
–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

Softwaretechnik / Software-Engineering

Lecture 17: Wrapup & Questions

2019-07-22

Prof. Dr. Andreas Podelski, Dr. BerndWestphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Code Quality Assurance: Content

–
17

–
2

0
19

-0
7-

2
2

–
S

b
lo

ck
co

n
te

n
t

–

2/64

• Introduction and Vocabulary

• Test case, test suite, test execution.

• Positive and negative outcomes.

• Limits of Software Testing

• Glass-Box Testing

• Statement-, branch-, term-coverage.

• Other Approaches

• Model-based testing,

• Program Verification

• partial and total correctness,

• Proof System PD.

• Runtime verification.

• Review

VL 14

..

.

VL 15

..

.

VL 16
..
.

VL 17
..
.

Proof-System PD Cont’d

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

3/64

Proof-System PD (for sequential, deterministic programs)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

4/64

Axiom 1: Skip-Statement

{p} skip {p}

Axiom 2: Assignment

{p[u := t]} u := t {p}

Rule 3: Sequential Composition

{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}

Rule 4: Conditional Statement

{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q},

{p} if B then S1 else S2 fi {q}

Rule 5: While-Loop

{p ∧B} S {p}

{p}whileB do S od {p ∧ ¬B}

Rule 6: Consequence

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

Theorem. PD is correct (“sound”) and (relative) complete for partial correctness of deter-
ministic programs, i.e. ⊢PD {p} S {q} if and only if |= {p} S {q}.

Example Proof

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

5/64

DIV ≡

=:SD
0

︷ ︸︸ ︷

a := 0; b := x; while

=:BD

︷ ︸︸ ︷

b ≥ y do

=:SD
1

︷ ︸︸ ︷

b := b− y; a := a+ 1 od

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove |= {x ≥ 0 ∧ y ≥ 0}DIV {a · y + b = x ∧ b < y}

by showing ⊢PD {x ≥ 0 ∧ y ≥ 0
︸ ︷︷ ︸

=:pD

}DIV {a · y + b = x ∧ b < y
︸ ︷︷ ︸

=:qD

}, i.e., derivability in PD:

(1)

{pD} SD
0

{P},

P → P,

(2)

{P ∧ (BD)} SD
1

{P}

{P}whileBD do SD
1

od {P ∧ ¬(BD)},

(R5)
(3)

P ∧ ¬(BD) → qD

{P}whileBD do SD
1

od {qD}

(R6)

{pD} SD
0
; whileBD do SD

1
od {qD}

(R3)

(A1) {p} skip {p} (R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R5)

{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(A2) {p[u := t]} u := t {p} (R4)
{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

Example Proof

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

5/64

DIV ≡

=:SD
0

︷ ︸︸ ︷

a := 0; b := x; while

=:BD

︷ ︸︸ ︷

b ≥ y do

=:SD
1

︷ ︸︸ ︷

b := b− y; a := a+ 1 od

(The first (textually represented) program that has been formally verified (Hoare, 1969).

We can prove |= {x ≥ 0 ∧ y ≥ 0}DIV {a · y + b = x ∧ b < y}

by showing ⊢PD {x ≥ 0 ∧ y ≥ 0
︸ ︷︷ ︸

=:pD

}DIV {a · y + b = x ∧ b < y
︸ ︷︷ ︸

=:qD

}, i.e., derivability in PD:

(1)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

P → P,

(2)

{P ∧ (b ≥ y)} b := b− y; a := a+ 1 {P}

{P}while b ≥ y do b := b− y; a := a+ 1 od {P ∧ ¬(b ≥ y)},

(R5)
(3)

P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y

{P}while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}

(R6)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}

(R3)

(A1) {p} skip {p} (R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R5)

{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(A2) {p[u := t]} u := t {p} (R4)
{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

Example Proof Cont’d

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

6/64

(1)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

P → P,

(2)

{P ∧ (b ≥ y)} b := b− y; a := a+ 1 {P}

{P}while b ≥ y do b := b− y; a := a+ 1 od {P ∧ ¬(b ≥ y)},
(R5)

(3)

P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y

{P}while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}

(R6)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}
(R3)

In the following, we show

(1) ⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

(2) ⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P},

(3) |= P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y.

As loop invariant, we choose (creative act!):

P ≡ a · y + b = x ∧ b ≥ 0

Proof of (1)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

7/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (1) claims:

⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

Proof of (1)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

7/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (1) claims:

⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {0 · y + x = x ∧ x ≥ 0} a := 0 {a · y + x = x ∧ x ≥ 0} by (A2),

Proof of (1)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

7/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (1) claims:

⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {0 · y + x = x ∧ x ≥ 0} a := 0 {a · y + x = x ∧ x ≥ 0} by (A2),

• ⊢PD {a · y + x = x ∧ x ≥ 0} b := x {a · y + b = x ∧ b ≥ 0
︸ ︷︷ ︸

≡P

} by (A2),

Proof of (1)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

7/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (1) claims:

⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {0 · y + x = x ∧ x ≥ 0} a := 0 {a · y + x = x ∧ x ≥ 0} by (A2),

• ⊢PD {a · y + x = x ∧ x ≥ 0} b := x {a · y + b = x ∧ b ≥ 0
︸ ︷︷ ︸

≡P

} by (A2),

• thus, ⊢PD {0 · y + x = x ∧ x ≥ 0} a := 0; b := x {P} by (R3),

• using x ≥ 0 ∧ y ≥ 0 → 0 · y + x = x ∧ x ≥ 0 and P → P , we obtain

⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P}

by (R6).

Substitution

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

8/64

The rule ‘Assignment’ uses (syntactical) substitution: {p[u := t]} u := t {p}

(In formula p, replace all (free) occurences of (program or logical) variable u by term t.)

Defined as usual, only indexed and bound variables need to be treated specially:

Substitution

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

8/64

The rule ‘Assignment’ uses (syntactical) substitution: {p[u := t]} u := t {p}

(In formula p, replace all (free) occurences of (program or logical) variable u by term t.)

Defined as usual, only indexed and bound variables need to be treated specially:

Expressions:

• plain variable x: x[u := t] ≡

{

t , if x = u

x , otherwise

• constant c:
c[u := t] ≡ c.

• constant op, terms si :
op(s1, . . . , sn)[u := t]
≡ op(s1[u := t], . . . , sn[u := t]).

• conditional expression:
(B ? s1 : s2)[u := t]
≡ (B[u := t] ? s1[u := t] : s2[u := t])

Formulae:

• boolean expression p ≡ s:
p[u := t] ≡ s[u := t]

• negation:
(¬q)[u := t] ≡ ¬(q[u := t])

• conjunction etc.:
(q ∧ r)[u := t]
≡ q[u := t] ∧ r[u := t]

• quantifier:
(∀x : q)[u := t] ≡ ∀ y : q[x := y][u := t]
y fresh (not in q, t, u), same type as x.

• indexed variable, u plain or u ≡ b[t1, . . . , tm] and a 6= b:

(a[s1, . . . , sn])[u := t] ≡ a[s1[u := t], . . . , sn[u := t]])

• indexed variable, u ≡ a[t1, . . . , tm]:

(a[s1, . . . , sn])[u := t] ≡ (
∧n

i=1
si[u := t] = ti ? t : a[s1[u := t], . . . , sn[u := t]])

Example Proof Cont’d

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

9/64

(1)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

P → P,

(2)

{P ∧ (b ≥ y)} b := b− y; a := a+ 1 {P}

{P}while b ≥ y do b := b− y; a := a+ 1 od {P ∧ ¬(b ≥ y)},
(R5)

(3)

P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y

{P}while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}

(R6)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}
(R3)

In the following, we show

(1) ⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

(2) ⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P},

(3) |= P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y.

As loop invariant, we choose (creative act!):

P ≡ a · y + b = x ∧ b ≥ 0

(A1) {p} skip {p} (R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R5)

{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(A2) {p[u := t]} u := t {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

Proof of (2)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

10/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (2) claims:

⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {(a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0} b := b− y {(a+ 1) · y + b = x ∧ b ≥ 0}
by (A2),

Proof of (2)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

10/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (2) claims:

⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {(a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0} b := b− y {(a+ 1) · y + b = x ∧ b ≥ 0}
by (A2),

• ⊢PD {(a+ 1) · y + b = x ∧ b ≥ 0} a := a+ 1 {a · y + b = x ∧ b ≥ 0
︸ ︷︷ ︸

≡P

} by (A2),

Proof of (2)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

10/64

(A1) {p} skip {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(A2) {p[u := t]} u := t {p} (R5)
{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• (2) claims:

⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P}

where P ≡ a · y + b = x ∧ b ≥ 0.

• ⊢PD {(a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0} b := b− y {(a+ 1) · y + b = x ∧ b ≥ 0}
by (A2),

• ⊢PD {(a+ 1) · y + b = x ∧ b ≥ 0} a := a+ 1 {a · y + b = x ∧ b ≥ 0
︸ ︷︷ ︸

≡P

} by (A2),

• ⊢PD {(a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0} b := b− y; a := a+ 1 {P} by (R3),

• using P ∧ b ≥ y → (a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0 and P → P we obtain,

⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P}

by (R6).

Example Proof Cont’d

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

11/64

(1)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

P → P,

(2)

{P ∧ (b ≥ y)} b := b− y; a := a+ 1 {P}

{P}while b ≥ y do b := b− y; a := a+ 1 od {P ∧ ¬(b ≥ y)},
(R5)

(3)

P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y

{P}while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}

(R6)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}
(R3)

In the following, we show

(1) ⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

(2) ⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P},

(3) |= P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y.

As loop invariant, we choose (creative act!):

P ≡ a · y + b = x ∧ b ≥ 0

(A1) {p} skip {p} (R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}
(R5)

{p ∧ B} S {p}

{p}whileB do S od {p ∧ ¬B}

(A2) {p[u := t]} u := t {p} (R4)
{p ∧B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}
(R6)

p → p1, {p1} S {q1}, q1 → q

{p} S {q}

Proof of (3)

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

12/64

(3) claims
|= P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y.

where P ≡ a · y + b = x ∧ b ≥ 0.

Proof: easy.

Back to the Example Proof

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

13/64

We have shown:

(1) ⊢PD {x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

(2) ⊢PD {P ∧ b ≥ y} b := b− y; a := a+ 1 {P},

(3) |= P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y.

and

(1)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x {P},

P → P,

(2)

{P ∧ (b ≥ y)} b := b− y; a := a+ 1 {P}

{P}while b ≥ y do b := b− y; a := a+ 1 od {P ∧ ¬(b ≥ y)},
(R5)

(3)

P ∧ ¬(b ≥ y) → a · y + b = x ∧ b < y

{P}while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}
(R6)

{x ≥ 0 ∧ y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od {a · y + b = x ∧ b < y}
(R3)

thus

⊢PD {x ≥ 0∧y ≥ 0} a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od
︸ ︷︷ ︸

≡DIV

{a·y+b = x∧b < y}

and thus (since PD is sound) DIV is partially correct wrt.

• pre-condition: x ≥ 0 ∧ y ≥ 0,

• post-condition: a · y + b = x ∧ b < y.

IOW: whenever DIV is called with x and y such that x ≥ 0 ∧ y ≥ 0,
then (if DIV terminates) a · y + b = x ∧ b < y will hold.

Once Again

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

14/64

(A1) {p} skip {p}

(A2) {p[u := t]} u := t {p}

(R3)
{p} S1 {r}, {r} S2 {q}

{p} S1; S2 {q}

(R4)
{p ∧ B} S1 {q}, {p ∧ ¬B} S2 {q}

{p} if B then S1 else S2 fi {q}

(R5)
{p ∧B} S {p}

{p}whileB do S od {p ∧ ¬B}

(R6)
p → p1, {p1} S {q1}, q1 → q

{p} S {q}

• P ≡ a · y + b = x ∧ b ≥ 0

{x ≥ 0 ∧ y ≥ 0}

{0 · y + x = x ∧ x ≥ 0}

• a := 0;

{a · y + x = x ∧ x ≥ 0}

• b := x;

{a · y + b = x ∧ b ≥ 0}

{P}

• while b ≥ y do

{P ∧ b ≥ y}

{(a+ 1) · y + (b− y) = x ∧ (b− y) ≥ 0}

• b := b− y;

{(a+ 1) · y + b = x ∧ b ≥ 0}

• a := a+ 1

{a · y + b = x ∧ b ≥ 0}

{P}

• od

{P ∧ ¬(b ≥ y)}

{a · y + b = x ∧ b < y}

Literature Recommendation

–
17

–
2

0
19

-0
7-

2
2

–
S

p
d

–

15/64

Content

–
17

–
2

0
19

-0
7-

2
2

–
S

co
n

te
n

t
–

16/64

• Formal Program Verification

• Proof System PD

• The Verifier for Concurrent C

• Assertions, Modular Verification, VCC

• Runtime-Verification

• Assertions, LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Code QA Techniques Revisited

• Test, Runtime-Verification, Review,

• Static Checking, Formal Verification

• Do’s and Don’ts in Code QA

• Dependability

The Verifier for Concurrent C

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

17/64

VCC

–
17

–
2

0
19

-0
7-

2
2

–
S

vc
c

–

18/64

• The Verifier for Concurrent C (VCC) basically implements Hoare-style reasoning.

• Special syntax:

• #include <vcc.h>

• _(requires p) — pre-condition, p is (basically) a C expression

• _(ensures q) — post-condition, q is (basically) a C expression

• _(invariant expr) — loop invariant, expr is (basically) a C expression

• _(assert p) — intermediate invariant, p is (basically) a C expression

• _(writes &v) — VCC considers concurrent C programs; we need to declare for each procedure
which global variables it is allowed to write to (also checked by VCC)

• Special expressions:

• \thread_local(&v)— no other thread writes to variable v (in pre-conditions)

• \old(v) — the value of v when procedure was called (useful for post-conditions)

• \result — return value of procedure (useful for post-conditions)

VCC Syntax Example

–
17

–
2

0
19

-0
7-

2
2

–
S

vc
c

–

19/64

1 #inc lude < vcc . h >
2

3 i n t a , b ;
4

5 void d i v (i n t x , i n t y)
6 _ (r e q u i r e s x >= 0 && y >= 0)
7 _ (e n s u r e s a * y + b == x && b < y)
8 _ (w r i t e s &a)
9 _ (w r i t e s &b)

10 {
11 a = 0;
12 b = x ;
13 whi l e (b >= y)
14 _ (i n v a r i a n t a * y + b == x && b >= 0)
15 {
16 b = b − y ;
17 a = a + 1 ;
18 }
19 }

DIV ≡ a := 0; b := x; while b ≥ y do b := b− y; a := a+ 1 od

{x ≥ 0 ∧ y ≥ 0}DIV {x ≥ 0 ∧ y ≥ 0}

VCC Web-Interface

–
17

–
2

0
19

-0
7-

2
2

–
S

vc
c

–

20/64

Example programDIV : http://rise4fun.com/Vcc/4Kqe

Interpretation of Results

–
17

–
2

0
19

-0
7-

2
2

–
S

vc
c

–

21/64

• VCC result: “verification succeeded”

• We can only conclude that the tool
— under its interpretation of the C-standard, under its platform assumptions (32-bit), etc. —

claims that there is a proof for |= {p}DIV {q}.

• May be due to an error in the tool! (That’s a false negative then.)

Yet we can ask for a printout of the proof and check it manually

(hardly possible in practice) or with other tools like interactive theorem provers.

• Note: |= {false} f {q} always holds.

That is, a mistake in writing down the pre-condition can make errors in the program go undetected!

• VCC result: “verification failed”

• May be a false positive (wrt. the goal of finding errors).

The tool does not provide counter-examples in the form of a computation path,

it (only) gives hints on input values satisfying p and causing a violation of q.

• → try to construct a (true) counter-example from the hints.

or: make loop-invariant(s) (or pre-condition p) stronger, and try again.

• Other case: “timeout” etc. — completely inconclusive outcome.

VCC Features

–
17

–
2

0
19

-0
7-

2
2

–
S

vc
c

–

22/64

• For the exercises, we use VCC only for sequential, single-thread programs.

• VCC checks a number of implicit assertions:

• no arithmetic overflow in expressions (according to C-standard),

• array-out-of-bounds access,

• NULL-pointer dereference,

• and many more.

• Verification does not always succeed:

• The backend SMT-solver may not be able to discharge proof-obligations
(in particular non-linear multiplication and division are challenging);

• In many cases, we need to provide loop invariants manually.

• VCC also supports:

• concurrency:
different threads may write to shared global variables; VCC can check whether concurrent access to
shared variables is properly managed;

• data structure invariants:
we may declare invariants that have to hold for, e.g., records (e.g. the length field l is always equal to
the length of the string field str); those invariants may temporarily be violated when updating the
data structure.

• and much more.

Modular Reasoning

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

23/64

Modular Reasoning

–
17

–
2

0
19

-0
7-

2
2

–
S

m
o

d
u

la
r

–

24/64

We can add another rule for calls of functions f : F (simplest case: only global variables):

(R7)
{p} F {q}

{p} f() {q}

“If we have ⊢ {p} F {q} for the implementation of function f ,

then if f is called in a state satisfying p, the state after return of f will satisfy q.”

p is called pre-condition and q is called post-condition of f .

Example: if we have

• {true} read_number {0 ≤ result < 108}

• {0 ≤ x ∧ 0 ≤ y} add {(old(x) + old(y) < 108 ∧ result = old(x) + old(y)) ∨ result < 0}

• {true} display {(0 ≤ old(sum) < 108 =⇒ ”old(sum)”) ∧ (old(sum) < 0 =⇒ ”-E-”)}

we may be able to prove our pocket calculator correct.

12345678
+ 27

7 8 9 0

4 5 6 +

1 2 3 =

1 i n t x , y , sum ;
2

3 i n t main () {
4

5 whi l e (t r u e) {
6 x = read_number () ;
7 y = read_number () ;
8

9 sum = add () ; / / add ’ x ’ and ’ y ’
10

11 d i s p l a y () ; / / d i s p l a y ’ sum ’
12 }
13 }

Return Values and Old Values

–
17

–
2

0
19

-0
7-

2
2

–
S

m
o

d
u

la
r

–

25/64

• For modular reasoning, it’s often useful to refer in the post-condition to

• the return value as result ,

• the values of variable x at calling time as old(x).

• Can be defined using auxiliary variables:

• Transform function
T f() {. . . ; return expr ; }

(over variables V = {v1, . . . , vn}; where result , voldi /∈ V) into

T f() {

vold1 := v1; . . . ; v
old
n := vn;

. . . ;

result :=expr ;

return result ;

}

over V ′ = V ∪ {vold | v ∈ V } ∪ {result}.

• Then old(x) is just an abbreviation for xold .

Assertions

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

26/64

Assertions

–
17

–
2

0
19

-0
7-

2
2

–
S

as
se

rt
–

27/64

• Extend the syntax of deterministic programs by

S := · · · | assert(B)

• and the semantics by rule

〈assert(B), σ〉 → 〈E, σ〉 if σ |= B.

(If the asserted boolean expression B does not hold in state σ, the empty program is not reached;

otherwise the assertion remains in the first component: abnormal program termination).

Extend PD by axiom:

(A7) {p} assert(p) {p}

• That is, if p holds before the assertion, then we can continue with the derivation in PD.

If p does not hold, we “get stuck” (and cannot complete the derivation).

• So we cannot derive {true} x := 0; assert(x = 27) {true} in PD.

Content

–
17

–
2

0
19

-0
7-

2
2

–
S

co
n

te
n

t
–

28/64

• Formal Program Verification

• Proof System PD

• The Verifier for Concurrent C

• Assertions, Modular Verification, VCC

• Runtime-Verification

• Assertions, LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Code QA Techniques Revisited

• Test, Runtime-Verification, Review,

• Static Checking, Formal Verification

• Do’s and Don’ts in Code QA

• Dependability

Run-Time Verification

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

29/64

A Very Useful Special Case: Assertions

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

30/64

• Maybe the simplest instance of runtime verification: Assertions.

• Available in standard libraries of many programming languages (C, C++, Java, . . .).

• For example, the C standard library manual reads:

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stan−
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message "assertion failed in file foo.c, function
18 do_bar(), line 1287" is of no help at all to a user.

• In C code, assert can be disabled in production code (-D NDEBUG).

• Use java -ea ... to enable assertion checking (disabled by default).
(cf. https://docs.oracle.com/javase/8/docs/technotes/guides/language/assert.html)

Assertions At Work

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

31/64

1 ASSERT(3) Linux Programmer’s Manual ASSERT(3)
2

3 NAME
4 assert − abort the program if assertion is false
5

6 SYNOPSIS
7 #include <assert.h>
8

9 void assert(scalar expression);
10

11 DESCRIPTION
12 [...] the macro assert() prints an error message to stan−
13 dard error and terminates the program by calling abort(3) if expression
14 is false (i.e., compares equal to zero).
15

16 The purpose of this macro is to help the programmer find bugs in his
17 program. The message "assertion failed in file foo.c, function
18 do_bar(), line 1287" is of no help at all to a user.

• The abstract f-example from run-time verification:
(specification: {p} f {q})

1 void f (. . .) {
2 assert(p);
3 . . .
4 assert(q);
5 }

• Compute the width of a progress bar:

1

2 i n t p r o g r e s s _ b a r _ w i d t h (i n t p r o g r e s s , i n t window_left , i n t window_r ight)
3 {
4 assert(window_left <= window_right); / * pre−c o n d i t i o n * /
5 . . .
6 / * t r e a t s p e c i a l ca s e s 0 and 100 * /
7 . . .
8 assert(0 < progress && progress < 100); / / e x t r ema l ca se s a l r eady t r e a t e d
9 . . .

10 assert(window_left <= r && r <= window_right); / * pos t−c o n d i t i o n * /
11 return r ;
12 }

Assertions At Work II

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

32/64

TreeNode

- key : int

leftChild

rightChild

parent

0,1

0,1

0,1

Object

value
*

inv: self.key <= rightChild.key

&& self.key >= leftChild.key

• Recall the structure model with Proto-OCL constraint from Exercise Sheet 4.

• Assume, we add a method set_key() to class TreeNode:

1 c l a s s TreeNode {
2

3 pr i va t e in t key ;
4 TreeNode parent , l e f t C h i l d , r i g h t C h i l d ;
5

6 pub l i c in t get_key () { return key ; }
7

8 pub l i c void s e t_ k e y (i n t new_key) {
9 key = new_key ;

10 }
11 }

• We can check consistency with the Proto-OCL constraint at runtime by using assertions:

1 pub l i c void s e t_ k e y (i n t new_key) {
2 assert(parent == null || parent.get_key() <= new_key);
3 assert(leftChild == null || new_key <= leftChild.get_key());
4 assert(rightChild == null || new_key <= rightChild.get_key());
5

6 key = new_key ;
7 }

Run-Time Verification: Idea

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

33/64

Software S
• Assume, there is a function f in software S with the following specification:

• pre-condition: p, post-condition: q.

• Computation paths of S may look like this:

σ0

α1−−→ σ1

α2−−→ σ2 · · ·
αn−1

−−−→ σn
call f
−−−→ σn+1 · · ·σm

f returns
−−−−−→ σm+1 · · ·

• Assume there are functions checkp and checkq ,
which check whether p and q hold at the current program state,
and which do not modify the program state (except for program counter.

• Idea: create software S′ by

(i) extending S by implementations
of checkp and checkq ,

(ii) call checkp right after entering f ,

(iii) call checkq right before returning from f .

• For S′, obtain computation paths like:

σ0

α1−−→ σ1

α2−−→ σ2 · · ·
αn−1

−−−→ σn
call f
−−−→ σn+1

checkp
−−−−→ σ′

n+1 · · · σm

checkq
−−−−→ σ′

m

f returns
−−−−−→ σm+1 · · ·

• If checkp and checkq notify us of violations of p or q,
then we are notified of f violating its specification when running S′ (= at run-time).

Run-Time Verification: Example

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

34/64

12345678
+ 27

7 8 9 0

4 5 6 +

1 2 3 =

1 i n t x , y , sum ;
2

3 i n t main () {
4

5 whi l e (t r u e) {
6 x = read_number () ;
7 y = read_number () ;
8

9 sum = add (x , y) ;
10

11 v e r i fy_ s um (x , y , sum) ;
12

13 d i s p l a y () ;
14 }
15 }

1 void v e r i fy_ s um (i n t x , i n t y ,
2 i n t sum)
3 {
4 i f (sum ! = (x + y)
5 | | (x + y > 99999999
6 && ! (sum < 0)))
7 {
8 f p r i n t f (s t d e r r ,
9 " v e r i fy_ s um : e r r o r \ n ") ;

10 a b o r t () ;
11 }
12 }

More Complex Run-Time Verification: LSC Observers

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

35/64

half_idle

request_sent

tea_selected

soft_selected

water_selected

idle

DOK?

OK!

water_enabled := false,
soft_enabled := false,
tea_enabled := false

DTEA!

DWATER!

DSOFT!

tea_enabled

TEA?

soft_enabled

SOFT?

water_enabled

WATER?

ChoicePanel:

LSC: buy water
AC: true
AM: invariant I: strict

User CoinValidator ChoicePanel Dispenser

C50

pWATER

¬(C50 ! ∨ E1 ! ∨ pSOFT !

∨ pTEA! ∨ pFILLUP !)

water_in_stock

dWATER

OK

¬(dSoft! ∨ dTEA!)

st : { idle, wsel, ssel, tsel, reqs, half };

take_event(E : { TAU, WATER, SOFT, TEA, ... }) {

bool stable = 1;

switch (st) {

case idle :

switch (E) {

case WATER :

if (water_enabled) { st := wsel; stable := 0; }

;;

case SOFT :

...

}

case wsel:

switch (E) {

case TAU :

send_DWATER(); st := reqs;

hey_observer_I_just_sent_DWATER();

;;

} }

hey_observer_I_just_sent_DWATER();

q1

q2

q3 q4

q5

q6

¬C50 !

C50 !

¬C50? ∧

ϕ1 ∧

¬WATER!

C50?∧ϕ1 ∧

¬WATER!

¬C50? ∧

WATER!∧

ϕ1

¬C50?

∧ϕ1

C50? ∧ ϕ1

C50? ∧

WATER!∧

ϕ1

¬WATER!

∧ϕ1

WATER! ∧ ϕ1

¬WATER? ∧ ϕ1

WATER?∧

ϕ1 ∧

water_in_stock

q1

q2

q3

q4

¬dWATER!∧

ϕ2

dWATER! ∧ ϕ2

¬dWATER?∧

¬OK ! ∧

ϕ2

dWATER?∧

OK ! ∧ ϕ2 ∧

¬output_blocked

¬OK?∧

ϕ2

OK? ∧ ϕ2

true

dWATER? ∧

OK ! ∧ ϕ2 ∧

output_blocked

Run-Time Verification: Discussion

–
17

–
2

0
19

-0
7-

2
2

–
S

ru
n

ti
m

e
–

36/64

Experience. Assertions for pre/post conditions and intermediate invariants

are an extremely powerful tool

with a very attractive gain/effort ratio (low effort, high gain).

• Assertions effectively work as safe-guard against

• unexpected use of functions and

• regression,

e.g. during later maintenance or efficiency improvement.

• Assertions can serve as formal (support of) documentation:

• assert(expr);

means

• “Dear reader, at this point in the program, I expect condition expr to hold.”

Be good to your readers: add a comment that explains the why. . .

Content

–
17

–
2

0
19

-0
7-

2
2

–
S

co
n

te
n

t
–

37/64

• Formal Program Verification

• Proof System PD

• The Verifier for Concurrent C

• Assertions, Modular Verification, VCC

• Runtime-Verification

• Assertions, LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Code QA Techniques Revisited

• Test, Runtime-Verification, Review,

• Static Checking, Formal Verification

• Do’s and Don’ts in Code QA

• Dependability

Review

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

38/64

Reviews

–
17

–
2

0
19

-0
7-

2
2

–
S

re
vi

e
w

–

40/64

rev. item

ref. docs

review
session
review
session

protocol

moderator author reviewer transcript

• Input to Review Session:

• Review item: can be every closed,
human-readable part of software
(documentation, module, test data,

installation manual, etc.)

Social aspect: it is an artefact
which is examined, not the human
(who created it).

• Reference documents: need to
enable an assessment

(requirements specification, guidelines

(e.g. coding conventions), catalogue of

questions (“all variables initialised?”),

etc.)

• Roles:

Moderator: leads session, responsible for properly
conducted procedure.

Author: (representative of the) creator(s) of the artefact
under review; is present to listen to the discussions;
can answer questions; does not speak up if not asked.

Reviewer(s): person who is able to judge the artefact
under review; maybe different reviewers for different
aspects (programming, tool usage, etc.), at best
experienced in detecting inconsistencies or
incompleteness.

Transcript Writer: keeps minutes of review session, can
be assumed by author.

• The review team consists of everybody but the author(s).

Review Procedure Over Time

–
17

–
2

0
19

-0
7-

2
2

–
S

re
vi

e
w

–

41/64

t

Planning

Analysis

Preparation (2 w)

Review

Session (2 h)

“3rd hour” (1 h)

Postparation (2 w)

Initiation

Review
organisation
under guidance
of moderator

Approval of
review item

planning: reviews
need time in the

project plan.

a review is
triggered, e.g.,

by a submission
to the revision

control system:

the moderator
invites (include
review item in
invitation), and
states review
missions.

preparation:
reviewers investigate

review item.

review session:
reviewers report,

evaluate, and
document issues;
resolve open

questions.

“3rd hour”: time for
informal chat,

reviewers may state
proposals for
solutions or

improvements.

postparation: rework
review item;

responsibility of the
author(s).

analysis: improve
development and

review process.

• Reviewers re-assess reworked review item (until approval is declared).

Review Rules (Ludewig and Lichter, 2013)

–
17

–
2

0
19

-0
7-

2
2

–
S

re
vi

e
w

–

42/64

(i) Themoderator organises the review, issues
invitations, supervises the review session.

(ii) The moderator may terminate the review
if conduction is not possible, e.g., due to in-
puts, preparation, or people missing.

(iii) The review session is limited to 2 hours.
If needed: organise more sessions.

(iv) The review item is under review,
not the author(s).
Reviewers choose their words accordingly.
Authorsneither defend themselves nor the
review item.

(v) Roles are notmixed up, e.g., the moderator
does not act as reviewer.
(Exception: author may write transcript.)

(vi) Style issues (outside fixed conventions)
are not discussed.

(vii) The review team is not supposed to de-
velop solutions.
Issues are not noted down in form of tasks
for the author(s).

(viii) Each reviewer gets the opportunity to
present her/his findings appropriately.

(ix) Reviewers need to reach consensus on is-
sues, consensus is noted down.

(x) Issues are classified as:

• critical (review unusable for purpose),

• major (usability severely affected),

• minor (usability hardly affected),

• good (no problem).

(xi) The review team declares:

• accept without changes,

• accept with changes,

• do not accept.

(xii) The protocol is signed by all participants.

Stronger and Weaker Review Variants

–
17

–
2

0
19

-0
7-

2
2

–
S

re
vi

e
w

–

43/64

• Design and Code Inspection (Fagan, 1976, 1986)

• deluxe variant of review,
• approx. 50%more time, approx. 50%more errors found.

• Review

• Structured Walkthrough

• simple variant of review:

• developer moderates walkthrough-session,
XP’s pair programming

(“on-the-fly review”?)

. . .

✘
codingcoding

. . .

tests for . . .spec. of . . .

programmerprogrammer

• developer presents artefact(s),

• reviewer poses (prepared or spontaneous) questions,

• issues are noted down,

• Variation point: do reviewers see the artefact before the session?
• less effort, less effective.

→ disadvantages: unclear reponsibilities; “salesman”-developer may trick reviewers.

• Comment (‘Stellungnahme’)

• colleague(s) of developer read artefacts,
• developer considers feedback.

→ advantage: low organisational effort;

→ disadvantages: choice of colleagues may be biased; no protocol;

consideration of comments at discretion of developer.

• Careful Reading (‘Durchsicht’)

• done by developer,
• recommendation: “away from screen” (use print-out or different device and situation)

m
o

re
e

ff
o

rt

m
o

re
e

ff
e

ct

le
ss

e
ff

o
rt

,l
e

ss
e

ff
e

ct

Content

–
17

–
2

0
19

-0
7-

2
2

–
S

co
n

te
n

t
–

44/64

• Formal Program Verification

• Proof System PD

• The Verifier for Concurrent C

• Assertions, Modular Verification, VCC

• Runtime-Verification

• Assertions, LSC-Observers

• Reviews

• Roles and artefacts

• Review procedure

• Stronger and weaker variants

• Code QA Techniques Revisited

• Test, Runtime-Verification, Review,

• Static Checking, Formal Verification

• Do’s and Don’ts in Code QA

• Dependability

Code Quality Assurance Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

45/64

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

Review

Static Checking

Verification

Strengths:

• can be fully automatic (yet not easy for GUI programs);

• negative test proves “program not completely broken”, “can run” (or positive scenarios);

• final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• few, simple test cases are usually easy to obtain;

• provides reproducible counter-examples (good starting point for repair).

Weaknesses:

• (in most cases) vastly incomplete, thus no proofs of correctness;

• creating test cases for complex functions (or complex conditions) can be difficult;

• maintenance of many, complex test cases be challenging.

• executing many tests may need substantial time (but: can sometimes be run in parallel);

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review

Static Checking

Verification

Strengths:

• fully automatic (once observers are in place);

• provides counter-example;

• (nearly) final product is examined, thus toolchain and platform considered;

• one can stop at any time and take partial results;

• assert-statements have a very good effort/effect ratio.

Weaknesses:

• counter-examples not necessarily reproducible;

• may negatively affect performance;

• code is changed, program may only run because of the observers;

• completeness depends on usage,
may also be vastly incomplete, so no correctness proofs;

• constructing observers for complex properties may be difficult,
one needs to learn how to construct observers.

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking

Verification

Strengths:

• human readers can understand the code, may spot point errors;

• reported to be highly effective;

• one can stop at any time and take partial results;

• intermediate entry costs;
good effort/effect ratio achievable.

Weaknesses:

• no tool support;

• no results on actual execution, toolchain not reviewed;

• human readers may overlook errors; usually not aiming at proofs.

• does (in general) not provide counter-examples,
developers may deny existence of error.

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking ✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification

Strengths:

• there are (commercial), fully automatic tools (lint, Coverity, Polyspace, etc.);

• some tools are complete (relative to assumptions on language semantics, platform, etc.);

• can be faster than testing;

• one can stop at any time and take partial results.

Weaknesses:

• no results on actual execution, toolchain not reviewed;

• can be very resource consuming (if few false positives wanted),
e.g., code may need to be “designed for static analysis”.

• many false positives can be very annoying to developers (if fast checks wanted);

• distinguish false from true positives can be challenging;

• configuring the tools (to limit false positives) can be challenging.

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking ✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification (✔) ✘ ✘ ✔ ✔ (✘) ✘

Strengths:

• some tool support available (few commercial tools);

• complete (relative to assumptions on language semantics, platform, etc.);

• thus can provide correctness proofs;

• can prove correctness for multiple language semantics and platforms at a time;

• can be more efficient than other techniques.

Weaknesses:

• no results on actual execution, toolchain not reviewed;

• not many intermediate results: “half of a proof” may not allow any useful conclusions;

• entry cost high: significant training is useful to know how to deal with tool limitations;

• proving things is challenging: failing to find a proof does not allow any useful conclusion;

• false negatives (broken program “proved” correct) hard to detect.

Techniques Revisited

–
17

–
2

0
19

-0
7-

2
2

–
S

q
aw

ra
p

u
p

–

46/64

auto-
matic

prove
“can run”

toolchain
considered

exhaus-
tive

prove
correct

partial
results

entry
cost

Test (✔) ✔ ✔ ✘ ✘ ✔ ✔

Runtime-
Verification

✔ (✔) ✔ (✘) ✘ ✔ (✔)

Review ✘ ✘ ✘ (✔) (✔) ✔ (✔)

Static Checking ✔ (✘) ✘ ✔ (✔) ✔ (✘)

Verification (✔) ✘ ✘ ✔ ✔ (✘) ✘

Some Final, General Guidelines

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

47/64

Do’s and Don’ts in Code Quality Assurance

–
17

–
2

0
19

-0
7-

2
2

–
S

gu
id

e
–

48/64

Avoid using special examination versions for examination.
(Test-harness, stubs, etc.may have errorswhich may cause false positives and (!) negatives.)

Avoid to stop examination when the first error is detected.

Clear: Examination should be aborted if the examined program is not executable at all.

Do not modify the artefact under examination during examinatin.

• otherwise, it is unclear what exactly has been examined (“moving target”),
(examination results need to be uniquely traceable to one artefact version.)

• fundamental flaws are sometimes easier to detect
with a complete picture of unsuccessful/successful tests,

• changes are particularly error-prone, should not happen “en passant” in examination,

• fixing flaws during examination may cause them to go uncounted in the statistics
(which we need for all kinds of estimation),

• roles developer and examinor are different anyway:
an examinor fixing flaws would violate the role assignment.

Do not switch (fine grained) between examination and debugging.

Dependability Case

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

49/64

Proposal: Dependability Cases (Jackson, 2009)

–
17

–
2

0
19

-0
7-

2
2

–
S

d
e

p
e

n
d

–

50/64

• A dependable system is one you can depend on — that is, you can place your trust in it.

“Developers [should] express the critical properties

and make an explicit argument that the system satisfies them.”

Proposed Approach:

• Identify the critical requirements,

and determine what level of confidence is needed.

(Most systems do also have non-critical requirements.)

• Construct a dependability case, i.e.

an argument, that the software, in concert with other components,

establishes the critical properties.

• The dependability case should be

• auditable: can (easily) be evaluated by third-party certifier.

• complete: no holes in the argument;
any assumptions that are not justified should be noted
(e.g. assumptions on compiler, on protocol obeyed by users, etc.)

• sound: e.g. should not claim full correctness [...] based on nonexhaustive testing;
should not make unwarranted assumptions on independence of component failures;
etc.

Tell Them What You’ve Told Them. . .

–
17

–
2

0
19

-0
7-

2
2

–
S

tt
w

y
tt

–

51/64

• Runtime Verification

• (as the name suggests) checks properties at program run-time,

• generous use of assert’s can be a valuable safe-guard against

• regressions, usage outside specification, etc.

and serve as formal documentation of (intermediate) assumptions.

Very attractive effort / effect ratio.

• Review (structured examination of artefacts by humans)

• (mild variant) advocated in the XP approach,

• not uncommon:
lead programmer reviews all commits from team members,

• literature reports good effort/effect ratio achievable.

• All approaches to code quality assurance have their

• advantages and drawbacks.

• Which to use? It depends!

• Overall: Consider Dependability Cases

• an (auditable, complete, sound) argument,
that a software has the critical properties.

Looking Back:

17 Lectures on Software Engineering

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

52/64

What Did We Do?

–
17

–
2

0
19

-0
7-

2
2

–
S

re
su

m
e

–

54/64

Some Empirical Findings (Buschermöhle et al. (2006))

–
1

–
2

0
19

-0
4

-2
5

–
S

su
cc

e
ss

–

14/40

3.17

30.16

6.88

5.03

25.66

29.1

1-9,999

10,000-99,999

100,000-499,999

500,000-999,999

� 1,000,000

not specified

budget in e (378 responses)

33.07
2.91

10.05

22.49
25.13

� 3

> 3-6

> 6-12

> 12-24

> 24

planned duration in months (378 responses)

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

business critical mission critical safety critical

Criticality (378 responses, 30 ’not spec.’)

97.35
2.65

completed

cancelled

project completion (378 responses)

72.01

24.73

2.45

kept

early

late

deadline (368 responses)

0.27

82.61

4.89

4.89

5.16

1.9
25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

main functionality realised (368 responses)

81.52

11.14

3.26

kept

below

above

budget (368 responses)

29.67

15.38

5.49

9.89

20.88

< 20 %

20-49 %

50-99 %

100-199 %

� 200 %

deadline missed by (91 responses)

4.89

57.61

8.15
7.61

13.04

4.89

2.99

< 25 %

25-49 %

50-74 %

75-89 %

90-94 %

95-99 %

100 %

secondary functionality realised (368 responses)

From Abstract to Concrete Syntax

–
10

–
2
0
19
-0
6
-1
7
–
S
u
m
ls
ig
–

31/61

C

D
x : Int

f(Int) : Bool
get_x () : Int

p
0..1

p 0..1

n

0..�

S = (T,C, V, atr , F,mth)

• T ={Int ,Bool}

• C ={C,D}

• V ={x : Int , p : C0,1, n : C�}

• atr ={C 7� {p, n}, D 7� {p, x}}

• F ={f : Int � Bool , get_x : Int}

• mth ={C 7� �, D 7� {f, get_x}}

More Interesting Example

–
11

–
2

0
19

-0
6

-2
4

–
S

o
cl

–

24/36

� :
1C : C

x = 13
|

n C
x : Int n

0..1

� c � allInstancesC • x(n(c)) 6= 27

• Similar to the previous slide, we need the value of

I�x(n(c))�(�,�),� = {c 7� 1C}

• I�c�(�,�) = �(c) = 1C

• I�n(c)�(�,�) = � since �(I�c�(�,�))(n) = � 6= {u�} by rule

I�v(F)�(�,�) =

(

u� , if I�F �(�,�) � dom(�) and �(I�F �(�,�))(v) = {u�}

� , otherwise
(if v : C0,1)

• I�x(n(c))�(�,�) = � since I�n(c)�(�,�) = � by rule

I�v(F)�(�,�) =

(

� (I�F �(�,�)) (v) , if I�F �(�,�) � dom(�)

� , otherwise
(if not v : C0,1)

Example

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

11/50

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser
->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator

->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

VCC Web-Interface

–
17
–
2
0
18
-0
7-
12
–
S
vc
c
–

39/44
Example programDIV : http://rise4fun.com/Vcc/4Kqe

V-Modell XT: Decision Points

–
4

–
2

0
19

-0
5

-0
6

–
S

vx
t

–

31/59

Example: Illustrative Object Diagram (Schumann et al., 2008)

–
10

–
2
0
19
-0
6
-1
7
–
S
o
d
at
w
o
rk
–

56/61

: Iterator : Forest : Iterator

A : Node E : Node end : BaseNode

B : Node C : Node F : Node

D : Node

begin_it end_it

node node

firstChild

parent firstChild

parent

nextSib

prevSib
lastChild

firstChild
parent

nextSib

prevSib

lastChild firstChild
parent

nextSib

prevSib

BaseNode
parent : BaseNode�
prevSibling : BaseNode�
nextSibling : BaseNode�
firstChild : BaseNode�
lastChild : BaseNode�

Node
data : T

Node(data : T)

Iterator

operator++() : Iterator
operator��() : Iterator
operator�() : BaseNode0,1

Forest

appendTopLevel(data: T)
appendChild(parent : Iterator, data : T)
remove(it : Iterator)
depth(it : Iterator) : int
end() : Iterator
begin() : Iterator
empty() : bool
size() : int

node

begin_it end_it

Example: Computation Paths vs. Computation Graph

–
14
–
2
0
19
-0
7-
0
1
–
S
u
p
p
aa
l–

23/43

(or: Transition Graph)

k k

h(l0,m0,m0), x = 0 i

h(l1,m0,m0), x = 27 i

h(l2,m1,m0), x = 27 i h(l2,m0,m1), x = 27 i

h(l1,m1,m1), x = 27 i

�

A

A

A

A

Coverage Example

–
16
–
2
0
17
-0
7-
0
9
–
S
co
ve
r
–

27/62

int f (int x, int y, int z)
{
i1 : if (x > 100 � y > 10)
s1 : z = z � 2;

else

s2 : z = z/2 ;
i2 : if (x > 500 � y > 50)
s3 : z = z � 5 ;
s4 : return z ;
}

i1

s1 s2

i2

s3

s4

true false

true false

• Requirement: {true} f {true} (no abnormal termination), i.e. Soll = �
�
� �

� .

In % % i2/%

x, y, z i1/t i1/f s1 s2 i2/t i2/f c1 c2 s3 s4 stm cnd term

501, 11, 0 � � � � � � 75 50 25

501, 0, 0 � � � � � � 100 75 25

0, 0, 0 � � � � 100 100 75

0, 51, 0 � � � � � 100 100 100

test suite coverage

em
pi

ric
al

da
ta

in
fo

rm
al

/f
or

m
al

sc
al

es
m

et
ric

s
M

cC
ab

e
co

m
pl

ex
ity

co
st

s
D

el
ph

i m
et

ho
d

C
O

C
O

M
O

pr
oj

ec
t p

la
nn

in
g

ro
le

, a
rt

ef
ac

t,
ac

tiv
ity

w
at

er
fa

ll
m

od
el

sp
ira

l m
od

el
V

-m
od

el
X

T
X

P,
S

cr
um

re
qu

ire
m

en
ts

on
re

qu
ire

m
en

ts

di
ct

io
na

ry
et

c.
la

ng
ua

ge
pa

tt
er

ns

D
ec

is
io

n
Ta

bl
es

co
m

pl
et

en
es

s
et

c.

co
nf

lic
t a

xi
om

s

FM
an

d
cu

st
om

er
s

us
e

ca
se

s
&

di
ag

ra
m

s

se
qu

en
ce

di
ag

ra
m

s

LS
C

sy
nt

ax
TB

A
cu

ts
, f

ire
ds

et
s

au
to

m
at

on
co

ns
tr

uc
tio

n

pr
ec

ha
rt

s
R

E
w

ith
sc

en
ar

io
s

de
fin

iti
on

S
W

LS
C

vs
. s

of
tw

ar
e

m
od

el
vi

ew
s

an
d

vi
ew

po
in

ts

C
la

ss
D

ia
gr

am
s

sy
st

em
st

at
es

, O
D

s

(P
ro

to
-)

O
C

L
ar

ch
ite

ct
ur

e/
de

si
gn

pa
tt

er
ns

C
FA U
pp

aa
l

qu
er

y
la

ng
ua

ge

im
pl

em
en

tin
g

C
FA

U
M

L
st

at
e

m
ac

hi
ne

s

R
ha

ps
od

y
te

st
ca

se
lim

its
of

te
st

in
g

ch
oo

si
ng

te
st

ca
se

s

co
ve

ra
ge

m
od

el
-b

as
ed

te
st

in
g

w
hi

le
pr

og
ra

m
s

H
oa

re
tr

ip
le

s

ca
lc

ul
us

PD
V

C
C

ru
nt

im
e

ve
rif

ic
at

io
n

R
ev

ie
w

Q
A

su
m

m
ar

y

Intro. Process Management Requirements Engineering Architecture & Design Code Quality Assurance

VL 1 VL 2 VL 3 VL 4 VL 5 VL 6 VL 7 VL 8 VL 9 VL 10 VL 11 VL 12 VL 13 VL 14 VL 15 VL 16 VL 17

The Software-Engineering Course on One Slide

–
17

–
2

0
19

-0
7-

2
2

–
S

o
n

e
sl

id
e

–

55/64

Topic Area: Project Management

Topic Area: Requirements Engineering

Topic Area: Architecture & Design

Topic Area: Software Quality Assurance

The Software-Engineering Course on One Slide

–
17

–
2

0
19

-0
7-

2
2

–
S

o
n

e
sl

id
e

–

55/64

Topic Area: Project Management

• measure, know what you measure (scales, pseudo-metrics)

• estimate, measure, improve estimation — it’s about experience

• describe processes in terms of artefact, activity, role, etc. — and risk

Topic Area: Requirements Engineering

• requirements characterise acceptable and unacceptable softwares
(there may be a gray zone)

• formal requirements: unambigous, exact analysis methods

• requirements engineers see the absence of meaning

Topic Area: Architecture & Design

• Model: “Nobody builds a house without a plan.” (L. Lamport)

• software has structural and behavioural aspects

• there are methods and tools to analyse software models
(know how to interpret analysis outcomes)

Topic Area: Software Quality Assurance

• testing is almost always incomplete; testing is necessary
(know how to interpret the outcomes: true/false positive/negative)

• there are methods and tools to prove correctness code
(correctness is relative: correct wrt. specification (and assumptions))

That’s Today’s Software Engineering — More or Less. . .

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

56/64

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

57/64

Questions?

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

58/64

Advertisements

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

59/64

Advertisement

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

60/64

• Further studies:

• Real-Time Systems (not in 2019/20)

(specification and verification of real-time systems)

• Software Design, Modelling, and Analysis in UML (not in 2019/20)

(a formal, in-depth view on structural and behavioural modelling)

• Cyber-Physical Systems I - Discrete Models
(more on variants of CFA and queries (LTL, CTL, CTL∗)

• Cyber-Physical Systems - Hybrid Models
(Modelling and analysis of cyber-physical systems with hybrid automata)

• Program Verification
(the theory behind tools like VCC)

• Formal Methods for Java
(JML and “VCC for Java”)

• Decision Procedures
(the basis for program verification)

→ https://swt.informatik.uni-freiburg.de/teaching

Advertisement

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

61/64

• Individual Projects
(BSc/MSc project, Lab Project, BSc/MSc thesis)

• formal modelling of industrial case studies

• improving analysis techniques

• own topics

→ contact us (3–6 months before planned start).

• Want to be a tutor, e.g. Software Engineering 2020,

→ contact us (around early September / early March).

• Want to be a scientific student assistant?

→ contact us.

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

62/64

Thanks For Your Participation. . .

References

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

63/64

References

–
17

–
2

0
19

-0
7-

2
2

–
m

ai
n

–

64/64

Fagan, M. (1976). Design and code inspections to reduce errors in program development. IBM Systems Journal,
15(3):182–211.

Fagan, M. (1986). Advances in software inspections. IEEE Transactions On Software Engineering, 12(7):744–751.

Hoare, C. A. R. (1969). An axiomatic basis for computer programming. Commun. ACM, 12(10):576–580.

Jackson, D. (2009). A direct path to dependable software. Comm. ACM, 52(4).

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

