
–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 5: Requirements Engineering

2019-05-13

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universität Freiburg, Germany

You Are Here.

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

2/49

- 22.4., Mon

Introduction L 1: 25.4., Thu

Metrics, Costs, L 2: 29.4., Mon

L 3: 2.5., ThuDevelopment
Process L 4: 6.5., Mon

T 1: 9.5., Thu

L 5: 13.5., Mon

Requirements L 6: 16.5., Thu

Engineering L 7: 20.5., Mon

T 2: 23.5., Thu

L 8: 27.5., Mon

- 30.5., Thu

L 9: 3.6., Mon

T 3: 6.6., Thu

- 10.6., Mon

- 13.6., Thu

Arch. & Design, L10: 17.6., Mon

- 20.6., Thu

Software- L 11: 24.6., Mon

T 4: 27.6., Thu

Modelling, L 12: 1.7., Mon

Patterns L 13: 4.6., Thu

QA L 14: 8.7., Mon

T 5: 11.7., Thu

L 15: 15.7., Mon(Testing, Formal
Verification) L16: 18.7., Thu

Wrap-Up L 17: 22.7., Mon

T 6: 25.7., Thu

Introduction

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

3/49

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

7/49

Software, formally

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

8/49

Definition. Software is a finite description S of a (possibly infinite)
set JSK of (finite or infinite) computation paths of the form

σ0

α
1

−−→ σ1

α
2

−−→ σ2 · · ·

where

• σi ∈ Σ, i ∈ N0, is called state (or configuration), and

• αi ∈ A, i ∈ N0, is called action (or event).

The (possibly partial) function J · K : S 7→ JSK is called interpretation of S.

Examples:

• ‘Hallo’ (from Lect. 2): Can be seen as having one computation path.

• a Quicksort implementation: Can be seen as having as many computation paths as possible inputs.

• Pedestrations Crossing controller: Usually has infinitely many computation paths (each sequence of
pedestrians pressing button at particular times defines a different computation path).

• etc.

• Note: one software S may have different interpretations, ranging from ‘only final result’ (coarse; if
well-defined) to ‘register transfer level’ (fine), with or without time-stamps, etc..

Software Specification: An Ideal Partitioning

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

9/49

all imaginable
softwares

Software Specification: Perceived Practice

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

10/49

all imaginable
softwares

Risks Implied by Bad Requirements Specifications

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

12/49

negotiationnegotiation

require-
ments
speci-
fication

design /
implemen-
tation

design /
implemen-
tation

quality
assurance
quality
assurance

acceptanceacceptance

docu-
mentation
docu-
mentation

re-usere-use

customer developer

negotiation
(with customer,

marketing

department, or

. . .)

design and implementation,

• without specification,
programmers may just “ask
around” when in doubt, possibly
yielding different interpretations
→ difficult integration

documentation, e.g., the user’s manual,

• without specification, the user’s manual author can only
describe what the system does, not what it should do
(“every observation is a feature”)

preparation of tests,

• without a description of allowed outcomes, tests are
randomly searching for generic errors (like crashes)
→ systematic testing hardly possible

acceptance by
customer,
resolving later
objections or regress
claims,

• without specification, it
is unclear at delivery
time whether behaviour
is an error (developer
needs to fix) or correct
(customer needs to
accept and pay) →
nasty disputes,
additional effort

re-use,

• without specification, re-use needs to be based on
re-reading the code → risk of unexpected changes

• later re-implementations.

• the new software may need to adhere to requirements of the old software; if not properly specified,
the new software needs to be a 1:1 re-implementation of the old → additional effort

Discovering Fundamental Errors Late Can Be Expensive

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

13/49

1

2

5

10

20

50

100

200

relative cost of an error

Analysis Design Coding Test &
Integration

Acceptance
& Operation

phase of error
detection

larger projects

smaller projects

Relative error costs over latency according to investigations at IBM, etc.

By (Boehm, 1979); Visualisation: Ludewig and Lichter (2013).

–
5

–
2

0
19

-0
5

-1
3

–
S

re
in

tr
o

–

15/49

The hardest single part of building a software system is deciding precisely what to build.

No other part of the conceptual work is as difficult as establishing the detailed technical
requirements ...

No other part of the work so cripples the resulting system if done wrong.

No other part is as difficult to rectify later. F.P. Brooks (Brooks, 1995)

Topic Area Requirements Engineering: Content

–
5

–
2

0
19

-0
5

-1
3

–
S

b
lo

ck
co

n
te

n
t

–

16/49

• Introduction

• Requirements Specification

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary, Specification

• Specification Languages

• Natural Language

• Decision Tables

• Syntax, Semantics

• Completeness, Consistency, . . .

Vocabulary

Techniques

informal

semi-formal

formal

• Scenarios

• User Stories, Use Cases

• Live Sequence Charts

• Syntax, Semantics

• Definition: Software & SW Specification

• Wrap-Up

VL 5

.

..

VL 6

.

..

VL 7
.
..

VL 8

.

..

VL 9.
..

Content

–
5

–
2

0
19

-0
5

-1
3

–
S

co
n

te
n

t
–

17/49

• Introduction

• Vocabulary: Requirements (Analysis)

• Importance of Requirements Specifications

• Requirements Specification

• Requirements Analysis

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Requirements Specification Languages

• Natural Language

Requirements Specifications

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

18/49

Requirements Analysis. . .

–
5

–
2

0
19

-0
5

-1
3

–
S

re
–

19/49

. . . in the sense of “finding out what the exact requirements are”.

“Analysing an existing requirements/feature specification” → later.

In the following we shall discuss:

(i) desired properties of

• requirements specifications,

• requirements specification documents,

(ii) kinds of requirements

• hard and soft,

• open and tacit,

• functional and non-functional.

(iii) (a selection of) analysis techniques

(iv) documents of the requirements
analysis:

• dictionary,

• requirements specification (‘Lastenheft’),

• feature specification (‘Pflichtenheft’).

• Note: In the following (unless otherwise noted), we discuss the feature specification,
i.e. the document on which the software development is based.

To maximise confusion, we may occasionally (inconsistently) call it requirements specification
or just specification — should be clear from context. . .

• Recall: one and the same content can serve both purposes; only the title defines the purpose then.

Requirements on Requirements Specifications

–
5

–
2

0
19

-0
5

-1
3

–
S

re
–

20/49

A requirements specification should be

• correct
— it correctly represents the wishes/needs of
the customer,

• complete
— all requirements (existing in somebody’s
head, or a document, or . . .) should be present,

• relevant
— things which are not relevant to the project
should not be constrained,

• consistent, free of contradictions
— each requirement is compatible with all other
requirements; otherwise the requirements are
not realisable,

• neutral, abstract
— a requirements specification does not
constrain the realisation more than necessary,

• traceable, comprehensible
— the sources of requirements are documented,
requirements are uniquely identifiable,

• testable, objective
— the final product can objectively be checked
for satisfying a requirement.

• Correctness and completeness are defined relative
to something which is usually only in the customer’s head.

→ is is difficult (if at all possible) to be sure of correctness and completeness.

Requirements on Requirements Specification Documents

–
5

–
2

0
19

-0
5

-1
3

–
S

re
–

21/49

The representation and form of a requirements specification should be:

• easily understandable,
not unnecessarily complicated —
all affected people should be able to
understand the requirements specification,

• precise —
the requirements specification should not
introduce new unclarities or rooms for
interpretation (→ testable, objective),

• easily maintainable —
creating and maintaining the requirements
specification should be easy and should not
need unnecessary effort,

• easily usable —
storage of and access to the requirements
specification should not need significant effort.

Note: Once again, it’s about compromises.

• A very precise objective requirements specification
may not be easily understandable by every affected person.

→ provide redundant explanations.

• It is not trivial to have both, low maintenance effort and low access effort.

→ value low access effort higher,
a requirements specification document is much more often read than changed or written
(and most changes require reading beforehand).

Pitfall: Vagueness vs. Abstraction

–
5

–
2

0
19

-0
5

-1
3

–
S

re
–

22/49

Consider the following examples:

• Vague (not precise):

“the list of participants should be sorted conveniently”

• Precise, abstract:

“the list of participants should be sorted by immatriculation number, lowest number first”

• Precise, non-abstract:
“the list of participants should be sorted by

public static <T> void Collections::sort(List<T> list, Comparator c);

where T is the type of participant records, c compares immatriculation number numerically.”

• A requirements specification should always be as precise as possible (→ testable, objective).

It need not denote exactly one solution;
precisely characterising acceptable solutions is often more appropriate.

• Being too specific, may limit the design decisions of the developers, which may cause unnecessary costs.

• Idealised views advocate a strict separation between
requirements (“what is to be done?”) and design (“how are things to be done?”).

Content

–
5

–
2

0
19

-0
5

-1
3

–
S

co
n

te
n

t
–

23/49

• Introduction

• Vocabulary: Requirements (Analysis)

• Importance of Requirements Specifications

• Requirements Specification

• Requirements Analysis

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Requirements Specification Languages

• Natural Language

Kinds of Requirements

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

24/49

Kinds of Requirements: Functional and Non-Functional

–
5

–
2

0
19

-0
5

-1
3

–
S

ki
n

d
s

–

25/49

• Proposal: View software S as a function

S : i1, i2, i3, · · · 7→ o0, o1, o2, . . .

which maps sequences of inputs to sequences of outputs.

Examples:

• Software “compute shipping costs”:

• o0 : initial state,

• i1 : shipping parameters
(weight, size, destination, . . .),

• o1 : shipping costs

And no more inputs, S : i1 7→ o1 .

• Software “traffic lights controller”:

• o0 : initial state,

• i1 : pedestrian presses button,

• o1, o2, . . . : stop traffic, give green to pedestrians,

• in : button pushed again

• . . .

• Every constraint on things which are observable in the sequences
is a functional requirement (because it requires something for the function S).

Thus timing, energy consumption, etc. may be subject to functional requirements.

• Clearly non-functional requirements:

programming language, coding conventions, process model requirements, portability. . .

Kinds of Requirements: Hard and Soft Requirements

–
5

–
2

0
19

-0
5

-1
3

–
S

ki
n

d
s

–

26/49

• Example of a hard requirement:

• Cashing a cheque over N emust result in a new balance decreased by N ;
there is not a micro-cent of tolerance.

• Examples of soft requirements:

• If a vending machine dispenses the selected item within 1 s, it’s clearly fine;
if it takes 5 min., it’s clearly wrong — where’s the boundary?

• A car entertainment system which produces “noise” (due to limited bus bandwidth or CPU power)
in average once per hour is acceptable, once per minute is not acceptable.

The border between hard/soft is difficult to draw, and

• as developer, we want requirements specifications to be “as hard as possible”,
i.e. we want a clear right/wrong.

• as customer, we often cannot provide this clarity;
we know what is “clearly wrong” and we know what is “clearly right”, but we don’t have a sharp boundary.

→ intervals, rates, etc. can serve as precise specifications of soft requirements.

Kinds of Requirements: Open and Tacit

–
5

–
2

0
19

-0
5

-1
3

–
S

ki
n

d
s

–

27/49

• open: customer is aware of and able to explicitly communicate the requirement,

• (semi-)tacit:
customer not aware of something being a requirement (obvious to the customer
but not considered relevant by the customer, not known to be relevant).

Examples:

• buttons and screen of a mobile phone
should be on the same side,

• important web-shop items should be on
the right hand side because the main
users are socialised with right-to-left
reading direction,

• the ECU (embedded control unit) may
only be allowed use a certain amount of
bus capacity.

Analyst
knows domain new to domain

C
u

st
o

m
e

r/
C

li
e

n
t e

xp
lic

it

requirements
discovered

requirements
discoverable

se
m

i-
ta

ci
t

requirements
discoverable

requirements
discoverable

with difficulties

ta
ci

t

hard/impossible to discover

(Gacitua et al., 2009)• distinguish don’t care:

intentionally left open to be decided by developer.

Content

–
5

–
2

0
19

-0
5

-1
3

–
S

co
n

te
n

t
–

28/49

• Introduction

• Vocabulary: Requirements (Analysis)

• Importance of Requirements Specifications

• Requirements Specification

• Requirements Analysis

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Requirements Specification Languages

• Natural Language

Requirements Analysis Techniques

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

29/49

Requirements Engineers See the World Differently

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

30/49

• The human brain is great at seeing information
(even if there isn’t so much);

• Requirements Engineering
is about seeing the absence of information.

Example: Wireless Fire Alarm System

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

31/49

The loss of the ability of the system to transmit a signal from a
component to the central unit is

• detected in less than 300 seconds and

• displayed at the central unit within 100 seconds thereafter.

Requirements Elicitation

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

32/49

• Observation:

Customers can not be assumed to be trained in stating/communicating requirements.

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to ELICIT (‘Herauskitzeln’) the requirements.

Requirements Elicitation

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

32/49

• Observation:

Customers can not be assumed to be trained in stating/communicating requirements.

• It is the task of the analyst to:

• ask what is wanted,
ask what is not wanted,

• establish precision,
look out for contradictions,

• anticipate exceptions,
difficulties, corner-cases,

• have technical background to
know technical difficulties,

• communicate (formal)
specification to customer,

• “test” own understanding by
asking more questions.

→ i.e. to ELICIT (‘Herauskitzeln’) the requirements.

• How Can Requirements Engineering Look In Practice?

• Set up a core team for analysis (3
to 4 people), include experts from
the domain and developers.
Analysis benefits from highest
skills and strong experience.

• During analysis, talk to decision
makers (managers), domain
experts, and users.

Users can be interviewed by a
team of 2 analysts, ca. 90 min.

• Sort/assess resulting “raw
material” in half-/full-day

workshops in 6-10 people team.

Search for, e.g., contradictions
between customer wishes, and
for priorisation.

Note: The customer decides.
Analysts may make proposals
(different options to choose
from), but the customer chooses.
(And the choice is documented.)

• The “raw material” is basis of a
preliminary requirements
specification (audience: the
developers) with open questions.

Analysts need to communicate
the requirements specification ap-
propriately (explain, give exam-
ples, point out particular corner-
cases).

Customers without strong math-
s/computer science background
are often overstrained when “left
alone” with a formal requirements
specification.

• Result: dictionary, specified re-
quirements.

(A Selection of) Analysis Techniques

–
5

–
2

0
19

-0
5

-1
3

–
S

re
an

a
–

33/49

Focus
current desired innovation

Analysis Technique situation situation consequences

Analysis of existing data and documents

Observation

Questionning with

(

closed
structured

open

)

questions

Interview

Modelling

Experiments

Prototyping

Participative development

(Ludewig and Lichter, 2013)

Content

–
5

–
2

0
19

-0
5

-1
3

–
S

co
n

te
n

t
–

34/49

• Introduction

• Vocabulary: Requirements (Analysis)

• Importance of Requirements Specifications

• Requirements Specification

• Requirements Analysis

• Desired Properties

• Kinds of Requirements

• Analysis Techniques

• Documents

• Dictionary

• Specification

• Requirements Specification Languages

• Natural Language

Requirements Documents

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

35/49

Requirements Specification

–
5

–
2

0
19

-0
5

-1
3

–
S

re
d

o
cs

–

36/49

specification — A document that specifies,

• in a complete, precise, verifiable manner,

the

• requirements, design, behavior,
or other characteristics of a system or component,

and, often, the procedures for determining whether these provisions have
been satisfied. IEEE 610.12 (1990)

software requirements specification (SRS) — Documentation of the es-
sential requirements (functions, performance, design constraints, and at-
tributes) of the software and its external interfaces. IEEE 610.12 (1990)

–
5

–
2

0
19

-0
5

-1
3

–
S

re
d

o
cs

–

37/49

The Institute of Electrical and Electronics Engineers, Inc.
345 East 47th Street, New York, NY 10017-2394, USA

Copyright © 1998 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 1998. Printed in the United States of America.

ISBN 0-7381-0332-2

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior
written permission of the publisher.

IEEE Std 830-1998

(Revision of

IEEE Std 830-1993)

IEEE Recommended Practice for
Software Requirements
SpeciÞcations

Sponsor

Software Engineering Standards Committee
of the
IEEE Computer Society

Approved 25 June 1998

IEEE-SA Standards Board

Abstract:

 The content and qualities of a good software requirements specification (SRS) are de-

scribed and several sample SRS outlines are presented. This recommended practice is aimed at

specifying requirements of software to be developed but also can be applied to assist in the selec-

tion of in-house and commercial software products. Guidelines for compliance with IEEE/EIA

12207.1-1997 are also provided.

Keywords:

 contract, customer, prototyping, software requirements specification, supplier, system

requirements specifications

Structure of a Requirements Document: Example

–
5

–
2

0
19

-0
5

-1
3

–
S

re
d

o
cs

–

38/49

1 INTRODUCTION

1.1 Purpose
1.2 Acronyms and Definitions
1.3 References
1.4 User Characteristics

2 FUNCTIONAL REQUIREMENTS

2.1 Function Set 1
2.2 etc.

3 REQUIREMENTS TO EXTERNAL INTERFACES

3.1 User Interfaces
3.2 Interfaces to Hardware
3.3 Interfaces to Software Products / Software / Firmware
3.4 Communication Interfaces

4 REQUIREMENTS REGARDING TECHNICAL DATA

4.1 Volume Requirements
4.2 Performance
4.3 etc.

5 GENERAL CONSTRAINTS AND REQUIREMENTS

5.1 Standards and Regulations
5.2 Strategic Constraints
5.3 Hardware
5.4 Software
5.5 Compatibility
5.6 Cost Constraints
5.7 Time Constraints
5.8 etc.

6 PRODUCT QUALITY REQUIREMENTS

6.1 Availability, Reliability, Robustness
6.2 Security
6.3 Maintainability
6.4 Portability
6.5 etc.

7 FURTHER REQUIREMENTS

7.1 System Operation
7.2 Customisation
7.3 Requirements of Internal Users

(Ludewig and Lichter, 2013) based on (IEEE, 1998)

Tell Them What You’ve Told Them. . .

–
5

–
2

0
19

-0
5

-1
3

–
S

tt
w

y
tt

–

47/49

• Requirements Documents are important — e.g., for

• negotiation, design & implementation, documentation,
testing, delivery, re-use, re-implementation.

• A Requirements Specification should be

• correct, complete, relevant, consistent, neutral, traceable, objective.

Note: vague vs. abstract.

• Requirements Representations should be

• easily understandable, precise, easily maintainable, easily usable

• Distinguish

• hard / soft,

• functional / non-functional,

• open / tacit.

• It is the task of the analyst to elicit requirements.

• Natural language is inherently imprecise, counter-measures:

• natural language patterns.

• Do not underestimate the value of a good dictionary.

References

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

48/49

References

–
5

–
2

0
19

-0
5

-1
3

–
m

ai
n

–

49/49

Arenis, S. F., Westphal, B., Dietsch, D., Muñiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In Jones, C. B., Pihlajasaari, P., and Sun,
J., editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658–672. Springer.

Boehm, B. W. (1979). Guidelines for verifying and validating software requirements and design specifications. In
EURO IFIP 79, pages 711–719. Elsevier North-Holland.

Brooks, F. P. (1995). The Mythical Man-Month: Essays on Software Engineering, Anniversary Edition. Addison-Wesley.

Gacitua, R., Ma, L., Nuseibeh, B., Piwek, P., de Roeck, A., Rouncefield, M., Sawyer, P., Willis, A., and Yang, H.
(2009). Making tacit requirements explicit. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). IEEE Recommended Practice for Software Requirements Specifications. Std 830-1998.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, 5th edition.

