
Prof. Dr. A. Podelski, Summer term 2021
Dr. B. Westphal

Softwaretechnik/Software Engineering

http://swt.informatik.uni-freiburg.de/teaching/SS2021/swtvl

Exercise Sheet 1

Early submission: Monday, 2021-04-26, 13:00 Regular submission: Tuesday, 2021-04-27, 13:00

Exercise 1 – Lines of Code Metrics (5/10 Points)

Consider the following lines of code (LOC) metrics:

• LOC tot = Total number of lines of code.

• LOC ne = Number of non-empty lines of code.

• LOC pars = Number of lines of code that do not consist entirely of comments or non-printable
characters.

(i) Calculate the value of the LOC metrics for the Java program in the file MyQuickSort.java

that accompanies this exercise sheet. (2)

(ii) The LOC metrics are often used as derived measure for the complexity or effort required to
develop the code being measured.

In particular the family of LOC metrics is notorious for being subvertible. If a metric is
subvertible, its value can be manipulated to increase or decrease it arbitrarily while preserv-
ing the same program semantics. I.e., for every program, there always exists a semantically
equivalent program (that performs the same computation, and thus should have needed
roughly similar effort to develop) that has substantially different metric values.

Convince yourself of this claim for the case of LOC pars :

a) Give two semantically equivalent programs (in a high-level programming language of
your choice, like Java, C++, C) with substantially (at least an order of magnitude)
different metric values. (1)

b) Is your example a rare exception? If not, give a procedure to subvert given programs
to a given metric value; if yes, argue why. (1)

(iii) What is the largest value of the1 LOC metric for any of your contributions to a software
project so far? What are the values of the LOC metric for the whole project? (An assignment
in a programming course also counts as a project.) (1)

Give just the order of magnitude of the two figures per team member according to the following
intervals:

(a) (b) (c) (d) (e) (f) (g) (h) (i)
0 30 100 300 103 3 · 103 104 105 106 ∞

For example, if a team member’s situation were “ca. 2,500 lines in a ca. 500,000 lines
framework”, then he or she would report (e) : [103, 3·103) for contribution and (h) : [105, 106)
for whole project (as part of complete sentences, of course).

1Choose the one of the three that you consider most appropriate for this task.

1

http://swt.informatik.uni-freiburg.de/teaching/SS2021/swtvl

Exercise 2 – Cyclomatic Complexity (5/10 Points)

Consider the cyclomatic complexity or McCabe metric.

(i) Construct the control flow graph (CFG) for the method quickSort() of the class MyQuickSort
in the file accompanying this exercise sheet and calculate the value of its cyclomatic com-
plexity as shown in the example of Fig. 1. (4)

(ii) In the example, we introduced additional auxiliary nodes to the control flow graph that
serve as junction points for control paths; see, e.g., the circular node below node number 5.
Another possibility of constructing the CFG would be to directly connect the nodes repre-
senting program locations. In our example, there would be a direct edge from node 5 to
node 6 and from node 8 to node 6.

Does this choice of CFG construction alter the value of the cyclomatic complexity metric?
Justify your answer. (1)

Program:

1 void i n s e r t i o n S o r t (int [] array) {
2 for (int i = 2 ; i < array . l ength ; i++) {
3 tmp = array [i] ;
4 array [0] = tmp ;
5 int j = i ;
6 while (j > 0 && tmp < array [j −1]) {
7 array [j] = array [j −1] ;
8 j−−;
9 }

10 array [j] = tmp ;
11 }
12 }

The cyclomatic complexity is defined for graph G cor-
responding to the program as

v(G) = e− n+ p.

Number of edges: e = 11
Number of nodes: n = 6 + 2 + 2 = 10 (nodes are
marked with the corresponding line numbers)
External connections: p = 2

v(G) = 11− 10 + 2 = 3

Corresponding graph G

1

2

3

4

5

8

7

6

10

Entry

Exit

Figure 1: Example of the calculation of cyclomatic complexity

2

