
–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

Softwaretechnik / Software-Engineering

Lecture 13: UML State-Machines, UML,

MBSE/MDSE, Design Principles

2019-07-04

Prof. Dr. Andreas Podelski, Dr. BerndWestphal

Albert-Ludwigs-Universität Freiburg, Germany

Topic Area Architecture & Design: Content

–
13
–
2
0
19
-0
7-
0
4
–
S
b
lo
ck
co
n
te
n
t
–

2/50

• Introduction and Vocabulary
• Software Modelling

• model; views / viewpoints; 4+1 view

• Modelling structure

• (simplified) Class & Object diagrams

• (simplified) Object Constraint Logic (OCL)

• Modelling behaviour

• Communicating Finite Automata (CFA)

• Uppaal query language

• CFA vs. Software

• Unified Modelling Language (UML)

• basic state-machines

• an outlook on hierarchical state-machines

• Model-driven/-based Software Engineering

• Principles of Design
• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• Design Patterns

Vocabulary

Techniques

informal

semi-formal

formal

VL 10

...

VL 11
...

VL 12

...

VL 13

...

VL 14
...

Content

–
13
–
2
0
19
-0
7-
0
4
–
S
co
n
te
n
t
–

3/50

• CFA vs. Software

• UML State Machines

• Hierarchical State Machines

• Core State Machines

• steps and run-to-completion steps

• Rhapsody

• Unified Modelling Language

• Brief History

• Sub-Languages

• UML Modes

• Model-based/-driven Software Engineering

• Principles of (Good) Design

• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• . . . by example

Uppaal Architecture

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

4/50

Uppaal Architecture

–
13
–
2
0
19
-0
7-
0
4
–
S
u
p
p
aa
la
rc
h
–

5/50

server

verifyta

yes / no / don’t know

.xml .trc .q

C++

Java

CFA at Work Cont’d

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

6/50

What Can We Conclude From Verification Results?

–
13
–
2
0
19
-0
7-
0
4
–
S
cf
ai
n
sw
e
–

7/50

• Assume that queryQ correponds to a requirement on the system under development
(e.g., an invariant), andN is our design-idea model.

• Assume that the verification tool statesN |= Q (negative: no violation (or: error) found).
What can we conclude from that?

tool result
N |= Q N 6|= Q

th
e
d
e
si
g
n
id
e
a does

not
sat.Q

false negative true positive

sat.Q

true negative false positive

→ ifN is a valid model of our idea, if the tool works correct, if if if . . . ,
and if the system implements this design idea, and if environment assumptions hold,

then the system will not fail due to an analysable design flaw.

Content

–
13
–
2
0
19
-0
7-
0
4
–
S
co
n
te
n
t
–

8/50

• CFA vs. Software

• UML State Machines

• Hierarchical State Machines

• Core State Machines

• steps and run-to-completion steps

• Rhapsody

• Unified Modelling Language

• Brief History

• Sub-Languages

• UML Modes

• Model-based/-driven Software Engineering

• Principles of (Good) Design

• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• . . . by example

UML State Machines

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

9/50

Composite (or Hierarchical) States

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

10/50

• OR-states, AND-states Harel (1987).

• Composite states are about abbreviation, structuring, and avoiding redundancy.

n

•
w e

s

resigned

X/
X/

X/

X/

•

n

•
w e

s

resigned

X/

n

fastN

•

wfastW e

fastE

s

fastS

F/

F/

•

n

•
w e

s

•

slow

fast

F/F/

Example

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

11/50

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

Idle

waitOK

have_c100_or_e1>

have_c100

have_e1

have_c150>have_c50>

drinkReady

E1/itsChanger
->giveback_100()

C50/itsChoicePanel
->enable_Water(); E1/

itsChanger
->giveback_100()

C50

C50/
itsChanger
->giveback_50()

C50

E1/itsChoicePanel->enableSoft();

E1

C50

OK

Entry Action:
itsChoicePanel
->enable_Water();

Entry Action:
itsChoicePanel
->enable_Soft();

Entry Action:
itsChoicePanel
->enable_Tea();

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

Tea_selected

Inactive Soft_selected

Water_selected

Request_sent

TEA[Tea_enabled]
/itsDrinkDispenser

->GEN(DTEA)

/itsDrinkDispenser
->GEN(DSOFT);

if (itsCoinValidator
->IS_IN(have_c150))

itsChanger->giveback_50();

WATER[Water_enabled]

/disable_all();

SOFT[Soft_enabled]

/itsDrinkDispenser
->GEN(DWATER);

if (itsCoinValidator->IS_IN(have_c150))
itsChanger->giveback_100();

else if (itsCoinValidator->IS_IN(have_c100))
itsChanger->giveback_50();

onon

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

on

T2 Tea_outT1T3

S2 Soft_outS1S3

W2 Water_outW1W3

FillingUp

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DTEA/
Prepare_Tea();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DSOFT/
Prepare_Soft();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

DWATER/
Prepare_Water();
itsCoinValidator
->GEN(OK);

FILLUP/itsCoinValidator
->update_ChoicePanel();

UML Core State Machines

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

13/50

C

D
x : Int = 27

itsD

0..1
itsC

0..1

〈〈signal〉〉

E

〈〈signal〉〉

F

〈〈signal〉〉

G

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

annot ::=
[
〈event〉[. 〈event〉]∗
︸ ︷︷ ︸

trigger

[[〈guard〉]] [/ 〈action〉]
]

with

• event ∈ E , (optional)

• guard ∈ ExprS (default: true, assumed to be in ExprS)

• action ∈ ActS (default: skip, assumed to be inActS)

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0

Event Pool and Run-To-Completion

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

14/50

s1 s2
E/itsD !F

G

s1 s2
F [x > 0]

s3 /itsC !G/x := 0

u1 : C

state : {s1, s2}

stable : Bool

u2 : D

x = 27

state : {s1, s2, s3}

stable : Bool

itsD

itsC

u1 u2

step state stable x state stable event pool
0 s1 1 27 s1 1 E ready for u1

1 s2 1 27 s1 1 F ready for u2

2 s2 1 27 s2 0
3 s2 1 27 s3 0 G ready for u1

4.a s2 1 0 s1 1 G ready for u1

5.a s1 1 0 s1 1

4.b s1 1 27 s3 0
5.b s1 1 0 s1 1

Rhapsody Architecture

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
ls
tm

–

15/50

C.h D.h

C.cpp D.cpp

MainDefaultComponent.cpp

DfltCmp.exe

generate

build / make

(compiler)

run

E!

go

“D just stepped
from s1 to s2
by transition t”

Unified Modelling Language (UML)

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

16/50

UML Overview (OMG, 2007, 684)

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
lo
u
tl
o
o
k
–

17/50

Figure A.5 - The taxonomy of structure and behavior diagram

Diagram

Structure
Diagram

Behavior
Diagram

Interaction
Diagram

Use Case
Diagram

Activity
Diagram

Composite
Structure
 Diagram

Class Diagram
Component

Diagram

Deployment
Diagram

Sequence
Diagram

Interaction
Overview
Diagram

Object
Diagram

State Machine
Diagram

Package
Diagram

Communication
Diagram

Timing
Diagram

OCL

Dobing and Parsons (2006)

A Brief History of UML

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
lo
u
tl
o
o
k
–

18/50

stone age

1970

1980

1990

2000

2010

•

•

•

•

•

•

•

visualise software with boxes,
circles, arrows, automata, etc.

‘software crisis’, term
‘software engineering’

modelling languages:
Flowcharts,
Nassi-Shneiderman,
Entity-Relation Diagrams, etc.

Statecharts (Harel, 1987),
StateMate (Harel et al., 1990)

Object-Oriented
Analysis/Design/ Programming,

Object-Modeling Technique
(OMT) (Rumbaugh et al., 1990)

h
tt
p
:/
/w
ik
im
e
d
ia
.o
rg
(C
C
n
c-
sa
3
.0
,U
se
r:
A
u
tu
m
n
S
n
o
w
)

h
tt
p
:/
/w
ik
im
e
d
ia
.o
rg

(C
C
n
c-
sa
3
.0
,

U
se
r:
A
u
tu
m
n
S
n
o
w
)

Booch Method and
Notation (Booch, 1993)

h
tt
p
:/
/w
ik
im
e
d
ia
.o
rg
(P
u
b
lic
d
o
m
ai
n
,J
o
h
an
n
e
s
Fa
so
lt
)

Object-Oriented Software
Engineering
(OOSE) (Jacobson et al., 1992)

use case model

domain object
model

analysis model design model

class. . .

implementation
model

. . .

testing model

may be expressed in terms of

structured by

realized by

implemented by

tested in

UML 0.x and 1.x (“the three
amigos” joint effort); much
criticised for lack of formality.

UML 2.x (split into infra- and
superstructure documents; and
join again); syntax pretty
defined; semantics natural
language, informal;

The UML standard is published by the Object
Management Group (OMG):

“international, open membership, not-for-profit
computer industry consortium”.

“UML Mode” [http://martinfowler.com/bliki]

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
lm
o
d
e
–

19/50

“[...] people differ about what should be in the UML - because there are
differing fundamental views about what the UML should be.

I came up with three primary classifications for thinking about the UML:

UmlAsSketch, UmlAsBlueprint, andUmlAsProgrammingLanguage.

([...] S. Mellor independently came up with the same classifications.)

Sowhen someone else’s view of theUML seems rather different to yours,
it may be because they use a different UmlMode to you.”

• Aplies to UML as such (as a language),

• and to each individualUML model.

UML-Mode of the Lecture: As Blueprint

–
13
–
2
0
19
-0
7-
0
4
–
S
u
m
lm
o
d
e
–

20/50

+ wiringplan + windows

+ ...

Sketch

In this UmlMode developers use the UML
to help communicate some aspects of a
system. [...]
Sketches are also useful in documents, in
which case the focus is communication
ra- ther than completeness. [...]
The tools used for sketching are
lightweight drawing tools and often
people aren’t too particular about
keeping to every strict rule of the UML.
Most UML diagrams shown in books,
such as mine, are sketches.
Their emphasis is on selective
communication rather than complete
specification.

Hence my sound-bite “comprehensive-

ness is the enemy of comprehensibility”

Blueprint

[...] In forward engineering the idea is
that blueprints are developed by a
designer whose job is to build a detailed
design for a programmer to code up.
That design should be sufficiently
complete that all design decisions are
laid out and the programming should
follow as a pretty straightforward activity
that requires little thought. [...]
Blueprints require much more
sophisticated tools than sketches in order
to handle the details required for the
task. [...]

Forward engineering tools support dia-

gramdrawingandback it upwitha repos-

itory to hold the information. [...]

ProgrammingLanguage

If you can detail the UML enough, and
provide semantics for everything you
need in software, you canmake the UML
be your programming language.
Tools can take the UML diagrams you
draw and compile them into executable
code.
The promise of this is that UML is a higher
level language and thus more productive
than current programming languages.
The question, of course, is whether this
promise is true.

I don’t believe that graphical program-

ming will succeed just because it’s graphi-

cal. [...]

Content

–
13
–
2
0
19
-0
7-
0
4
–
S
co
n
te
n
t
–

21/50

• CFA vs. Software

• UML State Machines

• Hierarchical State Machines

• Core State Machines

• steps and run-to-completion steps

• Rhapsody

• Unified Modelling Language

• Brief History

• Sub-Languages

• UML Modes

• Model-based/-driven Software Engineering

• Principles of (Good) Design

• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• . . . by example

Model-based/-driven Software Engineering

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

22/50

–
13
–
2
0
19
-0
7-
0
4
–
S
m
d
se
–

23/50

Model-Driven Software Engineering

–
13
–
2
0
19
-0
7-
0
4
–
S
m
d
se
–

24/50

Idea

Structure Declarative
Behaviour

︸
︷
︷

︸

Declarative
Behaviour′

︸
︷
︷

︸

Structure′ Constructive
Behaviour

︸
︷
︷

︸

Structure′′ Constructive
Behaviour′

︸
︷
︷

︸

Implementation

elicit

refine

refine

refine refine

requirements
model

requirements/
constraints

design

systemmodel

|=
?

|=
?

generate/
program

• (Jacobson et al., 1992): “System development is model building.”

• Model based software engineering (MBSE): some (formal)models are used.

• Model driven software engineering (MDSE): all artefacts are (formal)models.

Approach: Transform vs. Write-Down-and-Check

–
13
–
2
0
19
-0
7-
0
4
–
S
m
d
se
–

26/50

Tell Them What You’ve Told Them. . .

–
13
–
2
0
19
-0
7-
0
4
–
S
tt
w
y
tt
–

27/50

• We can use tools like Uppaal to

• check and verify CFA design models against requirements.

• CFA (and state machines)

• can easily be implemented using a translation scheme.

• UML State Machines are

• principally the same thing as CFA,
yet provide more convenient syntax.

• Semantics:

• asynchronous communication,

• run-to-completion steps

(CFA: synchronous (or: rendezvous)).

• Mind UML Modes.

• Wanted: verification results carry over to the implementation.

• if code is not generated automatically,

verify code againstmodel.

• Vocabulary: Model-based/-driven Software Engineering

Topic Area Architecture & Design: Content

–
13
–
2
0
19
-0
7-
0
4
–
S
b
lo
ck
co
n
te
n
t
–

28/50

• Introduction and Vocabulary
• Software Modelling

• model; views / viewpoints; 4+1 view

• Modelling structure

• (simplified) Class & Object diagrams

• (simplified) Object Constraint Logic (OCL)

• Modelling behaviour

• Communicating Finite Automata (CFA)

• Uppaal query language

• CFA vs. Software

• Unified Modelling Language (UML)

• basic state-machines

• an outlook on hierarchical state-machines

• Model-driven/-based Software Engineering

• Principles of Design
• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• Design Patterns

Vocabulary

Techniques

informal

semi-formal

formal

VL 10

...

VL 11
...

VL 12

...

VL 13

...

VL 14
...

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

29/50

Once Again, Please

–
10

–
2
0
19
-0
6
-1
7
–
S
d
e
si
n
tr
o
–

9/61

System

Software System

Component

Software Component

Module

Interface

Component Interface
consists of 1 or more

"

is
a

is
a

may be a

has

is
an

Software Architecture

Architecture

Architectural Description

Design

software architecture — The software architecture of a program or computing system is the
structure or structures of the system which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them. (Bass et al., 2003)

is
an

is described by

is the result of

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

30/50

Goals and Relevance of Design

–
10

–
2
0
19
-0
6
-1
7
–
S
d
e
si
n
tr
o
–

10/61

• The structure of something is the set of relations between its parts.

• Something not built from (recognisable) parts is called unstructured.

Design. . .

(i) structures a system intomanageable units (yields software architecture),

(ii) determines the approach for realising the required software,

(iii) provides hierarchical structuring into amanageable number of units
at each hierarchy level.

Oversimplified process model “Design”:

req.

designdesign

arch.

designer

design

module

spec.

impl.impl.

code

programmer

implementation

Content

–
13
–
2
0
19
-0
7-
0
4
–
S
co
n
te
n
t
–

31/50

• CFA vs. Software

• UML State Machines

• Hierarchical State Machines

• Core State Machines

• steps and run-to-completion steps

• Rhapsody

• Unified Modelling Language

• Brief History

• Sub-Languages

• UML Modes

• Model-based/-driven Software Engineering

• Principles of (Good) Design

• modularity, separation of concerns

• information hiding and data encapsulation

• abstract data types, object orientation

• . . . by example

Principles of (Architectural) Design

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

32/50

Overview

–
13
–
2
0
19
-0
7-
0
4
–
S
d
e
sp
ri
n
c
–

33/50

1.) Modularisation

• split software into units / components ofmanageable size

• provide well-defined interface

2.) Separation of Concerns

• each component should be responsible for a particular area of tasks

• group data and operation on that data; functional aspects;
functional vs. technical; functionality and interaction

3.) Information Hiding

• the “need to know principle” / information hiding

• users (e.g. other developers) need not necessarily know the algorithm
and helper data which realise the component’s interface

4.) Data Encapsulation

• offer operations to access component data,
instead of accessing data (variables, files, etc.) directly

→ many programming languages and systems offer means
to enforce (some of) these principles technically; use these means.

1.) Modularisation

–
13
–
2
0
19
-0
7-
0
4
–
S
d
e
sp
ri
n
c
–

34/50

modular decomposition — The process of breaking a system into components to fa-
cilitate design and development; an element of modular programming.

IEEE 610.12 (1990)

modularity— The degree to which a system or computer program is composed of dis-
crete components such that a change to one component hasminimal impact on other
components. IEEE 610.12 (1990)

• So,modularity is a property of an architecture.

• Goals of modular decomposition:

• The structure of each module should be simple and easily comprehensible.

• The implementation of a module should be exchangeable;
information on the implementation of other modules should not be necessary.
The other modules should not be affected by implementation exchanges.

• Modules should be designed such that expected changes
do not require modifications of themodule interface.

• Bigger changes should be the result of a set ofminor changes.
As long as the interface does not change,
it should be possible to test old and new versions of a module together.

2.) Separation of Concerns

–
13
–
2
0
19
-0
7-
0
4
–
S
d
e
sp
ri
n
c
–

35/50

• Separation of concerns is a fundamental principle in software engineering:

• each component should be responsible for a particular area of tasks,

• components which try to cover different task areas tend to be unnecessarily complex, thus hard to
understand and maintain.

• Criteria for separation/grouping:

• in object oriented design, data and
operations on that data are grouped into
classes,

• sometimes, functional aspects (features)
like printing are realised as separate
components,

• separate functional and technical
components,

Example: logical flow of (logical) messages in a

communication protocol (functional) vs.

exchange of (physical) messages using a certain

technology (technical).

• assign flexible or variable functionality to
own components.
Example: different networking technology

(wireless, etc.)

• assign functionality which is expected to
need extensions or changes later to own
components.

• separate system functionality and
interaction

Example: most prominently graphical user

interfaces (GUI), also file input/output

3.) Information Hiding

–
13
–
2
0
19
-0
7-
0
4
–
S
d
e
sp
ri
n
c
–

36/50

• By now, we only discussed the grouping of data and operations.

One should also consider accessibility.

• The “need to know principle” is called information hiding in SW engineering. (Parnas, 1972)

information hiding— A software development technique in which each module’s interfaces reveal

as little as possible about themodule’s inner workings, and othermodules are prevented from using

information about the module that is not in the module’s interface specification.

IEEE 610.12 (1990)

• Note: what is hidden is information which other components need not know
(e.g., how data is stored and accessed, how operations are implemented).

In other words: information hiding is aboutmaking explicit for one component
which data or operations other components may use of this component.

• Advantages / goals:

• Hidden solutions may be changed without other components noticing,
as long as the visible behaviour stays the same (e.g. the employed sorting algorithm).

IOW: other components cannot (unintentionally) depend on details they are not supposed to.

• Components can be verified / validated in isolation.

4.) Data Encapsulation

–
13
–
2
0
19
-0
7-
0
4
–
S
d
e
sp
ri
n
c
–

37/50

• Similar direction: data encapsulation (examples later).

• Do not access data (variables, files, etc.) directly where needed, but encapsulate the data in a
component which offers operations to access (read, write, etc.) the data.

Real-World Example: Users do not write to bank accounts directly, only bank clerks do.

“Tell Them What You’ve Told Them”

–
13
–
2
0
19
-0
7-
0
4
–
S
n
am

e
s
–

48/50

(i) information hiding and data encapsulation not enforced,

(ii) → negative effects when requirements change,

(iii) enforcing information hiding and data encapsulation by modules,

(iv) abstract data types,

(v) object oriented without information hiding and data encapsulation,

(vi) object oriented with information hiding and data encapsulation.

References

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

49/50

References

–
13
–
2
0
19
-0
7-
0
4
–
m
ai
n
–

50/50

Booch, G. (1993). Object-oriented Analysis and Design with Applications. Prentice-Hall.

Dobing, B. and Parsons, J. (2006). How UML is used. Communications of the ACM, 49(5):109–114.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231–274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development of complex
reactive systems. IEEE Transactions on Software Engineering, 16(4):403–414.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jacobson, I., Christerson, M., and Jonsson, P. (1992). Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Nagl, M. (1990). Softwaretechnik: Methodisches Programmieren im Großen. Springer-Verlag.

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.

Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun. ACM,
15(12):1053–1058.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1990). Object-Oriented Modeling and Design.
Prentice Hall.

