* (2) claims:
Fep {PAbZ>y}bi=b—y; a:=a+1{P}
where P=a-y+b=xznb>0.

{a+ 1) y+b=anb>0}

by
t

.Tua:=+:é+$|$ua>?|§ WSW”H
by (A2), By

10064

Example Proof Cont’d

) o

ezo0ny

In the following, we show
(1) Fpo{@>0Ay>0}a:=0;b:=a{P}, /
) Is?iwi?uv\.ﬁn_unt*ﬂ_\
B) EPA-(bZy) wa-y+b=arb<y.

As loop invariant, we choose (creative act!):

P=a-y+b=a2Ab>0

15 (01, ()52 (o} 7B S (o}
(@ {p} skip {9} B o 81t 5a e} ®9) (1} while Bdo S od {p A B}
(BAB)S1), (PA~BYS2 0} gy PP 1) S {arh a0

Wl = ayuim ey G DRI T R s

s

Proof of (3)

(3) claims
EPA=(b>y) a-y+b=aAb<y.
where P=a-y+b=zAb>0.

Proof: eas \

Literature Recommendation

24

1574

Back to the Example Proof

We have shown:

() Fpp{e>0Ay>0}a:=0;b:=z{P},
@) Fpp {PAb>y}bi=b—y;a=a+1{P},
B)EPA-GbZY) wa-y+b=arb<y.
and

@
PGz mbopamaip)

E200y2000im0b =2 (P),

{2200y 2 000 bz whileb > ydobm b— s aima+ Lod {a-y+ b 2Ab<3)

thus

Fpp {2 >0Ay >0} a:=0; b:=x; whileb>ydob:=b—y; a:=a+lod{ay+b==zAb<y}

=DIv
and thus (since PD is sound) DIV is partially nc:‘mn\ﬁ 3
1z >0Ay >0, /

o post-conditiona -y +b=xzAb<y.

 pre-conc

IOW: whenever DIV is called with - and y such that = > 0 Ay > 0,
then (if DIV terminates) a - y + b = x A b < y will hold.

1364

Content

e« Formal Program Verification
« Proof System PD

 The Verifier for Concurrent C

7/ » Assertions, Modular Verification, VCC
« Runtime-Verification

7/_- Assertions, LSC-Observers

* Reviews

* Roles and artefacts

« Review procedure
o Stronger and weaker variants

Code QA Techniques Revisited

o Test, Runtime-Verification, Review,
o Static Checking, Formal Veri

« Do'sand Don'ts in Code QA
« Dependability

16164

Once Again

(A1) (v} skip ()
(82 {plu =t} ui=t {p}

oy 251 (), (1} 52 (o}
e P=a-y+b=zAb>0

[TEEAm

(o) WABY S la), (07 2B) 5a ta}
{22 0ny> 0177 1T B then 5, else 52 (1]
{0-y+z=zrz>0} A B} S (5}

B 1) while B do 5 od {n A ~B)
P} S{ak g
}5a}

©a:=0; HT@
{a-y+z=xnx>0} R3
b= wr\#
{a-y+b=zAb>0}
{P} <
o whileb > y do
{PAb>y}
fla+1)-y+ -y =xn(b-y) >0}
o bi=b-y
{la+1)-y+b=2znb>0}
e a=a+l
{a-y+b=anb>0}
(P}
« od
{PA-(b=zy)}
{a-y+b=anrb<y}

es

The Verifier for Concurrent C

74

vce

« The Verifier for Concurrent C (VCC) basically implements Hoare-style reasoning.

« Special syntax:

o #include <vce.h>
Jimesmee See

o _(requires p) — pre-condition, pis (basically) a C expression

« _(ensures ¢) —post-condi

n, g is (basically) a C expression
o _Cinvariant expr) —loop invariant, capr is (basically) a C expression
o _(assert p) —intermediate invariant, p s (basically) a C expression

* _(urites &v) —VCC considers concurrent C programs; we need to declare for each procedure
which global variables it is allowed to write to (also checked by VCC)

o Special expressions:
* \thread_local(&v) —no other thread writes to variable v (in pre-conditions)

© \old(v) —the value of v when procedure was called (useful for post-condi

ns)

© \result — return value of procedure (useful for post-conditions)

1864

Interpretation of Results

« VCCresult: “ves

ication succeeded”

+ We can only conclude that the tool
—under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. —
claims that there is a proof for = {p} DIV {q}.
« May be due to an error in the tool! (Thats a false negative then.)
Yet we can ask for a printout of the proof and check it manually
(hardly possible in practice) or with other tools like interactive theorem provers.
« Note: = {false} f {g} always holds.
That

amistake in wr

g down the pre-conditi in the program go

« VCCresult: “verification failed”

= May be a false positive (wrt. the goal of finding errors).

The tool does not provide c: ples in the form of a
it (only) gives hints on input values satisfying p and causing a viol:

© — try to construct a (true) counter-example from the hints.
or: make loop-invariant(s) (or pre-condition p) stronger, and try again.

= Other case: “timeout” etc. — completely inconclusive outcome.

i

VCC Syntax Example

relude <vee.h>

5| int a. b;

s| void div(int x, int y) \

6| _(requires x >= 0 8& y >= 0)

7| lensures a *y + b == x 8& b < y)~

| writes ga) &
9 —(writes &b)

4| _(invariant a *y + b == x & b >= 0)

" {
6 b-b-y
a-a-+ 1

DIV =a:=0; b:=x; whileb>ydob:=b—y; a:=a+1lod

{2>0Ay>0} DIV {z>0Ay >0}

19es
VCC Features
« For the exercises, we use VCC only for sequent igle-thread programs.
© VCC checks a number of implicit assertions:
no arithmetic overflow in expressions (according to C-standard),
array-out-of-bounds access,
NULL-pointer dereference,
and many more.
o Verification does not always succeed:
« The backend SMT-solver may not be able to discharge proof-obligations
in particular non-linear multiplication and division are i
+ Inmany cases, we need to provide loop invariants manually.
- s
 VCCalso supports:
« concurrency:
different threads may wite to shared global variables; VCC can check whether concurrent access to
shared variables is properly managed;
« data structure invariants:
we may declare invariants that have to hold for, e.g, records (e.g. the length field is always equal to
the length of the string field str); those invariants may temporarily be violated when updating the
datastructure.
« and much more.
22

VCC Web-Interface

€0 comtamsemsiciion

Example program DIV: http: //risedfun. con/Vec/4Kqe

Modular Reasoning

Modular Reasoning

We can add another rule for calls of functions : F* (simplest case: only global variables):
o) plratitin
W0 @

If we have - {p} F' {q} for the implementation of function f,
Jis called in a state satisfying p, the state after return of f willsatisfy g

(R7)

ther

.

pis called p and g s called pr dition of f.

Example: if we have
{true} read_number {0 < result < 105}
gv add {(old(x) + old(y) < 10° Alresulty=old(x) + old(y)) V result < 0}
{true} aisplay {(0 < old(sum) < 105 == "old(sum)”) A (old(sum) <0 = "-E-")}

we may be able to prove our pocket calculator correct.

Assertions

« Extend the syntax of deterministic programs by

| assert(B)
« and the semantics by rule
(assert(B), o) — (E, o) if o |= B.

(If the asserted boolean expression 3 does not hold in state o, the empty program is not reached;
otherwise the assertion remains i the first component: abnormal program termination).

Extend PD by axiom:
(A7) {p} assert(p) {p}
« Thatis, if p holds before the assertion, then we can continue with the derivation in PD.

If p does not hold, we “get stuck” (and cannot complete the derivation).

« Sowe cannot derive {true} « := 0; assert(x = 27) {true} in PD.

Return Values and Old Values

For modular reasoning, its often useful to refer in the post-con
o the return value as result,
o the values of variable at calling time as old(

Can be defined using auxiliary variables:

« Transform function
T £() {...;return capr;}

(over variables V = {v1,..., v, }; where result, v/ ¢ V) into

Ti0{

1

result = expr;
return result;

¥
U{v™ | v e V}U {result}.

overV’ =

b « Then old(x) is just an abbreviation for 2.

Content

Formal Program Verification
Le proof System PD

o The Veri
« Assertions, Modular Verification, VCC

r for Concurrent C

* Runtime-Verification
Le Assertions, LSC-Observers

* Reviews

» Roles and artefacts

« Review procedure

« Stronger and weaker variants

Code QA Techniques Revisited

W. Test, Runtime-Verification, Review,
 Static Checking, Formal Verification

« Do'sand Don'ts in Code QA
; « Dependability

24 2864

Assertions

Run-Time Verification

26064

294

A Very Useful Special Case: Assertions

ication: Assertions.

« Maybe the simplest instance of runtime vel
« Available in standard libraries of many programming languages (C, C++, Java,

« For example, the C standard library manual reads:

ASSERTES) Linux Programmers Manual ASSERTE)

| name
assert — abort the program f asserton s fase

SYNoPsis
Finclude csserth

void asertscalas expression).

DESCRPTION
] the macro assert() prints an eor message to san

| istalse e, compares equal o erol.

e[The purpose of this macrosto help the programmer find bugs inhis

program The message “sseron faled 1 fle fooc, functon
o] Vo bart. ine1287"isf o hep atall o ser

* InCcode, assert can be disabled in production code (-D NDEBUG).
© Use java -ea ... toenable assertion checking (disabled by default).

(ck eeps: //d 1o con/5 anguas; beal)

Run-Time Verification: Idea

« Assume, there is a function f in software S with the following specification:
o pre-condition: p, post-condition: g.
« Computation paths of S may look like this:

call | J returns

o as an-1
T0 =3 01 = 02— O~ Onjl O Tmi1 "

« Assume there are functions chicck, and check,,
which check whether p and ¢ hold at the current program state,
and which do not modify the program state (except for program counter.

« Idea: create software S’ by

(i) extending S by implementations
of check, and check g,

« For S’, obtain computation paths like

a call £ checky

o ant
00 o1 B oy T 0 D onn

o If check, and check, notify us of violations of p or g,
then we are notified of / violating its specifical

aall check, right after entering /.
call check, right before retu

n when running S’ (= at run-time).

3084

g from /.

GO oty L

336

Assertions At Work

« The abstract f-example from run-time verification:
(spe

» Compute the width of a progress bar:

JE—

% Progress Bar

fnt progress_bar_width(int progress . it window_left, int window_right |

7+ pre-condition */

ready trested

don +/

Run-Time Verification: Example

12345678
. 27

it x,y. s

vord verify_sum(

«

4 s e ey

{ 1 (x + y > 99999999
a8 tsum < 0)

it ma

(true) (
X« tead_number
¥ = read_number
o sm o= add(x, v) e

fprintf (stderr
“verify_sum

i venty_sum(x, y, sm)

o| display 0
o

)

3les

Assertions At Work 11

* Recall the structure model with Proto-OCL constraint from Exercise Sheet 4/.2()/2
o Assume, we add amethod set_key() to class TreeNode:
©clas TreeNode (

5o ¢ key:
TreeNode parent . leftChild . rightChild:

nt getkey() { return key:)
. woid set_key(int new_key) (
o key - newkey:
o 3

)

» We can check consistency with the Proto-OCL constraint at runtime by using assertions:

More Complex Run-Time Verification: LSC Observers

STDETEA

ChoicePanel:

32%4

3564

Run-Time Verification: Discussion

ns and intermediate invariants

Experience. Assertions for pre/post condi

are an extremely powerful tool

with a very attractive gain/effort ratio (low effort, high gain).

* Asserti ively work as safe-guard against

Pe unexpected use of functions and
De regression,

e.g during later

o assert(espr);
means
ear reader, at this point in the program, | expect condition expr to hold!’

Be good to your readers: add a comment that explains é

36r64
Recall: Three Basic Directions
all computation
paths satisfying the ExAr
specific:
expected Vl.' g g >
outcomes Soll
prove
Sk
conclude
[s1el+1
Reviewer
1 review I
sE:lD — output E:’ jE': E;[jiL
Review

: 3964

Content

« Formal Program Veri
Le proof System PD

The Verifier for Concurrent C
(s Assertions, Modular Verification, VCC

« Runtime-Verification

(e Assertions, LSC-Observers

© Reviews
{e Roles and artefacts
Review procedure
Stronger and weaker variants

Code QA Techniques Revisited

Test, Runtime-Verification, Review,
Static Checking, Formal Verification

« Do'sand Don'ts in Code QA
» Dependability

Reviews

« Input to Review Session: + Roles:

« Review item: can be every closed,
human-readable part of software
(documentation, modle, test data,
installation manual, etc)

Social aspect: it is an artefact
which is examined, not the human
(who created

Moderator: leads session, responsible for properly
conducted procedure.

Author: (representative of the) creator(s) of the artefact
under review; is present to listen to the discussions;

can answer questions; does not speak up if not asked.

Reviewer(s): person who s able to judge the artefact
under review; maybe different reviewers for different
aspects (programming, tool usage, etc.), at best
experienced in detecting inconsistencies or

* Reference documents: need to
enable an assessment

delin
(e coding conventions), catalogue of W .

4 e Transcript Witer: keeps minutes of review session, can
questions (al variables initialised?”).

be assumed by author.
etc)

» The review team consists of everybody but the author(s).

Review

38
Review Procedure Over Time
planning: reviews.
needtime in the
project plan. preparation:
reviewers investigate
eview item.
wwwww reviewers report,
! Planning | evaluate, and
=5 document issues;
by asubmission) Jntiation fesolve open
fo the revision . Preparation (2v) questions.
controlsystem: -
the moderator —> Review Review
Session@h | organisation
ession@h)_| under guidance
N “3rdhour (] _of modenator
states roview ~~___ [Postparation aw “31d hour': time for
v ftem informal chat,
reviewers may state
: proposals for
Solutions or
improvements.
postparation: rework
review item;
analysis: improve responsibility of the
developmentand author(s)
i review process.
_« Reviewers re-assess reworked review item (until approval is declared).
4use

Review Rules (Ludewig and Lichter, 2013)

(i) The moderator organises the review, issues
invitations, supervises the review session.

The moderator may terminate the review
if conduction is not possible, e.g. due to in-
puts, preparation, or people missing.

The review session is limited to 2 hours.
If needed: organise more sessions.

(iv) The review item is under review,

(vii) The review team is not supposed to de-
velop solutions.
Issues are not noted down in form of tasks
for the author(s).

(viii) Each reviewer gets the opportunity to
present her/his findings appropriately.

(ix) Reviewers need to reach consensus on is-
sues, consensus is noted down.

(x) Issues are classified as:

=

Roles are not mixed up, e.g, the moderator
does not act as reviewer.
(Exception: author may write transcript.)

(vi) Style issues (outside fixed conventions)
are not discussed.

not the author(s). « critical (review unusable for purpose),

Reviewers choose their words accordingl o mai .
defend the . «

review item.

« good (no problem).

(xi) The review team declares:
» acceptwithout changes,
o accept with changes,
« donotaccept.

(xii) The protocol s signed by all participants.

Code Quality Assurance Techniques Revisited

4264

4554

Stronger and Weaker Review Variants

« Design and Code Inspection (Fagan, 1976, 1956)

o delure variant of review,
« approx. 50% more time, approx. 50% more errors found

more effort
more effect

o Review
Structured Walkthrough
« simple variant of review:

XP's pair programming

© developer moderates walkthrough-session, Con-the-fy review'7)
o developer presents artefactls), [
o reviewer poses (prepared 3

o issues are noted down, =
« Variation point: do reviewers see the artefact before the session? /Jf/

o less effort, less effective.

N ies: Saleorrar- per =

Comment (Stellungnahme)

less effort, less effect

« colleague(s) of developer read artefacts,
« developer considers feedback.

—» advantage: low organisational effort;

—d zes: choice of colleagues may be biased; no protocol;
consideration of comments at discretion of developer.

Careful Reading (‘Durchsicht)

« done by developer,
« recommendation: ‘away from screen” (use print-out or different device and situation)

var

Techniques Revisited

auto- prove toolchain | exhaus | prove partial | entry
matic ‘anrun’ | considered tive corect | results cost

Test [v v x x v v
Runtime-

Static Checking
Verification

(yet not easy for GUI programs):
‘program " can run
o fi is examined, d i
« one can stop at any time and take partial results;
o few, simple test cases are usually easy to obtain;
« provid ducibl

repair)
Weaknesses:

« (in most cases) vastly incomplete, thus no proofs of correctne:
« creating test cases for complex functions (or complex conditions) can be difficult;

« maintenance of many, complex test cases be challenging.
. tests may ial time (but: b

Content

« Formal Program Verification

« The Verifier for Concurrent C
71- Assertions, Modular Verification, VCC

e Proof System PD

* Runtime-Verification
Le Assertions, LSC-Observers
* Reviews

(e Roles and artefacts
« Review procedure
G Stronger and weaker variants

» Code QA Techniques Revisited

W. Test, Runtime-Verification, Review,
« Static Checking, Formal Verification

« Do'sand Don'ts in Code QA
« Dependability

Techniques Revisited

auto- prove toolchain exhaus- prove partial entry
matic “can run" fered tive correct results cost

Test) v v x | x v v
Runtime- v) v ™) x v)
Verification
Review |
Static Checking |
Verification [

Strengths:

« fully automatic (once observers are in place):

« provides counter-example;

+ (nearly) final product is examined, thus toolchain and platform considered;
« one can stop at any time and take partial results;

Weaknesses:
« counter-examples not necessarily reproducible;
may negatively affect performance;
code s changed, program may only run because of the observers;
completeness depends on usage,
y also be vastly i

one needs to lear how to construct observers.

46564

Techniques Revisited

auto- prove toolchain exhaus- prove partial entry
matic “can run” considered tive correct results cost.
Test v v X X v
Runtime- 2] v x v
x x X W) W) v
Static Checking [
Verfication i
Strengths:
« human readers can understand the code, may spot point error
« reported to be highly effective;
« one can stop at any time and take partial results;
« intermedate entry costs;
Weaknesses:
« no tool support;
o results on actual execution, toolchain not reviewed;
« human readers may overlook errors; usually not aiming at proofs.
« does (in general) not provide counter-examples,
developers may deny existence of error.
46
Techniques Revisited
auto- prove toolchain | exhaus- | prove partal entry
matic | i considered | tive comect | results
w) v v x x v
v () v 3 v
Review X x X [~ @) v W)
Static Checkinglx) | v (%) x v) v ()
Verification ./) X X [v v X
A6rsa

Techniques Revisited

auto- prove toolchain exhaus- prove partial entry
matic “can run” considered tive correct results cost

Test [v v X X v v
Runtime- v v) X v “)
Verification
Review x x x v) v W)
Static Checking v (x) X v v
Verification I

Strengths:

o there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc
« some tools are complete (relative to assumptions on language semantics, platform, etc.);
« can be faster than testing
« one can stop at any time and take partial results.

Weaknesses:

= no results on actual execution, toolchain not reviewed;

« can be very resource consuming (if few false positives wanted),

eg. code may need to be “designed for static analysis’

many false positives can be very annoying to developers if fast checks wanted);
distinguish false from true positives can be challenging:

= configuring the tools (to limit false positives) can be challenging.

Some Final, General Guidelines

Techniques Revisited

auto- prove toolchain exhaus- prove partial entry
matic | canrur’ | considered tive comect | results | cost

Test v v X X v v
Runtime- W) v (x) x v]
Verification
Review x x v)
Static Checking) 3 v)
Verification x X (*) x

Strengths:

« some tool support available (few commercial tools):

« compl platform, etcl;

« thus can provide correctness proofs;

. d platforms ata time;

!
« can be more efficient than other techniques.

Weaknesses:

« entry cost high: significant training is useful to know how to deal with tool imitations;
« proving things is challenging; failing to find a proof does not allow any useful conclusion;
« false negatives (broken program “proved” correct) hard to detect.

46

Do’s and Don’ts in Code Quality Assurance

Avoid using special examination versions for examination.
(Test-h: tubs, etc. may h: h may cause

1) negatives.)

Avoid to stop examination when the first error is detected.

Clear: ination should be aborted if th ined program is not executable at all.

Do not modify the artefact under examination during examinatin.

o otherwise, itis unclear what exactly has been examined (‘moving target’),
(examination results need to be uniquely traceable to one artefact version.)

o fundamental flaws are sometimes easier to detect

with a complete picture of unsuccessful/successful tests,

changes are particularly error-prone, should not happen “en passant” in examination,

o fixing flaws during may cause them to g d in the statistics
(which we need for all kinds of estimation),

« roles developer and examinor are different anyway:
an examinor fixing flaws would violate the role assignment.

Do not switch (fine grained) between examination and debugging.

> B b

485

Proposal: Dependability Cases (Jacks

9)

» Adependable system is one you can depend on — that i, you can place your trust

“Developers [should] express the critical properties

and make an explicit argument that the system satisfies them”

Proposed Approach:

o Identify the critical requirements,

Dependability Case

and determine what level of confidence is needed.

(" doalso h: itical requi)
« Construct a dependability case, ie.
an argument, that the software, in concert with other

establishes the crtical properties.
« The dependal

y case should be
« auditable: can (easily) be evaluated by third-party certifier.
« complete: no holes in the argument;
any assumptions that are not justified should be noted
(e.g- assumptions on compiler, on protocol obeyed by users, etc.)
« sound: e.g. should not claim f
should not make
etc.

correctness [..] based on nonexhaustive testing;
i of

4951 z

50564

Contents of the Course

Looking Back: emerts | e, 165, T
17 Lectures on Software Engineering m:bu» -4 - 13 fra

524 5364

Tell Them What You've Told Them. ..

« Runtime Verification
« (as the name suggests) checks properties at program run-time,
« generous use of(asserc) can be a valuable safe-guard against
regressions, usage outside specification, etc.

and serve as formal ion of (i
Very attractive effort / effect ratio.

« Review (structured examination of artefacts by humans)

o (mi

variant) advocated in the XP approach,
« not uncommon:
lead programmer reviews all commits from team members,
« literature reports good effort/effect ratio achievable.
« Allapproaches to code quality assurance have their
« advantages and drawbacks.
« Which to use? It depends!
« Overall: Consider Dependability Cases

+ an (auditable, complete, sound) argument,
that a software has the critical properties.

5l

VU VL2 W3 VLA LS VL W7 VLB VL9 VLI LN VLR WLl VL WS Vs Wi
I

544

The Software-Engineering Course on One Slide

Topic Area: Project Management

Topic Area: Requirements Engineering

Topic Area: Architecture & Design

5564

E
i
H
H
A
iy

v
e AL
aND SNIIIRION:
E
Requirements

-8 1oaumouy 3uvmizos -
E

The Software-Engineering Course on One Slide

Topic Area: Project Management

« measure, know what you measure (scales, pseudo-metrics)
« estimate, measure, i imati i
« describe processes in terms of artefact, activity,role, etc. —and risk

Topic Area: Requirements Engineering

(there may be a gray zone)
« formal requi bi
« requirements engineers see the absence of meaning

Topic Area: Architecture & Design
« Model: “Nobody builds a house without a plan.” (L Lamport)
« software has structural and behavioural aspects

. d tools
(know how to interpret analysis outcomes)

« testing is almost always incomplete; testing is necessary
(know how to interpret the outcomes: true/false positive/negative)

(correctr lative: correct wrt. spe
554

Questions?

That’s Today’s Software Engineering —

Advertisements

More or Less. ..

56064

594

Advertisement

4

« Further studies:

x. Real-Time Systems (notin 2019/20)
ion and verification of real-time systems)

.mo?im-momnmm:.z_on_m_=w.m=m>=m_<mwm=c3_.?ezzuo_obov
_ (aformal, in-depth view on structural and behavioural modelling)

» Cyber-Physical Systems | - Discrete Models
(more on variants of CFA and queries. (LTL, CTL, CTL*)
« Cyber-Physical Systems - Hybrid Models
(Modelling and analysis of cyber-physical systems with hybrid automata)
a » Program Verification
(the theory behind tools like VCC)
s « Formal Methods for Java
(ML and “VCC for Java’)

__ o Decision Procedures
(the basis for program verification)

—+ https://swt.informatik.uni-freiburg.de/teaching
6064

References

636

References

Advertisement
« Individual Projects
(BSc/MSc project, Lab Project, BSc/MSc thesis)

« formal modelling of industrial case studies.
« improving analysis techniques
= own topics

— contact us (3-6 months before planned start).
—_—

» Want to be a tutor, e.g. Software Engineering 2020,
—» contact us (around early September / early March).

« Want to be a scientific student assistant?
— contact us.

6les

Fagan, M. (1976). Design and code inspections to reduce errors in program development. IBM Systems journal,
15(3):182-2]

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software Engineering, 12(7):744-751.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM, 12(10):576-580.
Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

Ludewig, J.and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

