Softwaretechnik / Software-Engineering

Lecture 6: Formal Methods for
Requirements Engineering

2019-05-16

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Requirements Documents

4

Topic Area Requirements Engineering: Content

VL5 e Introduction

Requirements Specification

I-te Desired Properties
Vocabulary

[-te Kinds of Requirements

Lo Analysis Techniques Techniques

Specification Languages

VL6 |- Decision Tables
W. Syntax, Semantics
 Completeness, Consistency. ..

VL7 e Scenarios
—“o User Stories, Use Cases.
@ Live Sequence Charts

) Le Syntax, Semantics
<_Mo « Definition: Software & SW Specification
: e Wrap-Up

Requirements Specification

specification — A document that specifies,

a complete, precise, verifiable manner,

the

« requirements, design, behavior,
or other characteristics of a system or component,

and, often, the procedures for determining whether these provisions have

been satisfied. IEEE 610.12 (1990)
software i ification (SRS) — D of the es-
sential requirements (functions, performance, design constraints, and at-
tributes) of the software and its external interfaces. IEEE 610.12 (1990)

« Documents informal
L« Dictonary, Specifcation ﬁ

[~t* Natural Language semi- Wo:g_

formal

Content

* Documents

« Dictionary, Specification
« Requirements Specification Languages

Lo Natural Language

« (Basic) Decision Tables

Le Syntax, Semantics

o ...for Requirements Specification

o ...for Requirements Analysis Logic

W. Completeness, Useless Rules,
(o Deterr

ism

« Domain Modelling

« Conflict Axiom,

« Relative Completeness, Vacuous Rules,
« Conflict Relation

« Collecting Semantics

« Discussion

IEEE Recommended Practice for
Software Requirements
Specifications.

i —————

Structure of a Requirements Document: Example

5 GENERAL CONSTRAINTS AND REQUIREMENTS

6 PRODUCT QUALITY REQUIREMENTS
61 Avllabilty, Relbilty, Robustness

32 Interfaces to Hardware
33 Interfacesto Software Products / oftware / Firmware.
34 Communicaton Iterfaces

4 DAT 7

41 Volume Requirements 71 System Operation

42 Performance 72 Custornisation

43 etc 73 Requirements of Internal Users

(Ludewig and Lichter, 2013) based on (IEEE, 1998)

Dictionary Example

Example: Wireless Fire Alarm System

« Duringa project on designing a highly reliable, EN-54-25
conforming wireless communication protocol, we had to
learn that the relevant components of a fire alarm system are
o terminal participants

(heat/smoke sensors and manual indicators),

+ repeaters (anon-terminal participant
« and a central unit (not a participant).

« Repeaters and central unit are technically very si
need to be di to understand requi
The dictionary explains these terms.

Excerpt from the dictionary (ca. 50 entries in total):

Part A part of afire alarm systemis either a participant or a central unit
Repeater Arepeater i i participar
or messages from the central unit to other participants.

Central Unit A central unit is a part which receives messages from different assigned participants, as-

sessesthe. d reacts, e.g.by g to persons or
Terminal Participant A terminal

ipant consists of exactly one wirel module and
signalling functionality:

Dictionary

« Requirements analysis should be based on a dictionary.

= Adictionary comprises definitions and clarifications of terms that are relevant to the project
and of which different people (in particular customer and developer)
may h. ings bef ing on the dictionary.

« Each entry in the dictionary should provide the following information:

the sense of

« validness (i time, in space,
« denotation, unique identifies, .
= open questions not yet resolved,
« related terms, cross references.

Note: entries for terms that seemed “crystal clear” at first sight are not uncommon.

= All work on requirements should, as far as possible,

be done using terms from the di d

Y
The dictionary should in particular be negotiated with the customer
and used in communication (if not possible, at least developers should stick to dictionary terms).

« Note: do not mix up real-world/domain terms with ones only “living’ in the software.

Content

* Documents

F. Dictionary, Specification \

o Requirements Specification Languages

Lo Natural Language

« (Basic) Decision Tables
,L. Syntax, Semantics
o ...for Requirements Specification
o ...for Requirements Analysis Logic
W. Completeness, Useless Rules,
«» Determinism
« Domain Modelling
« Conflict Axiom,
 Relative Completeness, Vacuous Rules,

» Conflict Relation

« Collecting Semantics

« Discussion

Example: Wireless Fire Alarm System

—

irf 100 Spconds;thereafter,

Requirements Specification Languages

126

Requirements Specification Language

language, oftenamachi nat-
ural and esm_ language, used to express the requirements, design, behavior,or ther
characteristics of a system or component.

For example, a design language or requirements specification language. Contrast with:

programming language; query language. IEEE 610.12 (1990)

language — A ion language with special con-
structs and, sometimes, verification protocols, used to develop, analyze, and docu-
ment hardware or software requirements. IEEE 610.12 (1990)

Other Pattern Example: RFC 2119

Natural Language Specification .. 2

R1 | State each requirement | Name the actors, indicate whether the user or the system does

in active voice. something Not "the item is deleted”
Express processesby | Not “is, "has’ but reads “creates’;full verbs require information
R2 | full verbs which describe the process more precisely. Not “when data s
consistent” but ‘after program P has checked consistency of the data’
Discover incompl In an error’,
R3 askwhom addressed to.
_V Discover incomplete Conditions of the form “if-else”
R4 | conditions. need descriptions of the if- and the then-case.
[, | Discoveruniversal Are sentences with ‘never’ always’ each any’ "al’really
RS | quantifiers. %% 3 universally valid? Are "l really all o are there exceptions.

Check nominalisations. | Nouns like ‘registratior” often hide complex processes that need
R6 ; the verb “register”
questions: who, where, for what?

term or does it
s “user” generic oris amember of a specific classes meant?

v

Is
R7 | unclear substantives.” | specif

<t if
R8 “may’ should’ ‘must” happen.
clarify who is enforcing or prohibiting the behaviour.

is ‘possible’, “impossible’, or

D>, | entiymplic Terms (the frewal) tht are ot explained further ften hint to
R ti implicit there seems to be a firewall).

Content

* Documents
Le Dictionary, Specification

o Requirements Specification Languages

o

« (Basic) Decision Tables

Natural Language

71. Syntax, Semantics
o ...for Requirements Specification
o ...for Requirements Analysis Logic
« Completeness, Useless Rules,
+ Determinism
« Domain Modelling
« Conflict Axiom,
« Relative Completeness, Vacuous Rules,

« Conflict Relation

» Colle

g Semantics

« Discussion

Natural Language Patterns

Natural language requirements can be (tried to be) written as ar

stance of

the patter “(4) (B) (C) (D) (E) (F)" (German grammar) where

A clarifies when and under what conditions the activity takes place
B is MUST (obligation), SHOULD (wish), or WILL (intention);
also: MUST NOT (forbidden)
C is either “the syste” or the concrete name of a (sub-)system
D one of three possibilties:

« *does, description of a system activity,
« “offers’ description of a function offered by the system to somebody,
o tisableif!

usage of a function offered by a third party, under certain conditions

&

extensions, in particular an object

F the actual process word (what happens)

Example:

e

After office hours (= A), the system (= C) should (= B) offer to the operator (= D)
abackup (= F) of all new registrations to an external medium (= £).

Formal gm%_«ém: the Software Development Domain)
7

Definition. [Bjarner and Havelund (20141
A method is called formal method
if and only if its techniques and tools can b

Example:

If amethod includes a specification language (as a tool), then that language has
aformal syntax,
aformal semantics, and
a formal proof system.

192
Decision Tables: Example . desipa,
) freunie
T | il s
v x| -
. 1
comdiians o BT
o i e
ackors N o C HE
az X —
elfet
WVwAv\
&
222

Formal, Rigorous, or Systematic Development

“The techniques of a formal method help

« construct a specification, and/or

 analyse a specification, and/or

« transform (refine) one (or more) specification(s) into a program.

The techniques of a formal method, (besides the specification languages) are
typically software packages that help developers use the techniques and other tools.

The aim of developing software, either
formally (all arguments are formal) or

rigorously (some arguments are made and they are formal) or

it e

y aform that can be made formal)

is to (be able to) reason in a precise manner about properties of what is being
developed! (Bjeiner and Havelund, 2014)

2062

Decision Table Syntax

 Let C' be aset of conditions and A be a set of actions s.t. C' N A = 0.
* Ade

ion table 7" over C and A is a labelled (m + k) x n matrix

T decision table
o1_| description of condition c; |

on | description of condition c..

‘a1_| description of action ay

ai_| description of action ay

’ mon € {=, ., *}and
ko € {= %}

* Columns (1,5, s Vs Wiy - -+ W i)y 1 < i < m, are called rules,
;T are rule names.

Jvm5) is called premise of rule r;,
) is called effect of r,.

23

Decision Tables

2l

Decision Table Semantics

Eachrule r € {r1,...,r,} of table T
T decision table 1 n
[description of condition ¢1 v

escription of condition ¢

Gescription of action a1

| descriptionofactionay [wiey - win

is assigned to a propositional logical formula (r) over signature C' U A as follows:

o Let(vi,...,vm)and (wy, ..., wy) be premise and effect of r.

. :_m:/l\J

F(r):= Fap @) A+ AF(vm,em) AF(wr,a1) A+ A F(w, ax)

=1 Fpre(7) =iFer(r)

where

F(u,a) =

24

Decision Table Semantics: Example

F(r) = F(vi,e1) A+ A F(vm, em)
AF(vi,a1) A+ A F(vg,ai)

T rifra|rs
o x| x| =
2 B
s — x|+
ar X

ay — x| =

o F(r1) = Flooe)a Flo0)n Floa) a T « T ,a5)

* Flra) =

B S N N S VI L. 2
Cn G A G oA T8y A Ay

o Flrs) = ~cya o 4 fw 4 ay aap,

256

Yes, And?

We can use decision tables to model (describe or prescribe) the behaviour of software!

Example: Tt
+ [buton pesea”
Vendaion o7

Ventilation system of
lecture hall 101-0-026.

<[«
2
B

o

W whether button is d and whether room ventilation is on or off,

and whether (we intend to) start ventilation of stop venti

‘We can model our observation by a boolean valuation o : C'U A — B,

(b) = true,if button pressed now and o (b) := false, f button not pressed now.
(o) i= true, we plan to start ventiation and - (go) = false, we plan to stop ventilation.

Avaluation o : C'U A —» B can be sed to assign a truth value to a propositional formula i over €' U A.

As usual, we wiite o |= iff evaluates to true under o (and o » otherwise).

Rule formulae 7 (r) are propositional formulae over C' U A
thus, given o, we have either o |= F(r) or & i F(r).

Let o be amodel of an observation of C and A.
Wessay, o is allowed by decision table T'if and only f there exists arule r in 7' such that o = F(r).

Example

Decision Tables as Requirements Specification

T room ventilation
button pressed?

x|
x| [|@
2

Stop ventiation

F(r1) =bA off A=on A go A -stop
F(r2) = bA—off Aon A-goA stop
F(rs) = —b A true A true A ~go A —stop

Assume: button pressed, ventilation off, we (only) plan to start the ventilation.
« Corresponding valuation: oy = {b 1> true, off 1+ true, on - false, start -+ true, stop 1+ false}.
« Is ourintention (to start the ventilation now) Yes! (Because o |= F(r1))

owed by

Assume: button pressed, ventilation on, we (only) plan to stop the ventilation.
« Corresponding valuation: o> = {b + true, off ++ false, on +— true, start false, stop + true}.
 Is ourintention (to stop the ventilation now) allowed by 72 Yes. (Because o2 = F(r2))

Assume: button not pressed, ventilation on, we (only) plan to stop the ven
« Corresponding valuation:
 Is ourintention (to stop the ver

Yes, And?

We can use decision tables to model (describe or prescribe) the behaviour of software!

Example:
Ventilation system of
lecture hall 101-0-026.

* We can observe whether button is pressed and whether room ventilation is on or off,
and whether (we intend to) start ventilation of stop ventilation. P 103, Hoe, fibe w

= We can model our observation by a boolean valuation o : C'U A — B, eg. set

o(b) = true, if button pressed now and o (b) := false, f button not pressed now.

(g0) := true, we plan to start d o (go) += false, we plan to stop

« Avaluation o : C'U A — B can be used to assign a truth value to a propositional formula i over C' U A.
Asusual,we wite g - ¢ iff evaluates to true under o (and o} othervi

« Rule formulae () are propositional formula over ' U A
thus, given o, we have either o (= F(r) or o £ F(r). Lmo

Decision Tables as Specification Language

» Decision Tables can be used to objectively describe desired softwdre behaviour.

« Example: Dear developer, please provide a program such that
= in each situation (button pressed, ventilation on/off),
« whatever the software does (action start/stop)
ved by decision table 7.

Decision Tables as Specification Language

S T W o

» Decision Tables can be used to objectively describe desired software behaviour.

« Another Example: Customer session at the bank:

o clerk checks database state

« database says: credit imit exceeded over 500 €, but payment history ok,
« clerk cashes cheque but offers new conditions (according to T'1).

Recall Once Again

q on Req Sp

Arequirements specification should be

« correct « neutrl abstract

the customer, the reaisation more than necessary.

- complete
— al requirements exising i somebodys
head, ora document.or ..} shouldbe present, » traceable. comprehensible

+ relevant - the sources of requirements are documented,

should not be constrained
« consistent, free of contradictions. « testable, objective:

notrealisable.

= Correctness and completeness are defined relative:

tosomething which s usually onlyinthe customers head

~\
o
L

296

3l

Decision Tables as Specification Language

Reaui < on Reaui s Specifi
q 's on Req s Sp
A requirements specification should be
o comect « neutral, abstract /
the customer, constrain the realisation more than necessary.
« complete
- all requirements (existing in sormebody’s
. head, or * traceable. i
+ relevant ~ the sources of requirements are documented,
- tothe project -
should not be constrained.
. nt,free of contradictions + testable,objectve
—eachrequ i

notrealisable,

« Correctness and completeness are defined relative

to something which is usually only in the customer head

besure

Completeness

n. [Completeness] A decision table 7" is called complete if and only if the
disjunction of all rules’ premises is a tautology, i.e. if

E V For(r).

rer

290

Decision Tables for Requirements Analysis

308

Tell Them What You've Told Them. ..

* Decision Tables: one example for a formal
requirements specification language with

« formalsyntax, v
« formalsemantics.»”

« Requirements analysts can use DTs to
« formally (objectively, precisely)
describe their understandi
Customers may need translations/explanation!

VA)

« (relative) completeness,[determinism,

of requirements.

« uselessness,
can be used to analyse requirements.
The discussed DT properties are decidable,
there can be automatic analysis tools.

= Domain modelling formalises assumptions
on the context of software; for DTs:

« conflict axioms, conflict relation,

Note: wrong,
602

References

6laz

References

Arenis, S. F,, Westphal, . Mufiiz, M., and Andisha, A. S. (2014). The wireless fire alarm system:
Ensuring conformance to industrial standards through formal verification. In jones, C. B, Pihlajasaari, P, and Sun,
. editors, FM 2014: Formal Methods - 19th International Symposium, Singapore, May 12-16, 2014. Proceedings,
volume 8442 of LNCS, pages 658-672. Springer.

Balzert, H. (2009). Lehrbuch de : Basis i Engineering. Spektrum, 3rd
edition.
Bjomer, D. (2006). Software Engineering, Vol. 3: Domins, Requi and Software Design. Spri lag

Bjorner, D. and Havelund, K. (2014). 40 years of formal methods. talk.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (1998). JEEE Recommended Practice for Software Requirements Specifications. Std 830-1998.
Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

Rupp, C. and die SOPHISTen (2009). Requirements-Engineering und -Management. Hanser, Sth edition.
Wikipedia (2015). Lufthansa flight 2904. id 646105486, Feb., 7th, 2015.

62e2

