
–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 3: Software Project Management

2019-05-02

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Project Management: Content

–
3

–
2

0
19

-0
5

-0
2

–
S

b
lo

ck
co

n
te

n
t

–

2/62

•VL 2 Software Metrics

• Metrics, Properties of Metrics

• Software Metrics

• Software Metrics Issues

• Cost Estimation

• (Software) Economics in a Nutshell

• Software Cost Estimation

• Expert’s / Algorithmic Estimation

• Project Management

• Project

• Process and Process Modelling

• Procedure Models

• Process Models

•
..
.

Process Metrics

• CMMI, Spice

.

..

VL 3

.

..

VL 4

Content

–
3

–
2

0
19

-0
5

-0
2

–
S

co
n

te
n

t
–

3/62

• Cost Estimation

• Software Cost Estimation

• Expert’s Estimation (Delphi Method)

• Algorithmic Estimation (COCOMO, Function Points)

• (Software) Project

• Project Management

• Goals, Common Activities

• Excursion: Risk

• Software Development Processes

• Roles, Artefacts, Activities

• Costs and Deadlines

• phase, milestone, deadline

• cycle, life cycle, software life cycle

• Development Process Modelling

• process vs. process model

• Procedure and Process Models

• “Code and Fix”

• The (infamous) Waterfall Model

Software Cost Estimation Cont’d

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

4/62

Principles of Software Cost Estimation

–
3

–
2

0
19

-0
5

-0
2

–
S

sw
co

st
e

st
–

5/62

In the end, it’s experience, experience, experience:

“Estimate, document, estimate better.” (Ludewig and Lichter, 2013)

Example:

• Assume these were the overall costs of previous, all similar projects:

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7

?

• What could be an estimate of the new (also similar) Project 7?

Principles of Software Cost Estimation

–
3

–
2

0
19

-0
5

-0
2

–
S

sw
co

st
e

st
–

5/62

In the end, it’s experience, experience, experience:

“Estimate, document, estimate better.” (Ludewig and Lichter, 2013)

Example:

• Assume these were the overall costs of previous, all similar projects:

Project 1 Project 2 Project 3 Project 4 Project 5 Project 6 Project 7

?

• What could be an estimate of the new (also similar) Project 7?

• For a better estimate: analyse what costs are composed of.

Maybe, Project 4 could re-use parts of Project 3, maybe Project 2 is the only one with a new
customer. For Project 7 check: can we re-use parts? Is it a new customer?

A Classification of Software Costs

–
3

–
2

0
19

-0
5

-0
2

–
S

sw
co

st
e

st
–

6/62

software costs

net production quality costs

error prevention
costs

analyse-and-fix
costs

error costs

error localisation
costs

error removal
costs

error caused costs
(in operation)

decreased benefit

maintenance
(without quality)

quality assurance

during and after development Ludewig and Lichter (2013)

Distinguish current cost
(‘laufende Kosten’), e.g.

• fixed personnel,

• (business) management,
marketing,

• rooms, computers, networks,
software as infrastructure,

• . . .

and project-related cost
(‘projektbezogene Kosten’), e.g.

• additional temporary personnel,

• hardware and software
as part of product or system,

• contract costs,

• . . .

The “Estimation Funnel”

–
3

–
2

0
19

-0
5

-0
2

–
S

sw
co

st
e

st
–

7/62

4×

2×

1×

0.5×

0.25×

effort estimated to real
effort (log. scale)

Pre-Project Analysis Design Coding & Test

t

Uncertainty with estimations (following (Boehm et al., 2000), p. 10).

Visualisation: Ludewig and Lichter (2013)

Approaches to Software Cost Estimation

–
3

–
2

0
19

-0
5

-0
2

–
S

sw
co

st
e

st
–

8/62

• Expert’s Estimation

For example,

• Delphi Method

• Algorithmic Estimation

For example,

• COCOMO

• Function Points

Expert’s Estimation

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

9/62

Expert’s Estimation

–
3

–
2

0
19

-0
5

-0
2

–
S

e
xp

e
rt

s
–

10/62

One approach: the Delphi method.

• Step 1:
write down your

estimates!

• Step 2: show your estimates
and explain!

9.5
13 11 3

27

• Step 3:
estimate again!

• Then take the median, for example.

Algorithmic Estimation: COCOMO

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

11/62

Algorithmic Estimation: COCOMO

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

12/62

• Constructive Cost Model:

Formulae which fit a huge set of archived project data (from the late 70’s).

• Flavours:

• COCOMO 81 (Boehm, 1981): variants basic, intermediate, detailed

• COCOMO II (Boehm et al., 2000)

• All flavours are based on estimated program size S measured in
DSI (Delivered Source Instructions) or kDSI (1000 DSI).

• Factors like security requirements or experience of the project team
are mapped to values for parameters of the formulae.

• COCOMO examples:

• textbooks like Ludewig and Lichter (2013) (most probably made up)

• an exceptionally large example:
COCOMO 81 for the Linux kernel (Wheeler, 2006) (and follow-ups)

COCOMO 81

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

13/62

Characteristics of the Type
a b

Software

Size Innovation
Deadlines/
Constraints

Dev.
Environment

Project Type

Small
(<50 KLOC)

Little Not tight Stable 3.2 1.05 Organic

Medium
(<300 KLOC)

Medium Medium Medium 3.0 1.12 Semi-detached

Large Greater Tight
Complex HW/
Interfaces

2.8 1.20 Embedded

Basic COCOMO:

• effort required: E = a · (S/kDSI)b [PM (person-months)]

• time to develop: T = c · Ed [months]

• headcount: H = E/T [FTE (full time employee)]

• productivity: P = S/E [DSI per PM] (← use to check for plausibility)

Intermediate COCOMO:

E = M · a · (S/kDSI)b [person-months]

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

COCOMO 81: Some Cost Drivers

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

14/62

M = RELY · CPLX · TIME ·ACAP · PCAP · LEXP · TOOL · SCED

factor
very
low low normal high

very
high

extra
high

RELY required software reliability 0.75 0.88 1 1.15 1.40

CPLX product complexity 0.70 0.85 1 1.15 1.30 1.65

TIME execution time constraint 1 1.11 1.30 1.66

ACAP analyst capability 1.46 1.19 1 0.86 0.71

PCAP programmer capability 1.42 1.17 1 0.86 0.7

LEXP programming language
experience

1.14 1.07 1 0.95

TOOL use of software tools 1.24 1.10 1 0.91 0.83

SCED required development
schedule

1.23 1.08 1 1.04 1.10

• Note: what, e.g., “extra high” TIME means, may depend on project context.
(Consider data from previous projects.)

COCOMO II (Boehm et al., 2000)

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

15/62

Consists of

• Application Composition Model — project work is configuring components, rather than
programming

• Early Design Model — adaption of Function Point approach (in a minute);
does not need completed architecture design

• Post-Architecture Model — improvement of COCOMO 81; needs completed archi-
tecture design, and size of components estimatable

COCOMO II: Post-Architecture

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

16/62

E = 2.94 · SX
·M

• Program size: S = (1 + REVL) · (Snew + Sequiv)

• requirements volatility REVL:
e.g., if new requirements make 10% of code unusable, then REVL = 0.1

• Snew : estimated size minus size w of re-used code,

• Sequiv = w/q, if writing new code takes q-times the effort of re-use.

• Scaling factors:

X = δ + ω, ω = 0.91, δ = 1

100
· (PREC + FLEX + RESL+ TEAM + PMAT)

factor
very
low

low normal high very
high

extra
high

PREC precedentness (experience with
similar projects)

6.20 4.96 3.72 2.48 1.24 0.00

FLEX development flexibility
(development process fixed by
customer)

5.07 4.05 3.04 2.03 1.01 0.00

RESL Architecture/risk resolution (risk
management, architecture size)

7.07 5.65 4.24 2.83 1.41 0.00

TEAM Team cohesion (communication
effort in team)

5.48 4.38 3.29 2.19 1.10 0.00

PMAT Process maturity (see CMMI) 7.80 6.24 4.69 3.12 1.56 0.00

COCOMO II: Post-Architecture Cont’d

–
3

–
2

0
19

-0
5

-0
2

–
S

co
co

m
o

–

17/62

M = RELY ·DATA · · · · · SCED

group factor description

Product factors RELY required software reliability

DATA size of database

CPLX complexity of system

RUSE degree of development of reusable components

DOCU amount of required documentation

Platform factors TIME execution time constraint

STOR memory consumption constraint

PVOL stability of development environment

Team factors ACAP analyst capability

PCAP programmer capability

PCON continuity of involved personnel

APEX experience with application domain

PLEX experience with development environment

LTEX experience with programming language(s) and tools

Project factors TOOL use of software tools

SITE degree of distributedness

SCED required development schedule

(also in COCOMO 81, new in COCOMO II)

Algorithmic Estimation: Function Points

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

18/62

Algorithmic Estimation: Function Points

–
3

–
2

0
19

-0
5

-0
2

–
S

fu
n

ct
io

n
p

ts
–

19/62

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

VAF = 0.65+
1

100
·

14
∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

Algorithmic Estimation: Function Points

–
3

–
2

0
19

-0
5

-0
2

–
S

fu
n

ct
io

n
p

ts
–

19/62

Complexity Sum

Type low medium high

input ·3 = ·4 = ·6 =

output ·4 = ·5 = ·7 =

query ·3 = ·4 = ·6 =

user data ·7 = ·10 = ·15 =

reference data ·5 = ·7 = ·10 =

Unadjusted function points UFP

Value adjustment factor VAF

Adjusted function points AFP = UFP · VAF

IBM and VW curve for the conversion from AFPs to PM according to
(Noth and Kretzschmar, 1984) and (Knöll and Busse, 1991).

VAF = 0.65+
1

100
·

14
∑

i=1

GSC i,

0 ≤ GSC i ≤ 5.

Discussion

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

20/62

Cost Estimation is Everywhere

–
3

–
2

0
19

-0
5

-0
2

–
S

d
is

c
–

21/62

• For example: Bachelor’s Thesis

Estimation Task: Which results can I promise to deliver in 3 months time?

• Suggestion: start to quantify your experience now.

• Take notes on your projects:

(e.g., Softwarepraktikum, Bachelor Projekt, Bachelor’s Thesis, Master Projekt, Master’s Thesis, . . .)

• timestamps,

• size of program created,

• number of errors found,

• number of pages written,

• etc. . . .

• Try to identify factors: what hindered productivity, what boosted productivity, . . .

• Which detours and mistakes were avoidable in hindsight? How?

Content

–
3

–
2

0
19

-0
5

-0
2

–
S

co
n

te
n

t
–

22/62

• Cost Estimation

• Software Cost Estimation

• Expert’s Estimation (Delphi Method)

• Algorithmic Estimation (COCOMO, Function Points)

• (Software) Project

• Project Management

• Goals, Common Activities

• Excursion: Risk

• Software Development Processes

• Roles, Artefacts, Activities

• Costs and Deadlines

• phase, milestone, deadline

• cycle, life cycle, software life cycle

• Development Process Modelling

• process vs. process model

• Procedure and Process Models

• “Code and Fix”

• The (infamous) Waterfall Model

Project

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

23/62

Vocabulary: Project

–
3

–
2

0
19

-0
5

-0
2

–
S

p
ro

je
ct

–

24/62

project – A temporary activity that is characterized by having

• a start date,

• specific objectives and constraints,

• established responsibilities,

• a budget and schedule, and

• a completion date.

If the objective of the project is to develop a software system,
then it is sometimes called a software development project
or software engineering project. R. H. Thayer (1997)

We could refine our earlier definition as follows: a project is successful if and only if

• started at start date,

• achieved objectives,

• respected constraints,

• adheres to budget and schedule,

• stops at completion date.

Whether, e.g., objectives have been achieved can still be subjective (→ customer/user happy).

Project Management

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

25/62

Goals of Project Management

–
3

–
2

0
19

-0
5

-0
2

–
S

m
gm

t
–

26/62

• Main and general goal:

10
0

10
0

10
0

Developer Customer

software delivery

Have a successful project,
i.e. the project delivers

• defined results

• in demanded quality

• within scheduled time

• using the assigned resources.

There may be secondary goals, e.g.,

• build or strengthen good reputation on market,

• acquire knowledge which is useful for later projects,

• develop re-usable components (to save resources later),

• be attractive to employees.

• . . .

Common Activities of Project Management

–
3

–
2

0
19

-0
5

-0
2

–
S

m
gm

t
–

27/62

• Planning

• Assessment
and Control

• Recognising and
Fighting Difficulties
as Early as Possible

• Communication

• Leading and
Motivation
of Employees

• Creation and
Preservation
of Beneficial
Conditions

Without plans, a project
cannot be managed.
Note: mistakes in planning
can be hard to resolve.

Work results and project
progress have to be assessed
and compared to the plans;
it has to be observed
whether participants stick to
agreements.

Unforeseen difficulties and
problems in projects are not
exceptional but usual.

Therefore, project
management needs to
constantly “screen the
horizon for icebergs”, and,
when spotting one, react
timely and effectively.

In other words: systematic
risk management.

Distribute information
between project participants
(project owner, customer,
developers, administration).

Leading means: going
ahead, showing the way,
“pulling” the group.

Most developers want to
achieve good results, yet
need orientation and
feedback (negative and
positive).

Provide necessary
infrastructure and working
conditions for developers

(against: demanding
customers, imprecisely
stated goals, organisational
restructuring, economy
measures, tight office space,
other projects, etc.).

Quick Excursion: Risk and Riskvalue

–
3

–
2

0
19

-0
5

-0
2

–
S

m
gm

t
–

28/62

risk — a problem, which did not occur yet, but on occurrence threatens important
project goals or results. Whether it will occur, cannot be surely predicted.

Ludewig & Lichter (2013)

riskvalue = p ·K

p: probability of problem occurrence,

K : cost in case of problem occurrence.

105

106

107

108

cost in
case of
incidence /
e

10−5 10−4 10−3 0.01 0.1 0.5

incidence
probability
p

acceptable risks

inacceptable

risks

extreme

risks

×

one riskvalue

• Avionics requires: “Catastrophic Failure Conditions
have Average Probability per Flight Hour of 10−9 (or ‘Extremely Improbable’)” (AC 25.1309-1).

• “problems with p = 0.5 are not risks, but environment conditions to be dealt with”

Content

–
3

–
2

0
19

-0
5

-0
2

–
S

co
n

te
n

t
–

29/62

• Cost Estimation

• Software Cost Estimation

• Expert’s Estimation (Delphi Method)

• Algorithmic Estimation (COCOMO, Function Points)

• (Software) Project

• Project Management

• Goals, Common Activities

• Excursion: Risk

• Software Development Processes

• Roles, Artefacts, Activities

• Costs and Deadlines

• phase, milestone, deadline

• cycle, life cycle, software life cycle

• Development Process Modelling

• process vs. process model

• Procedure and Process Models

• “Code and Fix”

• The (infamous) Waterfall Model

Software Development Process

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

30/62

Vocabulary: Software Project

–
3

–
2

0
19

-0
5

-0
2

–
S

p
ro

ce
ss

–

31/62

(Software) Project – Characteristics:

• Duration is limited.

• Has an originator (person or institution which initiated the project).

• The project owner is the originator or its representative.

• The project leader reports to the project owner.

• Has a purpose, i.e. pursues a bunch of goals.

• The most important goal is usually to create or modify software;
this software is thus the result of the project, the product.

Other important goals are extension of know-how,
preparation of building blocks for later projects, or utilisation of employees.

The project is called successful if the goals are reached to a high degree.

• Has a recipient (or will have one).

• This recipient is the customer.

• Later users (conceptionally) belong to the customer.

• Connects people, results (intermediate/final products), and resources.

The organisation determines roles of and relations between peo-
ples/results/resources, and the external interfaces of the project.

Ludewig & Lichter (2013)

Developer

Customer

User

Process

–
3

–
2

0
19

-0
5

-0
2

–
S

p
ro

ce
ss

–

32/62

Process —

(1) A sequence of steps performed for a given purpose;
for example, the software development process.

(2) See also: task; job.

(3) To perform operations on data.
IEEE 610.12 (1990)

Software Development Process —
The process by which user needs are translated into a software product.
The process involves translating user needs into software requirements,
transforming the software requirements into design,
implementing the design in code, testing the code, and
sometimes, installing and checking out the software for operational use.

IEEE 610.12 (1990)

• The process of a software development project may be

• implicit,

• informally agreed on, or

• explicitly prescribed (by a procedure or process model).

• Note: each software development project has a process!

Describing Software Development Processes

–
3

–
2

0
19

-0
5

-0
2

–
S

p
ro

ce
ss

–

33/62

Over time, the following notions proved useful to describe
and model (→ in a minute) software development processes:

• role — has responsibilities and rights, needs skills and capabilities.

In particular: has responsibility for artefacts, participates in activities.

• artefact (or product) — all documents, evaluation protocols, software
modules, etc.; all products emerging during a development process.

Is processed by activities, may have state.

• activity — any processing of artefacts, manually or automatic; solves tasks.
Depends on artefacts, creates/modifies artefacts.

Describing Software Development Processes

–
3

–
2

0
19

-0
5

-0
2

–
S

p
ro

ce
ss

–

33/62

Over time, the following notions proved useful to describe
and model (→ in a minute) software development processes:

• role — has responsibilities and rights, needs skills and capabilities. role

In particular: has responsibility for artefacts, participates in activities.

• artefact (or product) — all documents, evaluation protocols, software

state

artefactmodules, etc.; all products emerging during a development process.

Is processed by activities, may have state.

is responsible for

• activity — any processing of artefacts, manually or automatic; solves tasks.
activityDepends on artefacts, creates/modifies artefacts.

participates in

depends on creates/modifies

• decision point — special case of activity: a decision is made based on artefacts (in a certain state),
creates a decision artefacts.

Delimits phases, may correspond to milestone.

state

decision point

The Concept of Roles

–
3

–
2

0
19

-0
5

-0
2

–
S

ro
le

s
–

34/62

In a software project, at each point in time,

there is a set R of (active) roles, e.g. R =
{

mgr , prg , tst , ana
}

.

A role has responsibilities and rights, and necessary skills and capabilities.

For example,

• mgr : project manager

• has the right to raise issue reports

• is responsible for closing issue reports

• prg : programmer

• has the right to change the code

• is responsible for reporting unforeseen problems to the project manager

• is responsible for respecting coding conventions

• is responsible for addressing issue reports

• tst : test engineer

• has the right to raise issue reports

• is responsible for quality control

The Concept of Roles Cont’d

–
3

–
2

0
19

-0
5

-0
2

–
S

ro
le

s
–

35/62

Given a set R of roles, e.g. R =
{

mgr , prg , tst , ana

}

,

and a set P of people, e.g. P =

{

, , , ,

}

, each with skills or capabilities.

An aspect of project management is to assign (a set of) people to each role:

assign : R → 2P

such that each person p ∈ assign(r) assigned to role r
has (at least) the skills and capabilities required by role r.

Note: assign may change over time, there may be different assignments for different phases.

Sanity check: ensure that assign(r) 6= ∅ for each role r.

• Example:

mgr

one person, one role

prg

,
prg

,
prg

multiple persons, one role

tst

ana

one person, multiple roles

assign =

{

mgr 7→ { }, prg 7→ { , , }, tst 7→ { }, ana 7→ { }

}

Useful and Common Roles

–
3

–
2

0
19

-0
5

-0
2

–
S

ro
le

s
–

36/62

Customer Developer

Recall: roles “Customer” and “Developer” are as-
sumed by legal persons, which often represent many
people.

The same legal person may act as “Customer” and
“Developer” in the same project.

Useful and Common Roles

–
3

–
2

0
19

-0
5

-0
2

–
S

ro
le

s
–

36/62

Customer Developer

Recall: roles “Customer” and “Developer” are as-
sumed by legal persons, which often represent many
people.

The same legal person may act as “Customer” and
“Developer” in the same project.

· · · · · ·

Clients Software people

Useful and common roles
in software projects:

• customer, user

• project manager

• (sytems) analyst

• software architect, designer

• (lead) developer
programmer, tester, . . .

• maintenance engineer

• systems administrator

• invisible clients: legislator,
norm/standard supervisory committee

Describing Software Development Processes

–
3

–
2

0
19

-0
5

-0
2

–
S

d
e

sc
ri

b
e

–

37/62

Over time, the following notions proved useful to describe
and model (→ in a minute) software development processes:

• role — has responsibilities and rights, needs skills and capabilities. role

In particular: has responsibility for artefacts, participates in activities.

• artefact (or product) — all documents, evaluation protocols, software

state

artefactmodules, etc.; all products emerging during a development process.

Is processed by activities, may have state.

is responsible for

• activity — any processing of artefacts, manually or automatic; solves tasks.
activityDepends on artefacts, creates/modifies artefacts.

participates in

depends on creates/modifies

• decision point — special case of activity: a decision is made based on artefacts (in a certain state),
creates a decision artefacts.

Delimits phases, may correspond to milestone.

state

decision point

Describe Processes

–
3

–
2

0
19

-0
5

-0
2

–
S

d
e

sc
ri

b
e

–

38/62

Example: Forum Work of the Course

• A particular post is handled locally by Tutor A:
• Friday, 2019-05-10, 19:37: a new post appears in the group forum: ‘Did you upload the notes?’

• 20:03: Tutor A decides that the issue can be handled locally (by uploading the forgotten notes);

• 20:21: Tutor A writes a local forum post ‘Sorry, forgot! Thanks for reminding.’

’Did you
upload
...?’

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

Tutor A

local
forum:
’Sorry ...’

• A particular post needs to be escalated:
• Monday, 2019-05-13, 14:01: a new post appears in the group forum: ‘Is that a typo?’

• Tuesday, 2019-05-14, 9:59: Tutor B decides that the issues needs to be escalated.

• Tuesday, 2019-05-14, 10:03: Tutor B writes a post to the internal forum

• Tuesday, 2019-05-14, 12:47: Teaching Assistant contacts Lecturer

• . . .

• Tuesday, 2019-05-14, 13:59: Teaching Assistant writes a global posts ’New version is uploaded, sorry.’

’Is that a
typo?’

escalate?escalate? escalate
issue

escalate
issue

yes

Tutor B

internal
forum post handle

issue, glob.
handle

issue, glob.

lecturer assistant

Tutor B

global
forum:
’New
version ...’

Software Project Planning: Process Modelling

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

39/62

From Concrete Process to Process Model

–
3

–
2

0
19

-0
5

-0
2

–
S

p
to

p
m

–

40/62

new
local
post

escalate?escalate?

handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

escalate
issue

escalate
issue

yes

tutor

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)merge

new
local
post

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

new
local
post

escalate?escalate? escalate
issue

escalate
issue

yes

tutor

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant

tutor

response
in global
forum

abstract

’Did
you
upload
...?’

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

Tutor A

local
forum:
’Sorry ...’

’Is that
a
typo?’

escalate?escalate? escalate
issue

escalate
issue

yes

Tutor B

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant

Tutor B

global
forum:
’New
version ...’

From Process Model to Concrete Process

–
3

–
2

0
19

-0
5

-0
2

–
S

p
to

p
m

–

41/62

new
local
post

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

new
local
post

escalate?escalate? escalate
issue

escalate
issue

yes

tutor

internal
forum
post

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

response
in internal
forum

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)

Building Blockscompose

new
local
post

escalate?escalate?

handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

escalate
issue

escalate
issue

yes

tutor

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)

Planconcretise

Process

’Did
you
upload
...?’

escalate?escalate? handle
issue, loc.

handle
issue, loc.

no

Tutor A

local
forum:
’Sorry ...’

’Is that
a
typo?’

escalate?escalate? escalate
issue

escalate
issue

yes

Tutor B

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant

Tutor B

global
forum:
’New
version ...’

How to Read a Process Model

–
3

–
2

0
19

-0
5

-0
2

–
S

p
to

p
m

–

42/62

• A process model (as discussed so far) defines dependencies.

→ which artefacts needs to be available before starting which activity.

• A process model does not

• define when (date/time) an activity starts.

• say that Activity A must be completed before (depending) Activity B.

Example:

new
local
post

escalate?escalate?

handle
issue, loc.

handle
issue, loc.

no

tutor

response
in local
forum

response time:
1 work day

(after orig./int. post)

handle
issue, int.
handle

issue, int.

tutor

response
in internal
forum

escalate
issue

escalate
issue

yes

tutor

internal
forum
post

handle
issue,
glob.

handle
issue,
glob.

lecturer assistant
tutor

response
in global
forum

or

response time:
1 work day

(after orig. post)

• Tuesday, 2019-05-14, 10:03: Tutor B writes a post to the internal forum:
“This is what I know so far. I’ll get back to the students and post more information later.”
→ Activity ‘escalate issue’ started (and continues)

• Tuesday, 2019-05-14, 12:47: Teaching Assistant contacts Lecturer
→ Activity ‘handle issue glob.’ started (and continues)

• Tuesday, 2019-05-14, 12:54: Tutor B posts further information
→ Activity ‘escalate issue’ continues (Tutor B is available for further questions)

• Tuesday, 2019-05-14, 13:03: Teaching Assistant writes to Tutor B: “Okay, thanks, we got it.”
→ Activity ‘escalate issue’ completed.

Example: Process Model of Tutorials

–
3

–
2

0
19

-0
5

-0
2

–
S

tu
p

ro
c

–

43/62

We Th Fr Sa/Su Mo Tu We Th Fr Sa/Su Mo Tu We Th Fr Sa/Su Mo Tu We Th Fr

tutor

annotated
slides N
on
ILIAS

prelimi-
nary
correc-
tion
N � 1

�nal cor-
rection
N � 1

lecturer

tutors’
tutorial
N slides

�nal
tutorial
N slides
in SVN

assistant

corr.
hints
N in
SVN

corr.
hints
N in
ILIAS

exercise
sheet
draft N
in SVN

exercise
sheet
draft N
in SVN

exercise
N on
homepage

exercise
sheet N
in int.
ILIAS

internal
ILIAS
exercise
N �nal

tutor

review
results
N (in
int.
forum)

ILIAS
exercise
N

tutor’s
submis-
sion N in
ILIAS

annotated
slides N
on
ILIAS

prelimi-
nary
correc-
tion
N

�nal cor-
rection
N

student

ILIAS
submis-
sion
N

lecturer

exercise
con-
cept
N + 1

assistant

exercise
sheet
draft
N + 1
in SVN

exercise
sheet
draft
N + 1
in SVN

exercise
N on
homepage

exercise
sheet
N + 1 in
int.
ILIAS

internal
ILIAS
exercise
N �nal

tutor

review
results
N + 1
(in int.
forum)

ILIAS
exercise
N

Tell Them What You’ve Told Them. . .

–
3

–
2

0
19

-0
5

-0
2

–
S

tt
w

y
tt

–

60/62

• Cost Estimation

• It’s about experience (and based on data obtained with metrics),
and often a well-kept business secret.

• Algorithmic Cost Estimations “just” shift the estimation.

• Cost estimation is everywhere (→ tutorials).

• Project; has (among others)

• project owner and leader; goals (Excursion: Risk)

• process – each project has one

• A process model relates

• roles, artefacts, activities, decision points

• relations: responsibility, dependency, creation/modification.

• Use process models

• descriptive (“we did it like that”), or

• prescriptive (“please do it like that”)

• A process model can allow us to (→ exercises)

• devise a schedule (‘who does what when’)

• estimate and control phases and deadlines.

• Distinguish process and procedure model.

References

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

61/62

References

–
3

–
2

0
19

-0
5

-0
2

–
m

ai
n

–

62/62

Boehm, B. W. (1981). Software Engineering Economics. Prentice-Hall.

Boehm, B. W., Horowitz, E., Madachy, R., Reifer, D., Clark, B. K., Steece, B., Brown, A. W., Chulani, S., and Abts, C.
(2000). Software Cost Estimation with COCOMO II. Prentice-Hall.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

ISO/IEC/IEEE (2010). Systems and software engineering – Vocabulary. 24765:2010(E).

Knöll, H.-D. and Busse, J. (1991). Aufwandsschätzung von Software-Projekten in der Praxis: Methoden,
Werkzeugeinsatz, Fallbeispiele. Number 8 in Reihe Angewandte Informatik. BI Wissenschaftsverlag.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Noth, T. and Kretzschmar, M. (1984). Aufwandsschätzung von DV-Projekten, Darstellung und Praxisvergleich der
wichtigsten Verfahren. Springer-Verlag.

Rosove, P. E. (1967). Developing Computer-based Information Systems. John Wiley and Sons.

Thayer, R. H. (1997). Tutorial – Software Engineering Project Management. IEEE Society Press, revised edition.

Wheeler, D. A. (2006). Linux kernel 2.6: It’s worth more!

