Softwaretechnik / Software-Engineering

Lecture 14: Architecture & Design Patterns,

Software Quality Assurance

2019-07-08

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Principles of (Architectural) Design

Topic Area Architecture & Design: Content

Overview

VL10 e Introduction and Vocabulary
« Software Modelling
L« model views / viewpoints; 4+1 view
© Modelling structure
. W (simplified) Class & Object diagrams
. « (simplified) Object Constraint Logic (OCL)
Modelling behaviour
+ Communicating Finite Automata (CFA)
« Uppaal query language
o CFAvs. Software
ied Modelling Language (UML)
basic state-machines.

vL12

vL13

an outlook on hierarchical state-machines
* Model-dri -based Software Engineerit
o Principles of Design

« modularity. separation of concers
« information hiding and data encapsulation
« abstract data types, object orientation

VL14

« Design Patterns

1) Modularisation
« split software into units / components of manageable size
« provide well-defined interface
2) Separation of Concerns
« each component should be responsible for a particular area of tasks

« group data and operation on that data; functional aspects:
functional vs. technical; functionality and interaction

3) Information Hiding

« the “need to know principle” / information hiding
o users eg other developers) need not necessarily know the algorithm
and helper data which realise the components interface

4.) Data Encapsulation

« offer operations to access component data,
instead of accessing data (variables, files, etc) directly

— many programming languages and systems offer means
to enforce (some of) these principles technically; use these means.

Content (Part I: Architecture & Design)

o modularity, separation of concerns
(e information hiding and data encapsulation
1o abstract data types, object orientation

o ...by example

Architecture Patterns

7/ « Layered Architectures, Pipe-Filter,
Model-View-Controller.

o Design Patterns
L.« Strategy. Exampls

o Libraries and Frameworks

4.) Data Encapsulation

« Similar direction: data encapsulation (examples later).

« Do not access data (variables, files, etc) directly where needed, but encapsulate the datain a
‘component which offers operations to access (read, write, etc) the data.

Users do not wite to bank only

« Information hiding and data encapsulation ~ when enforced technically (examples later) - usually come
at the price of worse efficiency.

« Itis more efficient to read a components data directly
ion to provide the value:

. cient operati
Example: f d red | y
more efficient than accessing them in reverse order by p
Good modules give usage c
Example: if. it may be tempting

to "quickly’” read that place when the intermediate results is needed n a different context.

~+ maintenance nightmare - If the result is needed in another context,
2dd a corresponding operation explictly to the interface.

« Yet with today’s hardware and programming languages, this is hardly an issue any more;
at the time of (Parnas, 1972), it clearly was.

4.) Data Encapsulation

n: data encapsulation (examples later).

-Uo:o.mnnmmmnm»m?m:wv_mm.:_mm.mﬁn;_amnnii_._m.m:amnma.vznm:nmnm:_mpm.rm&wﬁmm:m
which offers ope to (read, write, etc) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

. ion hiding and data ion — when enforced t
at the price of worse efficiency.

later) - usually come

T Glc wa e =
Lw.vector:

e

‘ T T——_——
Example
@i fon hiding and data ion not enforced,
noremtoreRs.
— negative effects when requirements change,
enforcing i ion hiding and data ion by modules,

abstract data types,

object oriented without it ion hiding and data

object oriented with i

ing and data enc

4.) Data Encapsulation

rection: data encapsulation (examples later)

= Do not access data (variables,
which offers operat

Real-World Example: directly.only d

Bm:E:mn%sfmazmaa.vsmzavm:_masm%a_;m
ions t (read, write, etc) the data.

« Information hiding and data encapsulation ~ when enforced technically (examples later) - usually come
atthe price of worse efficiency.

€ /Gt G x

i com

[Ete——"

e o st e
TR vty sbone -

610 i = 610

Example: Module ‘List of Names’

« Task: storea list of names in V of type “lst of string”

« Operations: (in interface of the module)

o insert(strin

] Eresonaen
N =no,niny
post-condition:

N =ng.n i

Me1om € NoVO < j < men; <ie mjsn

N Cier 1 <ier nip1. N = old(N) otherwise.
——————

remove(int i);

o pre-condition: N = —LmENp0OZi<m

R, g

® post-condition: N' = nig, ..., Mi—1, Mit1, .. s Mn—1.

get(inti) : string;
© pre-condition: N = fig, ..., B 1,y Mt 1, oy -1, m € No, 0 < i < m,
© post-condition: N = old(N), retval = n;

o dump();
o pre-condition: N = no, ..., nm_1.m € Ko
N ® post-condition: N' = old(N).
; @ side-effect: no, ... ny -1 printed to standard output in this order.
8o i 910

A Classification of Modules (vagi, 1990)

« functional modules

« group computations which belong together logically,
« donot have “memory’ or state, thatis, behaviour of offered functionality does not depend on prior program

« Examples: mathematical functions, transformations

data object modules

« realise encapsulation of data,

. dat 4
« Examples: modules encapsulating global configuration data, databases

« data type modules

implement a user-defined data type in form of an abstract data type (ADT)
« allows to create and use as many exemplars of the data type
« Example: game object

« Inan object-oriented design,
o classes are data type modules,
o data object modul o L g later),

o functional modul 3 ple is Java’s class Math.

A Possible Implementation: Plain List, no Duplicates

trings int main() {

Insert(st string n) (:

10 st vector estd s string >
iterator it =
lower_bound(names begin

names end (), n) .

if (it == names.end st 1=) | st e
et e
emovel it 1) ¢ : e “Naurmann”
) ;a0 " Wermesen
1 stdistring get(i o

Teturn namesli

s)

1070

A Possible Implementation: Plain List, no Duplicates

it main) €

cvectors

vector cstd

if it == mames.end() ||
names insert(it n)

i 0

ames. begin() « i):

std - string get(int i) (

return namesl i1

access is bypassing
the interface - no
problem, so far

Changed Implementation: Support Duplicates

~ names begin (1]

).
names_ begin (1))):

access is bypassing the
interface - and corrupts
the data-structure

Change Interface: Support Duplicate Names

 Task: in addition, count(n) should tell how many n's we have.

= Operations: (in interface of the module)

o insert(stringn);
o pre-condition:

N=no,...,ninist,. . onpo1m € No VO < j < menj <unjpr

o post-condition
o i <t <tes mest N = moue s e 1, count(n) = 1
® ifn=n;forsome0 < i < m, N = old(N), count(n) = old(count(n)) + 1.

© Wernersen

5 Berger o remove(inti);
o Mayer
14 Namarn pre-condition: N' = no, ..., ni_1,mi mit1,- - mm—1.m € No.0 < i < m,
' Sasen o post-condition

o if count(ni) = LN =g, mi 1 Migns - M

® if count(n;) > 1, N = old(N), count(n;) = old(count(n,)) — 1.

® get(inti):string; and dump();
— unchanged contract
10770 3

Data Encapsulation + Information Hiding

nsert(st string n)

insert
aump():

v dump():

names(2] = "Naumann”:
—_

count erase [count begi

N o 1L

1 mod_deih_m:
mod_deih_mai

.cpp:_In function ‘int main() ":
.cpp:20:3: error: ‘names’ was not declared in this scope

1270

70

1370

Changed Implementation: Support Duplicates

names. begi
count erase(count. begi

Data Encapsulation + Information Hiding

source
aump)

v dimpl)

n remove(2)
"Naumann’)

Output:

Output:

© Wemersen

12770

130

Abstract Data Type

4 dumpl(Names. names)

4 remove . Names names

std - string get(Names names.

4 insert(Names names. std:: string n)

)

dumpl rames)

removel names. 1)
insert(names

dumpl rames)

names(2) 5/ "Naumaon”

dumpl rames)

"o

oid ** used in arithmetic [-Wpointer—arith]
is not a pointer—to-object type

Object Oriented

S o removel

X

v stdstring ge
w)

String > names:

string n)

header

1470

source

namesdump)

namesremove

Output:

| Bergert

< Schulz 1
© Wemersen 1

Berger 1

‘access is bypassing the
interface - and corrupts
the data-structure

1570

Abstract Data Type

Names new_Names():

woid dump(Names names)

Rep—

remove . Nares names, int |)

header

ing get(Names names. int |)

Sinclude "mod_adt "

¢ main() (

© Names mames + new_Names ().

dumpl names)

removel rames. 1)
insertl names. “Mayer”)

dmpl names)

removel rames. 2 |
insert(names. “Naumamn’)

dumpl names)

return 0;
6

Output:

Wernersen:1

14770

Object Oriented + Data Encapsulation / Information Hiding

string > names:

string n)

source

names-enp ()

names remove(1)
Pamessinsert("Mayer')

names-sdhenp ()

R—

names names (2

names-sdhenp ()

cluded from mod_oo_dei

t

ih_main.cpp:1:0:
mai
std - basic_string <char> > Names::names’ is private

n this context

ount begin) +
0 s begin) 1

1670

Object Oriented

Names ()

woid dump()

string n)

Output:

'
i

1570

Object Oriented + Data Encapsulation / Information Hiding

header

void dumpl)

void insert(std::sting n)

source

string n) €

egint) -
et begin 01

count begind) -
0 . begin) 1

names-dump)

16770

“Tell Them What You've Told Them”

hiding and data ion not enforced,
5 negative effects when requirements change,

enforcing i ion hiding and data ion by modules,

(iv) abstract data types,

(v) object oriented without i ion hiding and data

(vi) object oriented withi ion hiding and data

Software Modelling \ - /
o u
LT PO 178 N @ S
mm //mm —
e

20170

Content (Part I: Architecture & Design)

o Principles of (Good) Design Contd

« modularity, separation of concerns
formation hiding and data encapsulation
 abstract data types, object orientation
o ...by example

« Architecture Patterns

L« Layered Arcitectures, ipe-Fiter,
Model-View-Controller.

o Design Patterns
L.« strategy. Examples

o Libraries and Frameworks

1870

Development Approaches

task, problem

outside-in
top-down

bottom-up

user interface

inside-out

system software, hardware

« top-down risk: needed functionality hard to realise on target platform.

o bottom-up risk: lower-level units do not “fit together”

« inside-out risk: user interface needed by customer hard to realise with existing system,
 outside-in risk: elegant system design not reflected nicely in (already fixed) UI.

20

Design Approaches

Architecture Patterns

1970

2270

Introduction Introduction Cont’d

 Over decades of software engineering,
many clever, proved and tested designs
of solutions for particular problems emerged

architectural pattern - An archi tructural or-
ganization schema for software systems.

It provides a set of ifes i
rules and guidelines for organizing the relationships between them

andincludes

« Question: can we generalise, document and re-use these designs? Buschmann et l. (1996)

Layered Architectures
« Goals;

* “don't re-invent the wheel’,

« Using an architectural pattern
« benefit from “clever’, from “proven and tested”, and from “solution”.

« implies certain characteristics or properties of the software
pent o ctc),

. ines structy high level of th
thus is typically a central and fundamental design deci

pattern - An
ganization schema for software systems,
It et of predefined ifies their
a_aaam.__%_amieoﬁ:m;mim%amismg%a

cturalor-

o Theinformation that (where, how. ..) a well-known architecture / design pattern
is used in a given software can

* mak and mai ignific easier,

Buschmann etal. (1996) « avoid errors.

23/70 T 24/70 ¥ 2570
Example: Layered Architectures Example: Layered Architectures Cont’d Example: Layered Architectures Cont’d
« (Zillighoven, 2005): « Object-oriented layer: interacts with layers directly (and possibly further) above and below. « Object-oriented layer: interacts with layers directly (and possibly further) above and below.
Alayer ly interact wi o Rules: the components of a layer may use o Rules: the components of a layer may use

of their direct neighbour layers s called protocol-based layer.

Aprotocol-based layer hides all layers beneath it
and defines a protocol which is (only) used by the layers directly above.

. " o . f the o

« all components of layers further beneath. « all components of layers further beneath.

« Example: The ISO/OSI reference model.

GNOME etc. Hello World GNOME etc.

Applications

Applications

g 26770 7m0 270

Example: Three-Tier Architecture

« presentation layer (or tier):

user interface; presents information obtained from the

logic layer to the user, controls interaction with the user e
i L

« logic layer:

cor systemn functionaliy: aye s designed without nfor-

Appli

Server

tion about the . may

data according to data layer interface: [ousnessogeter_| _@" er

« data layer.
persistent data storage: hides information about how data

is organised, read, and witten, offers particular chunks of

information in a form useful for the logic layer.

« Examples: Web-shop, business software (enterprise resource planning, etc.

Example: Pipe-Filter

Objectcode

=10

Example: UNIX Pipes

1s -1 | grep Sarch.tex | awk ’{ print $5 }’

« Disadvantages:

« if the filters use a common data exchange format, all filters may need changes
if the format is changed, or need to employ (costly) conversions.
« filters do not use global data, in particular not to handle error conditions.

O

Errormessages

EIZ

Layered Architectures: Discussion

« Advantages:

o protocol-based:
only neighouring layers pled, ie. of these layers interact,

 coyj

s low, data usually encapsulated,
« changes have local effect (only neighbouring layers affected),
« protocol-based: distributed implementation often easy.

o Disadvantages:

« performance (as usual) ~ nowadays often not a problem.

2970

Model-View-Controller

3270

Pipe-Filter

Example: Model-View-Controller

change of
I -
nolification of
updates \
-
E,_Ega.a_/ — accesstodata
"data

330

Example: Model-View-Controller Example: Model-View-Controller

- changeof

o L

= (=D = =

change of

Design Patterns

« Advantages:
« one model can serve multple view/controller pairs;

« view/controller pairs can be
added and removed at runtime;

alisation always
i all views:

« distributed implementation (more or less) easily.

L
P —

« Disadvantages:

« if the view needs a lot of data, updating the view can be inefficient.

3370 i 330 * 3470

Design Patterns Example: Pattern Usage and Documentation Example: Strategy
« Inasense the same as architectural patterns, but on a lower scale. i
« Often traced back to (Alexander et al, 1977; Alexander, 1979).
Swstegye| Storeey SHSER Concreestategy | Problem The only difference between similar classes
,,, \ is that they solve
The. Painter A|A ‘SimpleUpdateStrategy .
APattern Langusge. TimdesWayal 7 7 = Another class Strategy provides signatures.
Building 4 for all ops ' to be implemented differently.
Solution « From’ derive one sub-class ConcreteStrz
@ 2 — o - SRy e e e Conteiiey
| - « StrategyContext uses concrete Strategy-objects
| — to execute the different implementations via delegation.
T | e Drawi Grestontol | | seectortl |
ot | e 7 ingedior eationTool oo
St - H

- |
S| e | PR —

Structure

Figure Conererestatesy?

objects and classes that are customized to e
gt

solve a general design problem in a particular context

(HotDraw, 2007) (Di: (Ludewig and Lichter, 2013))
A design pattern names, abstracts, and identifies the key aspects of a common design structure
P " e #

(Gamma etal., 1995)

3570 i 3670 B 370

Example: Pattern Usage and Documentation

o g e |

P et

Example: Pattern Usage and Documentation

e o e
Painter ——————— SimpleUpdateStrategy

\ e —— I i ik
B L) s

Example: Pattern Usage and Documentation

Example: Pattern Usage and Documentation

and be easily exchangeable.

state

Example: Pattern Usage and Documentation

Problem Multiple objects need to adjust their state

Eample "ALGUI object displaying a ile system need to change

Other Patterns: Singleton and Memento

Design Patterns: Discussion

Libraries and Frameworks

“The of design patterns by f the most important o (Class)Library: » .
innovations of software engineering in recent years” acollection of ope cl generally usable inare-usable way.
wig and Lichter, 2013) Examples:
® libe - standard C library (i ‘abstracti functions),
« Advantages: © GMP - GNU multi-precision library, cf. Lecture 6.
o (Re-luse : libz - compress data.

o Canimprove on quality crit changeabilty or re-use.

« Provide a vocabulary for the design process,

« Can be combined in a flexible way,
2 particular pond to roles of multple ps
 Helps teaching software design.

« Disadvantages:
« Using a pattern is not a value as such.
Having too much global data cannot be justified by “but its the patter Singleton’
« Again: reading s easy, writing need not be.

Here: L d

their use n existing - using

Libraries and Frameworks

Libxal - read (and validate) XML file, provide DOM tree.

« Framework: class hierarchies which determine a generic solution for similar problems in a particular
context.

« Example: Android Application Framework

Libraries and Frameworks Quality Criteria on Architectures

© (Class) Library:

« testability

a collection of operati lasses offering generally usable 1a re-usable way. . "
Euamples (buzzword “design for verification’),
« high locality of make (module testing),
© libc - standard C library rticular abs layer for o « particular testing interfaces may improve testability
© G~ GNUmulti-precision library, cf. Lecture 6. fegal jection of user input not only via GUL; or provide particular log output for tests).
® libz - compressdata. N N . .
« Libxm - read and validate) XML fl, provide DOM tree. Quality Criteria on Architectures

. : class hierarchies which d ageneric solution for similar problems in a particular + most systems that are used need to be changed or maintained,
context. in particular when requirements change.
o risk : parts of high probabilty for changes should be designed
« Example: Android Application Framework such that ch i - modularise, encapsulate),

« The difference lies in flow-of-contr
library modules are called from user code, frameworks call user code.

duct line: parameterised design/code
L turn indicators are equal, tun indicators in premium cars are more equal’).

43710

440

+ portability

« porting adaptation to different platform (OS, hardware, infrastructure).

thal y time,
ange (~ [

Note:

« agood design (model) s fist of all supposed to support the solution,
« itneed not be a good domain model.

45770

Tell Them What You’ve Told Them. ..

o Architecture & Design Patterns

« allow re-use of practice-proven designs,

« promise easier comprehension and maintenance.
« Notable Architecture Patterns

« Layered Architecture,
« Pipe-Filter,
« Model-View-Controller.

« Design Patterns: read (Gamma et al, 1995)

* Rule-of-thumb:

ary modules are called from user-code,
« framework modules call user-code.

Content (Part II: Code Quality Assurance)

o Introduction
T. quotes on testing,

(o systematic testing vs. rumprobieren’
o Test Case

defi
execution,
ive and negative.

« Test Suite
o Limits of Software Testing

Software examination paths
s exhaustive testing feasible?
Range vs. point errors

« More Viocabulary

460

4970

Code Quality Assurance

Testing: Introduction

Topic Area Code Quality Assurance: Content

Introduction and Vocabulary

W. mmsﬁaam%m.am.mxnnso;
 Positive and negative outcomes.
fresting
o Limits of Softwaré g
© Glass-Box Testing

L.« Statement.,branch- term-coverage.

« Other Approaches

Tc Model-based testing,

« Runtime verificatio
P

i Verification Y

« Progral

» partial and total correctness,
 Proof System PD.

-
* Review

4770 i

Quotes On Testing

“Testing s the execution of a program with the goal t6 discover errors”

(G.). Myers, 1979)

“Testin f a program or sy: jith the goal to show that it does
whatitis supposed to do” (W. Hetzel, 1984)

(E.W. Dijkstra, 1970)

Rule-of-thumbs: (fairly systematic) tests discover half of all errors.
(Ludewig and Lichter, 2013)

5070

48770

5170

Preliminaries

Recall:

Definition. Software is a finite description 5 of a (possibly infinite) set [] of (finite or
infinite) computation paths of the form 7, <13 o, 225 o, - - where

* 0; € ,i € INp, is called state (or configuration), and

© a; € A,i € No, is called action (or event)

The (possibly partial) function [-] : S+ [S] is called interpretation of .

« From now on, we assume that states consist of an input and an output/internal part, i
there are %;, and ¥, such that
£ = Bin X Sour-

» Computation paths are then of the form

o Weuser | %, todenote = = o) =5 o} 2% . n of 7 onto .,

5270

Test Case

Defi

ion. A test case T over £ and A is a pair (In, Soll) consi
« adescription In of sets of finite input sequences,
» adescription Soll of expected outcomes,

and an interpretation [-] of these descriptions:
o [I] € (Sin x A), [Soll] C (£ x A)* U (S x A)*

Examples:

» Test case for vending machine. b Soll
— ———
T = (C50, WATER; DWATER)

[C50, WATER] = {of < i T ... Do oi) WATER, 5oy,

[DWATER] = {00 2% -« 25 gy ZWATER, o |k < 10},

« “Send event C'50 and any time later WATER, expect DWATER after 10 steps the latest”

53/10

Test Case

Definition. A test case T over ¥ and A is a pair (In, Soll) consisting of
« adescription In of sets of finite input sequences, <

« adescription Soll of expected outcomes, o)

and an interpretation [-] of these descriptions:

o [I] C (Sin x A)", [Soll] C (5 x A)° U (S x 4)°

Test Case

Definition. A test case T over ¥ and A is a pair (In, Soll) con

« adescription In of sets of finite input sequences,
« adescription Soll of expected outcomes,
and an interpretation [-] of these descriptions:

o [In] C (Sin x A)*, [Soll] € (£ x A)* U (E x A)*

Note:

« Input sequences can consider

input data, possibly with timing constraints,
other interaction, eg. from network,

o initial memory content,
o etc

Input sequences may leave degrees of freedom to tester.
Expected outcomes may leave degrees of freedom to system.

Test Case

Definition. A test case T over ¥ and A is a pair (In, Soll) consisting of

» adescription /n of sets of

put sequences,

« adescription Soll of expected outcomes,

and an interpretation [-] of these descriptions:

o [In] € (i x A", [Soll] C (S x A)* U (S x A)*

Examples:

» Test case for procedure strlen : String — IN, s am:oﬁ_w parameter, return value:
o Sl
T = (5= "abc",r = 3)

[s = "abc"] = {o§ 5 oi | oo(s) = "abe"}, [=3] = {oo D o1 | o (r) = 3.

Shorthand notation: 7' = ("abc", 3).

o “Call strlen() with string "abc", expect return value 3"

Executing Test Cases

 Acomputation path

from [S] is called execution of test case (In, Soll) if and only if

Prai il
o thereisn € Nsuchthat oo L ... 2% 0, | S, € [In].

(“A prefix of 7 corresponds to an input sequence’).

Execution r of test case 7 is called

« successful (or positive) if and only if 7 ¢ [Soll].
Suscesiirpestie

« Intuition: an an error has been discovered.
 Alternative: test item S failed to pass the t¢
« Confusing: “test failed"

« unsuccessful (or negative) if and only if 7 € [Soll].
« Intuition: no error has been discovered.
o Alternative: testitem S passed the test.

+ Okay: “test passed

530

Test Suite Not Executing Test Case

Tests vs. Systematic Tests

© Atestsuite isa finite set of testcases {Ty, ..., Tn}. MLl Test - (one or multiple) execution(s) of a program on a computer with the goal to find
T= errors. (Ludewig and Lichter, 2013)
« An execution of a test suite is a set of computation paths, for procedure strlen.
such that there is at least one execution for each test case. (“Empty string has length 07)
Not (even) a test (in the sense of this weak definition):
« An execution of a test suite is called positive * Atester observes the following software behaviour: + any inspection of the program (no execuion)
if and only if at least one test case execution is positive. 5 NULL. s O} % program-abortion o demo of the program (other goal
atleast one test c = {s -)
Otherwi lod T={s .7+ 0} = prog « analysis by software-tools for, e.g. values of metrics
therwise, itis called negative. —o o + investigation of the program with a debugger (other goal).
» Test execution positive or negative? Systematic Test - a test such that
« (environment) conditions are defined or precisely documented,
Note: « inputs have been chosen systematically,
o If a tester does not adhere to an allowed input sequence of T, is not a test execution. ° ﬂwn___ammwmhamﬂ:ﬂ“ﬁ”uwﬁ assessed according tocrteria | . wigand Lchter,2013)
Thus is neither positive nor negative (only defined for test executions).
= Same case: power outage (if continuous power supply is considered in input sequence). (oun) for non ic tests: ; .
In the following: test means ic test; if not callit
55770 560 : 570
Environmental Conditions Content (Part II: Code Quality Assurance)

Strictly speaking, a test case is a triple (/n, Soll, Env) Introduction

a Env of i
(o quotes on testing,

o systematic testing vs. rumprobierer

Env describes any aspects which could have an effect

on the outcome of a test execution and cannot o Test Case
be specified as part of In, such as: -
So Simple? definition,
0 Simple: « Which program (version) is tested? i

« Built with which compiler, linker, etc.?

» Test host (OS, architecture, memory size, connected devices (configuration?), etc)?
= Which other software (in which version, configuration) s involved? o Test Suite
* Whois supposed to test when? o Li

* etc etc.
~ test executions should be (as)rep)

roducible Ad objective (as possible),
N—

Full reproducibility is hardly possible in practice - obviously (err, why...?)

s of Software Testing

Software examination paths
Is exhaustive testing feasible?
Range vs. point errors

« More Vocabulary
» Steps towards reproducibility and objectivity:
« havea fixed build environment,
« useafixed test host which does not do any other jobs,
« execute test cases automatically (test scripts).
5870 5970

Software Examination (in Particular Testing)

Recall: Quotes On Testing

« In each examination, there are two paths from

the specification to results: [Tspecfication |- |
« the production path (using model, source code,
executable, et g comprehend

(using requirements s

= R i
The Limits of Software Testing « Acheck can only discover errors

on exactly one of the paths.

‘Software testing can be used to show the presence of bugs,
butTever to show their absence!”

« Ifadifference is detecte:

(E.W. Dijkstra, 1970)
examination result s posi

« Whatis not on the paths, is not checked:
- " —— ifomaton flow develapment
crucial: specification and comparison. T ifomaton fow devlopmen

N
Recall: aane s
s e
=
i
i 3 e
3 1

7 6270 B 6310

Why Can’t We Show The Absence of Errors (in General)? Observation: Software Usually Has Many Inputs

Observation: Software Usually Has Many Inputs

Consider a simple pocket calculator for adding 8-digit decimals: & « Example: Simple Pocket Calculator. « Example: Simple Pocket Calculator.
« Requirement: If the display shows «, +, and y, then after pressing = « 7 h ten thousand (10,000) different test cases (thats a lot!),

9.999,999.999,990,000 of the 10'° possible inputs rem:
In other words:

Only 0.0000000001% of the possible inputs are covered, 99.9999999999% not touched.

h ten thousand (10,000) different test cases (thats a lot),
9.999,999.999,990.000 of the 10'° possibl
In other words:

Only 0.0000000001% of the possibl

o thesumof zandy

isplayed i + y has at most 8 di

uncovered

puts remain uncovered.
« otherwise

is displayed

o With 8

ts, both = and y range over [0, 10% — 1].

puts are covered, 99.9999999999% not touched.

o In diagrams: (rec: uncovered, blue: covered)

« Thus thereare 101 = 10,000, 000,000, 000,000 possible input pairs (z,) to be
considered -

for exhaustive testing, i.e. testing every pos:

le case!

e

« And if we restart the pocket calculator for each test,
we do not know anything about problems with sequences of inputs....
(Local variables may not be re-i

ed properly, for example)

6570

Point vs. Range Errors

« Software is (in general) not continous.
» Consider a continuous function, e.g. the one to the right:
For sufficiently small e-environments of an input, iT
the outputs differ only by a small amount 6.
« Physical systems are (to a certain extent) continous:

« Forexample, if a bridge endures a single car of 1000 kg,
we strongly expect the bridge to endure cars of 990 kg or 1010 kg.
o And anything of weight smaller than 1000 kg can be expected to be endured.

» For software, adjacent inputs may yield
arbitrarily distant output values.

Vocabulary:

« Point error: an isolated input value triggers the error.
« Range error: multiple ‘neighbouring” inputs trigger the error.

« For software, (in general, without extra information)
we can not conclude from some values to others.

References

66/10

69,10

Content (Part I1I: Code Quality Assurance)

« Introduction

W. quotes on testing,
« systematic testing vs. rumprobieren’

o Test Case

 execution,

« positive and negative.
o Test Suite

 Limits of Software Testing

« Software examination paths
o Is exhaustive testing feasible?
= Range vs. point errors

« More Vocabulary

670

References

Alexander, C.(979), The Timelss Wey of Buiding. Oxtord UiverstyPress

Nexander C. bikaw. S, and Siverstein M.

Buschmann, . Meurier. R Rohert. H. o .and

Tell Them What You've Told Them. ..

Testing is about

« finding errors, or

« demonstrating scenarios.
Atest case consists of

« input sequences and
 expected outcome(s).
Atest case execution is

+ positive if an error is found,

+ negative if no erroris found,

Atest suite is a set of test cases.

68/70

