Softwaretechnik / Software-Engineering

2
Lecture 18: Behavioural Software Modelling

2019-07-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Software Modelling

wy |y e ‘)
o> S0y ./
:
s //m.m B

Topic Area Architecture & Design: Content

VIT0] + Introduction and Vocabulary
« Software Modelling
Lo modet:views / viewpoints: 4+1 view

Vocabulary
. Techniques
: « Uppaal query language
VL13 | CFAvs. Software
 Unified Modelling Language (UML)
W. basic state-machines. semi-formal
t# an outlook on hierarchical state-machines
 Principles of Design
vL14 P ® one

modularity, separation of concerns
information hiding and data encapsulation
(e abstract data types, object orientation

« Design Patterns
« Model-driven/-based Software Engineering

Communicating Finite Automata

Example

Content

« Communicating Finite Automata (CFA)
(s concrete and abstract syntax,
o networks of CFA,
(o operational semantics.

« Transition Sequences

« Deadlock, Reachability

o Uppaal
(s tool demo (simulator),
(o query language,
(s CFA model-checking.

« CFA at Work

T. drive to config
1e tool demo (ver

tion, scenarios, invariants

« Uppaal Architecture

ChoicePanel:
(simplified)

Channel Names and Actions

To define communicating finite automata, we need the following sets of symbols:
o Aset (a, b €) Chan of channel names or channels.

« For each channel a ¢ Chan, two visible actions:
a? and a! denote input and output on the channel (s

! ¢ Chan).

o T ¢ Chan represents an internal action, not visible from outside.

* (a,B €) Act := {a? | a € Chan} U {a! | a € Chan} U {7} is the set of actions.

o Analphabet Bisasetof channel

. B C Chan.
« For each alphabet B, we define the corresponding action set
By i={a?|a€ B}U{a!|a€B}U{r}
Note: Chanyy = Act.

Example

[Abstract syntax: A= (L,B,V.E, l)]

=2, 1)
(e, b, 0, 0]

(b, T =0,

Integer Variables and Expressions, Resets

o Let (v,w €) V" be aset of ({finite domain) integer) variables.

By (i €) ¥(V) we denote the set of integer expressions over V/ using function symbols +, —, ... and
relation symbols <, <, ...

« Amodification on v € V is of the form

=, vEV, pey(V)

By R(V) we denote the set of all modifications.

« By #we denote afinite st (r1. ..., r), n € No, of modifications r; € R(V).
is called reset vector (or update vector).

{)is the empty list (n = 0).

« By R(V)" we denote the set of all such finite lists of modifications.

Operational Semantics of Networks of CFA

Definition.
Let A; = (Ly, Bi, Vi, Ei, £ini i), 1 < i < n, be communicating finite automata.

The operational semantics of the network of CFA C(A1, . .., An)
is the labelled transition system
T(C(Ar,--, An)) = (Conf, Chan U {7}, {2 A € Chan U {r}}, Cini)
where
e V=ULVi
o Conf = {{(v) | & € Li,v: V — 2(V)},
© Cini = (Tin, Vini) With v (v) = Oforall v € V.

The transition relation consists of transitions of the following two types.

1

Communicating Finite Automata

Definition. A communicating finite automaton is a structure

A= (L,B,V, B\ lini)

where

« (¢ €) Lisafinite set of locations (or control states),

« B C Chan,

« V:asetof data variables,

© BCLx By x (V) x R(V)* x L:afinite set of directed edges such that
LD X LR X5

T Ty i) € EAchan(a) € U = o = true.
Edges (£, a, o, 7 ¢') from location ¢ to ¢” are labelled with an action a,
aguard ¢, and a st 7 of modifications.

® lini € Listheir

Helpers: Extended Valuations and Effect of Resets

 v:V = 9(V)isavaluation of the variables,

« Avaluation v of the variables canonically assigns an integer value ()
to each integer expression ¢ € ¥ (V).

o = C (V= 2(V)) x ®(V) is the canonical satisfaction relation
between valuations and integer expressions from @ (V).

« Effect of modification r € R(V) on v, denoted by v/r]:

o= {2

(a). otherwise

1= ((@lrara]) ..)l

o Weseto[(ri,.

That ications are executed

Operational Semantics of Networks of CFA Operational Semantics of Networks of CFA Example

 Anintemnal transition (7,) —» (¥, v') occurs if thereis i € {1,...,n} and o Anji ccurs if thereis i € {1,...,n} and

« thereisar-edge (£, 7., 7,£]) € E; such that

thereis a-edge (1,7,2,55 () € Fi puch that
bl

“source valuation satisfies guard” e valupttbn satisfies guard

< (o, wo, EQV\ x=0>

automaton i changes location” aton i changes location”

(1,00, w0), =27
« Asynchronisation transition (£, v) %+ (I', ') occurs f there are , j € {1....n} with i # jand ‘ A
188 = (LA izd
== = v
o there are edges (£;.b1, ;. 71, £)) € F; and (£;,b7, ;. 7. }) € E; such that
fges (£, by o1, 3) € B and (65,7, 05,75 65) € B L&, wt, w0, x =23

Cobengy 0T e s

“automaton and j change location”

the result of applying first 7 and then 7 on 1"

This style of communication is known under the names “rendezvous’, “synchronous”, “blocking”
communication (and possibly many others).
3 13142 ¥ 1343 I 1413
Transition Sequences Reachability Deadlock

« Atransition sequence of C(A1, ..., An) is an ite sequence of the form - ourati
seq (A1)isany (infinite sequence « A configuratior @ms__a reachable (in C(A. ..., An))from (7o, vo) « Aconfiguration (¢,) of C(A1, ..., Ay) i called deadlock
(o, o) 25 (@1, 01) 225 (B, va) 2% if and only if ther&Ts7a transition sequene of the form if and only if there are no transitions from (¢, v),
with [

An

(Bo,v0) 25 (1, 01) 22 (B, wm) 225 .. 22 (T) = (T 0), ~(3AEAI(E,V) € Conf o (£,0) 25 (1)),

o {fo, vo) = Ci
Aot it

~ B The network C(A1 ..., Ay) is said to have a deadlock
o foralli € IN, thereis —— in T(C(Ay, ..., An)) with (£, ;) —— (Fiy1,viq1).

if and only i there i a reachable configuration (£, v) which is a deadlock.
ion (7,) is called reachable (without *fron)
reachable from C,

« Alocation { € L, is called reachable if and only if any configuration (7) with £; = ¢ is reachabl
there exist 'and v such that ¢; = £and (7, v} is reachable.

4 1543 i 16143 i 7

Uppaal
en et al,, 1997; Be

(La et al.,, 2004)

182

Satisfaction of Uppaal Queries by Configurations

« The satisfaction relation ~
) EF
between configurations
{Ev) = (01, tn)v)
of anetwork C(AL. ..., Ay) and formulae F* of the Uppaal logic
is defined inductively as follows:

it <€, y> < a doellocle -

© {£,v) = deadlock

o (Lv) = At i L,=C
sy if veP
o (E.) k= not term w vl

o ({,v) = termy and termg i Ve in#sxw

A

Tool Demo

Example: Computation Paths vs. Computation Tree

((10, 3934y z=0)

& (1m0, m0), ==27) ,

e

(2, mt,m0), =27)

{(u, m1,

T,

woor)

/

{(12,mo,

1943

22

The Uppaal Query Language

Consider A = C(A1, ..., A,,) over data variables V.
« basic formula:
atom = A; £ | ¢ | deadlock
where £ € L, is alocation and ¢ an expression over V.
« configuration formulae:

term ::= atom | not term | termi and terms
« existential path formulae:
e~formula := 30 term (exists finally)
| 20 term (exists globally)
« universal path formulae:
a~formula = Y0 term (always finally)
| YDterm (always globally)
| term -> term (leads to)

+ formulae (or queries):

e~formula | a~formula

3 2013
Example: Computation Paths omputation Grap,
(or: Transition Graph)
&~ 3= m
~a
{(10,mo0,m0), =0)
ol
a ((mo,mo), z=27) ,
\ /
(2, mt,mo), ==27) , ¥9a¢, z=27)
(), a=27) A
z 233

Satisfaction of Uppaal Queries by Configurations

Satisfaction of Uppaal Queries by Configurations

Satisfaction of Uppaal Queries by Configurations
+ Always globally:

Exists finally: Exists globally:
o {fo.vo) =30 term. iff 3path ¢ of \' startingin (7, v0) o (fo,vo) |= 30 term iff 3 path & of ' startingin (7o, vo)
Ji€Ngeg' = term - VieNoeg = term o (fo,v0) = VO term iff (7o, vo) = 30 ~term

X A con x&&%m a2,

“not (some configuration satisfying ~term is reachable)”

“on some computation path, all configurations satisfy term”
or: “all reachable configurations satisfy term”

“some configuration satisfying term is reachable”

Example: (%, vo) =30 Example: (£, vo) = 304 « Always final
* {fo, v0) | VO term iff (0o, vo) J£ 30 ~term.
“not tisfy —~term)"
or: "onall ths, the i fing term”™
: 24443 ¥ 25043 I 26143
Satisfaction of Uppaal Queries by Configurations CFA Model-Checking Content
Leads to: « Communicating Finite Automata (CFA)
o (fo,10) = termi —> termy iff ¥ path & of A startingin (75, o) ¥i € No e Definition. Let A" = C(As, . .., A,) be anetwork and * a query. « concrete and abstract syntax,
£ = term; = € |= V0 terma .
(i) We say AV satisfies F, denoted by \' |= F, if and only if Cyp; |= F. networks of CFA,
“on all paths, from each configuration satisfying term + operational semantics.
! a : The model-checking problem for A and "
a configuration satfying term is reachable” (response patern) e e . Transition Sequences
« Deadlock, Reachal
Example: (f, v0) = 91 — 02 * Uppaal
« tool demo (simulator),
+ query language,
« CFAmodel-checking.
CFA at Work
ng problem for tomata is decidable. X
« drive to configuration, scenarios, invariants
2843 : 2943

2us

CFA and Queries at Work

Design Check: Scenarios

H
15
=

* Question: Is the following existential LSC satisfied by the model?
(Otherwise, the design s definitely broken)

end_of_scenario
 of <

instead of User and check whether location end_of _scenario is reachable, i.e. check whether

{= 30 Scenario.end__of _scenario.

for the modified vending machine model A .

30

Model Architecture — Who Talks What to Whom

« Shared variables:

© bool water_enabled, soft_enabled, tea_enabled;

edntw=3,8=3,t=3;

formation hiding’) for channels.

= Note: Our model does not use scope:
the modeler wanted to.

Thatis, ‘Service' could send WATE]

Design Verification: Invariants

=
=

i resey

= Question: Is t the case that the “tea” button is only enabled if there is € 1.50 in the machine?
(Otherwise, the design s broken.)
« Approach: Check whether the implication
tea_enabled — CoinValidator.have_c150

holds in all reachable configurations, i.e. check whether

Nyt | VO (tea_enabled imply CoinValidator.have_c150)

for the vending machine model .

3l

34

Design Sanity Check: Drive to Configuration

 Question: Isis (at all) possible to have no water in the vending machine model?
(Otherwise, the designis definitely broken.)

« Approach: Check whether a configuration satisfying
w =10

is reachable, i.e. check whether
N b= 0w =0,

for the vending machine model Ay

Design Verification: Sanity Check

STUDENTENWERK]

= Question: Is the “tea” button ever enabled?
(Otherwise, the considered invariant

tea_enabled = CoinValidator have_c150

holds vacuously)

« Approach: Check whether a configuration satisfying water_enabled = 1 is reachable.

Exactly like we did with w = 0 earli

ie. check whether Ay |= 30 water_enabled = 1).
- =

Design Verification: Another Invariant

 Question: s it the case that, f there is money in the machine
and water in stock, that the “water” button is enabled?
« Approach: Check

N [VO (CoinValidator. have_e50 or CoinValidator.have_c100 or CoinValidator. have_c150)
imply water_enabled.

Content

o Communicating Finite Automata (CFA)
e concrete and abstract syntax,

networks of CFA,

operational semantics.

« Transition Sequences
« Deadlock, Reachability
» Uppaal

tool demo (simulator),

query language,
CFA model-checking.

CFA at Work

drive to configuration, scenarios, invariants
tool demo (verifier).

» Uppaal Architecture

Recall: Universal LSC Example

g e

invariant & _stict

G| [comiaor | [G | [o]

SOCNN

Uppaal Architecture

373

405

What Can We Conclude From Verification Results?

« Assume that query correponds to a requirement on the system under development,
and A’ is our design-idea model.

» Assume that the veri

ation tool states A = (. What can we conclude from that?

tool result
NEQ | Nea |
Tl nezaive | true positive
2 satQ
5
< truenegative | false positive
2 does
not
satQ

Tell Them What You've Told Them. ..

« Anetwork of communicatiny

 describes a labelled transition system,
« can be used to model software behaviour.

The Uppaal Query Language can be used to
« formalize reachability (30 CF, ¥ CF,...) and
o leadsto (CFy — CF) properties.
« Since the model-checking problem of CFA s decidable,
« there are tools which automatically check
whether a network of CFA satisfies a given query.
« Use model-checking, e.g. to

+ obtain a computation path to a certain configuration

(drive-to-configurati

« check whether a scenario is possible,
« check whether an invariant is satified.

(I not, analyse the design further using the obtained counter-example).
Hpetoe el

References

Lasen,K.G_ Pettersson P, and Y W 1997). U el
Ludevi,J.andLichter . 207 dpunktverag 3. e

Olderog -8, and Dierks, . (1

References

42

43

