Software Engineering

Errata for the Course Slides DE/2019

September 17, 2021

Contents

Lecture 9: Live Sequence Charts & RE Wrap-Up	1
Slide 14, 'Loop Condition' (NEW)	1
Slide 15, 'Progress Condition']

Lecture 9: Live Sequence Charts & RE Wrap-Up

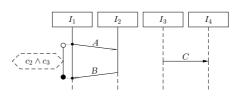
Slide 14, 'Loop Condition' (NEW)

In the second bullet point, the last sentence needs to read

• Local invariant $(l_0, \iota_0, \phi, l_1, \iota_1)$ is *active* at cut (!) q if and only if $l_0 \leq l < l_1$ for some front location l of cut q.

Short notice note: If the 2021 exam has related tasks, the outcome will not depend on this fix but be the same either way (with the erroneous or the fixed definition).

Slide 15, 'Progress Condition'


The last bullet point needs to read:

• $\psi_{\theta}^{\mathsf{LocInv}, \bullet}(q, q_i) = \bigwedge_{\lambda = (l, \iota, \phi, l', \iota') \in \mathsf{LocInv}, \ \Theta(\lambda) = \theta, \ \lambda \ \bullet \text{-active for } (q, q_i) \ \phi$

Local invariant $(l_0, \iota_0, \phi, l_1, \iota_1)$ is \bullet -active for (q, q_i) if and only if

- $-l_0 \in (q_i \setminus q) \wedge \iota_0 = \bullet$, or
- $-l_0 \in q \wedge l_1 \notin q_i$, or
- $l_1 \in (q_i \setminus q) \land \iota_1 = \bullet.$

The fixed definition in particular treats the following case correctly, where an observed sequence of messages $A_1, C_{1?}, A_{?}$ needs to consider the local invariant together with $C_{!?}$:

