
–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 1: Introduction

2019-04-25

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Engineering, Software, Software Engineering

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

2/40



Engineering

–
1

–
2

0
19

-0
4

-2
5

–
S

e
n

gi
n

e
e

ri
n

g
–

3/40

Engineering — The application of a systematic, disciplined,
quantifiable approach to structures, machines, products,
systems, or processes. IEEE 610.12 (1990)

Engineering — is the application of knowledge in the form of
science, mathematics, and empirical evidence,

to the innovation, design, construction, operation and maintenance

of structures, machines, materials, software, devices, systems,
processes, and organizations. Wikipedia

Non-Engineering vs. Engineering

–
1

–
2

0
19

-0
4

-2
5

–
S

e
n

gi
n

e
e

ri
n

g
–

4/40

Non-Engineering
(studio / artwork)

Engineering
(workshop / techn. product)

Deadlines cannot be planned
due to dependency on artist’s
inspiration

can usually be planned
with sufficient precision

Price / Cost determined by market value,
not by cost

oriented on cost,
thus calculable

Evaluation and
comparison

is only possible subjectively,
results are disputed

can be conducted using
objective, quantified criteria

Norms and
standards

are rare and, if known,
not respected

exist, are known,
and are usually respected

Warranty
and liability

are not defined and in
practice hardly enforceable

are clearly regulated,
cannot be disclaimed

Mental
prerequisite

artist’s inspiration,
among others

the existing and available
technical know-how

Author considers the artwork
as part of him/herself

remains anonymous,
often lacks emotional ties
to the product

(Ludewig and Lichter, 2013)



Content

–
1

–
2

0
19

-0
4

-2
5

–
S

co
n

te
n

t
–

5/40

• Terminology

• Engineering, Software, Software Engineering

• Motivation: Successful Software Development

• Working definition: success

• Unsuccessful software development exists

• Common reasons for non-success

• Course

• Content

• Topic areas

• Structure of topic areas

• Emphasis: formal methods

• Relation to other courses

• Literature

• Organisation

• Lectures

• Tutorials

• Exam

–
1

–
2

0
19

-0
4

-2
5

–
S

ie
e

e
6

10
12

–

6/40

Authorized licensed use limited to: UNIVERSITAET FREIBURG. Downloaded on April 03,2015 at 13:47:32 UTC from IEEE Xplore.  Restrictions apply. 

 

 
 

 
 

 

Reference number
ISO/IEC/IEEE 24765:2010(E)

© ISO/IEC 2010
© IEEE 2010

 

 

 

 

INTERNATIONAL 
STANDARD 

ISO/IEC/
IEEE

24765

First edition
2010-12-15

Systems and software engineering — 
Vocabulary 

Ingénierie des systèmes et du logiciel — Vocabulaire 

 

Authorized licensed use limited to: Michigan State University. Downloaded on September 06,2014 at 17:36:30 UTC from IEEE Xplore.  Restrictions apply. 



–
1

–
2

0
19

-0
4

-2
5

–
S

so
ft

w
ar

e
–

7/40

Software — Computer programs, procedures,
and possibly associated documentation and data
pertaining to the operation of a computer system.

See also: application software; support software; system software.

Contrast with: hardware. IEEE 610.12 (1990)

Software —

1. all or part of the programs, procedures, rules, and associated
documentation of an information processing system. [...]

2. see 610.12

3. program or set of programs used to run a computer. [...]

cf. application software

NOTE: includes firmware, documentation, data, and execution control state-

ments. IEEE 24765 (2010)

Software Engineering — This Course’s Working Definition

–
1

–
2

0
19

-0
4

-2
5

–
S

sw
e

n
g

–

8/40

Software Engineering —

(1) The application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software;
that is, the application of engineering to software.

(2) The study of approaches as in (1). IEEE 610.12 (1990)

Software Engineering —

1. the systematic application of scientific and technological knowledge, methods, and
experience to the design, implementation, testing, and documentation of software.

2. see IEEE 610.12 (1) ISO/IEC/IEEE 24765 (2010)

Software Engineering–
Multi-person development of multi-version programs.

D. L. Parnas (2011)

fi
ff

.in
fo

rm
at

ik
.u

n
i-

b
re

m
e

n
.d

e
/

2
0

0
1/

as
se

ts
/

im
ag

e
s/

Software Engineering — the establishment and use of sound engineering
principles to obtain economically software that is reliable and works effi-
ciently on real machines. F. L. Bauer (1971)

co
m

m
o

n
s.

w
ik

im
e

d
ia

.o
rg

(C
C

-b
y

-s
a

3
.0

)



Content

–
1

–
2

0
19

-0
4

-2
5

–
S

co
n

te
n

t
–

9/40

• Terminology

• Engineering, Software, Software Engineering

• Motivation: Successful Software Development

• Working definition: success

• Unsuccessful software development exists

• Common reasons for non-success

• Course

• Content

• Topic areas

• Structure of topic areas

• Emphasis: formal methods

• Relation to other courses

• Literature

• Organisation

• Lectures

• Tutorials

• Exam

Successful Software Development

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

10/40



When is Software Development Successful?

–
1

–
2

0
19

-0
4

-2
5

–
S

al
lh

ap
p

y
–

11/40

Developer Customer User

A software development project is successful

if and only if

developer, customer, and user are happy with the result at the end of the project.

Which Result? Which Project?

–
1

–
2

0
19

-0
4

-2
5

–
S

al
lh

ap
p

y
–

12/40

• Successful:

Software!

Customer Developer

(software) contract

Time t:

→

10
0

10
0

10
0

Developer Customer

(software) delivery

Time t′ ≥ t:

• Unsuccessful:

Software!

Customer Developer

(software) contract

Time t:

→

:-(

:-(

10
0

10
0

10
0

Developer Customer

(software) delivery

✘

Time t′ ≥ t:

Does ’uncussessful’ happen? If yes: How can we avoid it?



Is Software Development Always Successful?

–
1

–
2

0
19

-0
4

-2
5

–
S

su
cc

e
ss

–

13/40

Erfolgs- und Misserfolgsfaktoren

bei der Durchführung von Hard- und

Softwareentwicklungsprojekten

in Deutschland

2006

Autoren:

Ralf Buschermöhle
Heike Eekhoff
Bernhard Josko

Report: VSEK/55/D
Version: 1.1
Datum: 28.09.2006

Some Empirical Findings (Buschermöhle et al. (2006))

–
1

–
2

0
19

-0
4

-2
5

–
S

su
cc

e
ss

–

14/40

3.17

30.16

6.88

5.03

25.66

29.1

1-9,999

10,000-99,999

100,000-499,999

500,000-999,999

≥ 1,000,000

not specified

budget in e (378 responses)

33.07
2.91

10.05

22.49
25.13

≤ 3

> 3-6

> 6-12

> 12-24

> 24

planned duration in months (378 responses)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

business critical mission critical safety critical

Criticality (378 responses, 30 ’not spec.’)

97.35
2.65

completed

cancelled

project completion (378 responses)

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

0.27

82.61

4.89

4.89

5.16

1.9
25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

main functionality realised (368 responses)

81.52

11.14

3.26

kept

below

above

budget (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20 %

20-49 %

50-99 %

100-199 %

≥ 200 %

deadline missed by (91 responses)

4.89

57.61

8.15
7.61

13.04

4.89

2.99

< 25 %

25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

secondary functionality realised (368 responses)



Causes for Unsuccessful Projects: First Approximation

–
1

–
2

0
19

-0
4

-2
5

–
S

w
ro

n
gs

–

15/40

Software!

Customer Developer

(software) contract

Time t:

→

:-(

:-(

10
0

10
0

10
0

Developer Customer

(software) delivery

✘

Time t′ ≥ t:

. . .

C
ap

tu
ri

n
g

R
e

q
u

ir
e

m
e

n
ts

D
e

si
gn

Im
p

le
m

e
n

ta
ti

o
n

(C
o

d
e)

Q
u

al
it

y
A

ss
u

ra
n

ce

. . .

➀ ➁ ➂ ➃

(Software) Project Management➄

Possible causes (by phase):

➀ ➁ ➂ ➃ ➄

✘ ✔ ✔ ✔ ✔
e.g. misunderstanding of requirements;

contradicting requirements

✔ ✘ ✔ ✔ ✔
e.g. non-scalable design; feature forgotten;

designer misunderstood requirement

✔ ✔ ✘ ✔ ✔
e.g. programmer misread design specification;

simple programming mistake

✔ ✔ ✔ ✘ ✔
e.g. wrongly conducted test;

tester misunderstood requirement

✔ ✔ ✔ ✔ ✘
e.g. wrong cost estimation; bad scheduling;

team member was not aware of responsibilities

Causes for Unsuccessful Projects: Once Again

–
1

–
2

0
19

-0
4

-2
5

–
S

w
ro

n
gs

–

16/40

➀ ➁ ➂ ➃ ➄

✘ ✔ ✔ ✔ ✔
e.g. misunderstanding of requirements;

contradicting requirements

✔ ✘ ✔ ✔ ✔
e.g. non-scalable design; feature forgotten;

designer misunderstood requirement

✔ ✔ ✘ ✔ ✔
e.g. programmer misread design specification;

simple programming mistake

✔ ✔ ✔ ✘ ✔
e.g. wrongly conducted test;

tester misunderstood requirement

✔ ✔ ✔ ✔ ✘
e.g. wrong cost estimation; bad scheduling;

team member was not aware of responsibilities

And that’s this course:

• Discuss typical Software-Engineering problems,

• like communication, misunderstandings, etc.

• like technical errors, quality issues, etc.

• and (state-of-the-art) generic mitigation approaches

• like precise description languages (e.g. for requirements),

• like analysis techniques (e.g. for program correctness),

by development phase (Requirements, Design, etc.).



Content

–
1

–
2

0
19

-0
4

-2
5

–
S

co
n

te
n

t
–

17/40

• Terminology

• Engineering, Software, Software Engineering

• Motivation: Successful Software Development

• Working definition: success

• Unsuccessful software development exists

• Common reasons for non-success

• Course

• Content

• Topic areas

• Structure of topic areas

• Emphasis: formal methods

• Relation to other courses

• Literature

• Organisation

• Lectures

• Tutorials

• Exam

Course: Content

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

18/40



Course Content (Tentative)

–
1

–
2

0
19

-0
4

-2
5

–
S

cc
o

n
te

n
t

–

19/40

. . .

C
ap

tu
ri

n
g

R
e

q
u

ir
e

m
e

n
ts

D
e

si
gn

Im
p

le
m

e
n

ta
ti

o
n

C
o

d
e

Q
u

al
it

y
A

ss
u

ra
n

ce

. . .

Software Project Management

- 22.4., Mon

Introduction L 1: 25.4., Thu

Metrics, Costs, L 2: 29.4., Mon

L 3: 2.5., ThuDevelopment
Process L 4: 6.5., Mon

T 1: 9.5., Thu

L 5: 13.5., Mon

Requirements L 6: 16.5., Thu

Engineering L 7: 20.5., Mon

T 2: 23.5., Thu

L 8: 27.5., Mon

- 30.5., Thu

L 9: 3.6., Mon

T 3: 6.6., Thu

- 10.6., Mon

- 13.6., Thu

Arch. & Design, L10: 17.6., Mon

- 20.6., Thu

Software- L 11: 24.6., Mon

T 4: 27.6., Thu

Modelling, L 12: 1.7., Mon

Patterns L 13: 4.6., Thu

QA L 14: 8.7., Mon

T 5: 11.7., Thu

L 15: 15.7., Mon(Testing, Formal
Verification) L16: 18.7., Thu

Wrap-Up L 17: 22.7., Mon

T 6: 25.7., Thu

h
tt

p
:/

/
w

w
w

.a
n

ta
rc

ti
ca

.g
o

v.
au

(J
an

e
t

S
h

e
lle

y)

–
1

–
2

0
19

-0
4

-2
5

–
S

cc
o

n
te

n
t

–

20/40



–
1

–
2

0
19

-0
4

-2
5

–
S

cc
o

n
te

n
t

–

21/40

SWEBOK v3.0
Bourque and Fairley (2014)

Literature (Preview)

–
1

–
2

0
19

-0
4

-2
5

–
S

lit
A

–

22/40



Structure of Topic Areas (Example: Requirements Eng.)

–
1

–
2

0
19

-0
4

-2
5

–
S

p
ar

ad
is

e
–

23/40

Sommerville (2010),
Balzert (2009),

Ludewig and Lichter (2013),
etc.:

This course:

Vocabulary

Techniques

•

•

•

informal

semi-formal

formal

e.g. consistent, com-
plete, tacit, etc.

◭

e.g. Natural Language

◭
e.g. Nat. Language Patterns

◭ e.g. Use Cases

◭ e.g. Use Case Diagrams

◭ e.g. Decision Tables

Vocabulary

Techniques

•

•

•

informal

semi-formal

formal

◭
◭
◭

◭

simple complex
•

e.g. Decision
Tables
(fomal)

•

e.g. Live
Sequence Charts
(proper subset,

fomal)

Excursion: Informal vs. Formal Techniques

–
1

–
2

0
19

-0
4

-2
5

–
S

p
ar

ad
is

e
–

24/40

Example: Requirements Engineering, Airbag Controller

D
ai

m
le

rC
h

ry
sl

e
r

A
G

,C
C

B
Y

-S
A

3
.0

Requirement specification, informal:

Whenever a crash is detected, the airbag has to be fired within 300ms (±ε).

Developer A

‘within’ means
‘≤’; so 100ms is

okay, too

Developer B

‘within’ means
between 300− ε

and 300 + ε

Requirement specification, formal:

• Fix observables: crashdetected : Time → {0, 1} and fireairbag : Time → {0, 1}

• Formalise requirement:

∀ t, t
′ ∈ Time • crashdetected(t) ∧ airbagfired(t′) =⇒ t

′ ∈ [t+ 300− ε, t+ 300 + ε]

→ no more misunderstandings, sometimes tools can objectively decide: requirement satisfied yes/no.



–
1

–
2

0
19

-0
4

-2
5

–
S

p
ar

ad
is

e
–

25/40

Sign says:

Welcome to formal
methods paradise:

• No more
misunderstandings!

• Let tools decide things
objectively!

Literature

–
1

–
2

0
19

-0
4

-2
5

–
S

lit
B

–

26/40

Project
Management

Vocabulary

Techniques

informal

formal

Requirements
Engineering

Vocabulary

Techniques

informal

formal

Design, SW
Modelling

Vocabulary

Techniques

informal

formal

Quality
Assurance

Vocabulary

Techniques

informal

formal

. . .more on the course homepage.



Content

–
1

–
2

0
19

-0
4

-2
5

–
S

co
n

te
n

t
–

27/40

• Terminology

• Engineering, Software, Software Engineering

• Motivation: Successful Software Development

• Working definition: success

• Unsuccessful software development exists

• Common reasons for non-success

• Course

• Content

• Topic areas

• Structure of topic areas

• Emphasis: formal methods

• Relation to other courses

• Literature

• Organisation

• Lectures

• Tutorials

• Exam

Course Software-Engineering vs. Other Courses

–
1

–
2

0
19

-0
4

-2
5

–
S

re
l–

28/40

Project
Management

Vocabulary

Techniques

informal

formal

Requirements
Engineering

Vocabulary

Techniques

informal

formal

Design, SW
Modelling

Vocabulary

Techniques

informal

formal

Implementation

Vocabulary

Techniques

Quality
Assurance

Vocabulary

Techniques

informal

formal

Databases

Op. Sys. Networks

Comp. Arch.
Info I

Info II

Info III Logic Graph Theory Maths I Maths II

Optimisation Stochastics

The lecturer points out connections to
other topic areas (e.g. research, praxis).

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✔



Course Software-Engineering vs. Softwarepraktikum

–
1

–
2

0
19

-0
4

-2
5

–
S

re
l–

29/40

Agreement between
‘Fachschaft’ and the
chair for software
engineering:
strong(er) coupling
between both
courses.

- 22.4., Mon

Introduction L 1: 25.4., Thu

Metrics, Costs, L 2: 29.4., Mon

L 3: 2.5., ThuDevelopment
Process L 4: 6.5., Mon

T 1: 9.5., Thu

L 5: 13.5., Mon

Requirements L 6: 16.5., Thu

Engineering L 7: 20.5., Mon

T 2: 23.5., Thu

L 8: 27.5., Mon

- 30.5., Thu

L 9: 3.6., Mon

T 3: 6.6., Thu

- 10.6., Mon

- 13.6., Thu

Arch. & Design, L10: 17.6., Mon

- 20.6., Thu

Software- L 11: 24.6., Mon

T 4: 27.6., Thu

Modelling, L 12: 1.7., Mon

Patterns L 13: 4.6., Thu

QA L 14: 8.7., Mon

T 5: 11.7., Thu

L 15: 15.7., Mon(Testing, Formal
Verification) L16: 18.7., Thu

Wrap-Up L 17: 22.7., Mon

T 6: 25.7., Thu

Any Questions So Far?

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

30/40



Content

–
1

–
2

0
19

-0
4

-2
5

–
S

co
n

te
n

t
–

31/40

• Terminology

• Engineering, Software, Software Engineering

• Motivation: Successful Software Development

• Working definition: success

• Unsuccessful software development exists

• Common reasons for non-success

• Course

• Content

• Topic areas

• Structure of topic areas

• Emphasis: formal methods

• Relation to other courses

• Literature

• Organisation

• Lectures

• Tutorials

• Exam

Course: Organisation

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

32/40



Organisation: Lectures

–
1

–
2

0
19

-0
4

-2
5

–
S

o
rg

al
e

c
–

33/40

• Homepage: http://swt.informatik.uni-freiburg.de/teaching/SS2019/swtvl

• Course language: German (since we are in an odd year)

• Script/Media:

• slides without annotations on homepage with beginning of lecture the latest

• slides with annotations on homepage typically soon after the lecture

• recording on ILIAS (stream and download) with max. 2 days delay (cf. link on homepage)

• Schedule: topic areas à three 90 min. lectures, one 90 min. tutorial (with exceptions)

• Interaction: absence often moaned; but it takes two, so please ask/comment immediately.

• Questions/comments:

• “online”: ask immediately or in the break

• “offline”: (i) try to solve yourself
(ii) discuss with colleagues
(iii) a) Exercises: ILIAS (group) forum, contact tutor

b) Everything else: contact lecturer (cf. homepage)
or just drop by: Building 52, Room 00-020

• Break: we’ll have a 5-10 min. break
in the middle of each lecture (from now on),
unless a majority objects now. ·

12:15

13:00

13:45

vs. ·

12:15

13:00
13:10

13:55

Organisation: Exercises & Tutorials

–
1

–
2

0
19

-0
4

-2
5

–
S

o
rg

at
u

t
–

34/40

• Schedule/Submission:

• exercises online (homepage and ILIAS) with first lecture of a block,

• early submission 24h before tutorial
(usually Wednesday, 12:00, local time),

• regular submission right before tutorial
(usually Thursday, 12:00, local time).

• please submit electronically via ILIAS

• should work in teams of 2–3 people, clearly give names on submission

- 22.4., Mon

Introduction L 1: 25.4., Thu

Metrics, Costs, L 2: 29.4., Mon

L 3: 2.5., ThuDevelopment
Process L 4: 6.5., Mon

T 1: 9.5., Thu

L 5: 13.5., Mon

Requirements L 6: 16.5., Thu

Engineering L 7: 20.5., Mon

T 2: 23.5., Thu

L 8: 27.5., Mon

- 30.5., Thu

L 9: 3.6., Mon

T 3: 6.6., Thu

- 10.6., Mon

- 13.6., Thu

Arch. & Design, L10: 17.6., Mon

- 20.6., Thu

Software- L 11: 24.6., Mon

T 4: 27.6., Thu

Modelling, L 12: 1.7., Mon

Patterns L 13: 4.6., Thu

QA L 14: 8.7., Mon

T 5: 11.7., Thu

L 15: 15.7., Mon(Testing, Formal
Verification) L16: 18.7., Thu

Wrap-Up L 17: 22.7., Mon

T 6: 25.7., Thu



Organisation: Exercises & Tutorials

–
1

–
2

0
19

-0
4

-2
5

–
S

o
rg

at
u

t
–

34/40

• Schedule/Submission:

• exercises online (homepage and ILIAS) with first lecture of a block,

• early submission 24h before tutorial
(usually Wednesday, 12:00, local time),

• regular submission right before tutorial
(usually Thursday, 12:00, local time).

• please submit electronically via ILIAS

• should work in teams of 2–3 people, clearly give names on submission

• Grading system: “most complicated grading system ever”

• Admission points (good-will rating, upper bound)

(“reasonable grading given student’s knowledge before tutorial”)

• Exam-like points (evil rating, lower bound)

(“reasonable grading given student’s knowledge after tutorial”)

10% bonus for early submission.

• Tutorial: Four groups (central assignment), hosted by tutor.

• Starting from discussion of the early submissions (anonymous),
develop one good proposal together,

• tutorial notes provided via ILIAS.

- 22.4., Mon

Introduction L 1: 25.4., Thu

Metrics, Costs, L 2: 29.4., Mon

L 3: 2.5., ThuDevelopment
Process L 4: 6.5., Mon

T 1: 9.5., Thu

L 5: 13.5., Mon

Requirements L 6: 16.5., Thu

Engineering L 7: 20.5., Mon

T 2: 23.5., Thu

L 8: 27.5., Mon

- 30.5., Thu

L 9: 3.6., Mon

T 3: 6.6., Thu

- 10.6., Mon

- 13.6., Thu

Arch. & Design, L10: 17.6., Mon

- 20.6., Thu

Software- L 11: 24.6., Mon

T 4: 27.6., Thu

Modelling, L 12: 1.7., Mon

Patterns L 13: 4.6., Thu

QA L 14: 8.7., Mon

T 5: 11.7., Thu

L 15: 15.7., Mon(Testing, Formal
Verification) L16: 18.7., Thu

Wrap-Up L 17: 22.7., Mon

T 6: 25.7., Thu

Organisation: Exam

–
1

–
2

0
19

-0
4

-2
5

–
S

o
rg

ae
xa

m
–

35/40

• Exam Admission:

Achieving 50% of the regular admission points of Exercise Sheets 0–3
and 50% of the regular admission points of Exercise Sheets 4–6
is sufficient for admission to exam.

5 + 15 regular admission points on sheets 0 and 1, and
20 regular admission points on exercise sheets 2–6

→ 120 regular admission points for 100%.

(plus plenty of admission bonus points in both blocks, 0–3 and 4–6)

• Exam Form:

• written exam

• date, time, place: tba

• permitted exam aids: one A4 paper (max. 21 x 29.7 x 1 mm) of notes, max. two sides inscribed

• scores from the exercises do not contribute to the final grade.

• example exam available on ILIAS



One Last Word on The Exercises. . .

–
1

–
2

0
19

-0
4

-2
5

–
S

b
ad

co
p

–

36/40

• Every exercise task is a tiny little scientific work!

• Basic rule for high quality submissions:

• rephrase the task in your own words,

• state your solution,

• convince yourself and your tutor of the cor-
rectness of your solution (at best: prove it).

Example:

Task: What is the length of the longest line inside the square with side lengtha = 19.1?

Submission A: Submission B:

27

The length of the longest straight line fully
inside the square with side length a = 19.1

is 27.01 (rounded).

The longest straight line inside the square
is the diagonal. By Pythagoras, its length is√
a
2 + a

2 . Inserting a = 19.1 yields 27.01
(rounded).

One Last Word on The Exercises. . .

–
1

–
2

0
19

-0
4

-2
5

–
S

b
ad

co
p

–

36/40

• Every exercise task is a tiny little scientific work!

• Basic rule for high quality submissions:

• rephrase the task in your own words,

• state your solution,

• convince yourself and your tutor of the cor-
rectness of your solution (at best: prove it).

Example:

Task: What is the length of the longest line inside the square with side lengtha = 19.1?

Submission A: Submission B:

27

The length of the longest straight line fully
inside the square with side length a = 19.1

is 27.01 (rounded).

The longest straight line inside the square
is the diagonal. By Pythagoras, its length is√
a
2 + a

2 . Inserting a = 19.1 yields 27.01
(rounded).

✘ ✔



One Last Word on The Exercises. . .

–
1

–
2

0
19

-0
4

-2
5

–
S

b
ad

co
p

–

36/40

• Every exercise task is a tiny little scientific work!

• Basic rule for high quality submissions:

• rephrase the task in your own words,

• state your solution,

• convince yourself and your tutor of the cor-
rectness of your solution (at best: prove it).

quality of submission

good-will rating

I have improved my skills in scientific
problem solving.

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✘

I have improved my skills in scientific
problem solving.

totally
agree

◦ ◦ ◦ ◦ ◦ strongly
disagree✔

Tell Them What You’ve Told Them. . .

–
1

–
2

0
19

-0
4

-2
5

–
S

tt
w

y
tt

–

37/40

• Basic vocabulary:

• software, engineering, software engineering,

• customer, developer, user,

• successful software development

→ note: some definitions are neither formal nor universally agreed

• (Fun) fact: software development is not always successful

• Basic activities of (software) engineering:

• gather requirements,

• design,

• implementation,

• quality assurance,

• project management

→ motivates content of the course – for the case of software

• Formal (vs. informal) methods

• avoid misunderstandings,

• enable objective, tool-based assessment

→ note: still, humans are at the heart of software engineering.

• Course content and organisation



Any (More) Questions?

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

38/40

References

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

39/40



References

–
1

–
2

0
19

-0
4

-2
5

–
m

ai
n

–

40/40

Balzert, H. (2009). Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering. Spektrum, 3rd
edition.

Bauer, F. L. (1971). Software engineering. In IFIP Congress (1), pages 530–538.

Bourque, P. and Fairley, R. E. (2014). Guide to the Software Engineering Body of Knowledge, Version 3.0. IEEE
Computer Society. www.swebok.org.

Buschermöhle, R., Eekhoff, H., and Josko, B. (2006). success – Erfolgs- und Misserfolgsfaktoren bei der
Durchführung von Hard- und Softwareentwicklungsprojekten in Deutschland. Technical Report VSEK/55/D,
OFFIS.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary. 24765:2010(E).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Parnas, D. L. (2011). Software engineering: Multi-person development of multi-version programs. In Jones, C. B.
et al., editors, Dependable and Historic Computing, volume 6875 of LNCS, pages 413–427. Springer.

Sommerville, I. (2010). Software Engineering. Pearson, 9th edition.


