~14-2019-07-01- main—

Softwaretechnik / Software-Engineering

2
Lecture 14: Behavioural Software Modelling

2019-07-01

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Architecture & Design: Content

14-2019-07-01 - Sblockcontent

VL10 e Introduction and Vocabulary
o Software Modelling

(e model; views / viewpoints; 4+1 view
o Modelling structure>
VL 11 }:(0 (simplified) Class & Object diagrams
: (e (simplified) Object Constraint Logic (OCL)

> : . - Vocabulary
VL12 Modelllggéehawour)

(e Communicating Finite Automata (CFA) Techniques
(e Uppaal query language informal
VL13 | (e CFAvs.Software
(e Unified Modelling Language (UML)
(® basic state-machines semi-formal
(® an outlook on hierarchical state-machines
@/@/ 7 CE‘f

e Principles of Design
(e modularity, separation of concerns

ormal

VL 14

(e information hiding and data encapsulation
(e abstract data types, object orientation

o Design Patterns

e Model-driven/-based Software Engineering

2/43

~14-2019-07-01 - Scontent —

Content

e Communicating Finite Automata (CFA)

e concrete and abstract syntax,
o networks of CFA,
o operational semantics.

¢ Transition Sequences
o Deadlock, Reachability
e Uppaal

o tool demo (simulator),
o query language,
o CFA model-checking.

o CFA at Work

e drive to configuration, scenarios, invariants
o tool demo (verifier).

e Uppaal Architecture

Software Modelling

—14-2019-07-01 - main—

o, "(‘7_ 0(3

o> 3350y
\
(

> o
or Nee i

Analyst

3143

4143

- 14-2019-07-01 - main

~14-2019-07-01 - Scfa~

ChoicePanel: xl

(simplified)

[,ocwhw/——? idle SOFT? 5"“—/5%'”‘6" request_sent
Tl soft_enabled N\ 7{)
weeS o -
. e g Ak

Communicating Finite Automata

presentation follows (Olderog and Dierks, 2008)

Example

tea_enabled
X/ tea_selected

OK! 4\

1t bled := false,
Quecirdes Soft Gnabled = false, halt_idle e
/7 tea_enabled := false (Z’)
wlle/
wgdake wchoy O‘“"&W‘L action

L
==
=3
=3
=
s
=
pury
o

5/43

6/43

Channel Names and Actions

14-2019-07-01- Scfa

To define communicating finite automata, we need the following sets of symbols:

Aset (a, b €) Chan of channel names or channels.

For each channel a € Chan, two visible actions:
a? and a! denote input and output on the channel (a7, a! ¢ Chan).

7 ¢ Chan represents an internal action, not visible from outside.

(e, B €) Act :={a?| a € Chan} U {a! | a € Chan} U {7} is the set of actions.

An alphabet B is a set of channels, i.e. B C Chan.
For each alphabet B, we define the corresponding action set

By :={a?|a€ B}U{a!|a € B}U{r}.
Note: Chan;, = Act.

7143

Integer Variables and Expressions, Resets

14-2019-07-01- Scfa

Let (v, w €) V be a set of ((finite domain) integer) variables.
By (¢ €) ¥ (V') we denote the set of integer expressions over V' using function symbols 4, —, ... and
relation symbols <, <,
A modification on v € V' is of the form
vi= @, veV, pe¥V).
By R(V') we denote the set of all modifications.

By 7 we denote a finite list (r1, ..., r,), n € Ng, of modifications r; € R(V).
7 is called reset vector (or update vector).

() is the empty list (n = 0).

By R(V')* we denote the set of all such finite lists of modifications.

843

Communicating Finite Automata

- 14-2019-07-01 - Scfa—

~14-2019-07-01 - Scfa~

Definition. A communicating finite automaton is a structure
A= (L,B,V,E,lini)

where

(¢€)Lisa Met of locations (or control states),

e B C Chan,

e V:asetof data variables,

e EC L\>f -B!7_><_ <_I>\(E/2 \>< R{(V)tfi L: afinite set of directed edges such that

(\E,Ha,g\o,f',él)— € EAchan(a) €U = ¢ = true.

Edges (¢, a, ¢, 7, £') from location £ to ¢’ are labelled with an action
a guard ¢, and a list 77 of modifications.

Lini € L is the initial location.

943

Example
| Abstract syntax: A= (L,B,V,E {in;) |
.Al : A
10 11 12 2

x==0 M Al mO ml
@ X:= 27 © A ()
Al

) ={ 0, 11,25

%= Mgi

(b, T =m0 =2, 1)
(o1, AL tue (7, &J/

= /

v —ix
/L‘(M'=CO
e =3

10143

Operational Semantics of Networks of CFA

14-2019-07-01- Scfa

Definition.
Let A; = (L;, By, Vi, Ei, lini,i), 1 < i < n, be communicating finite automata.

The operational semantics of the network of CFAC(A1, ..., An)
is the labelled transition system

T(C(AL, An)) = (Gonf, Chan U fr}, (5] A € Chan {r}}, O
where
e V=ULVi
o Conf = {(&,v) | £; € Li,v:V — 2(V)},

—

o Cini = (Cini, Vini) With v, (v) = 0forallv € V.

The transition relation consists of transitions of the following two types.

Helpers: Extended Valuations and Effect of Resets

14-2019-07-01 - Scfa

o v:V — 2(V)isavaluation of the variables,

A valuation v of the variables canonically assigns an integer value ()
to each integer expression ¢ € ®(V).

= C (V= 2(V)) x ®(V) is the canonical satisfaction relation
between valuations and integer expressions from ® (V).

Effect of modification r € R(V) on v, denoted by v[r]:

v(a), otherwise

iz = [t

Wesetv[(ry,...,mn)] == vlri]...[ra] = (V[r1])[r2]) - .)[rn]. .

That is, modifications are executed sequentially from left to right.

1143

1243

Operational Semantics of Networks of CFA

—

o Aninternal transition (Z,) = (#/,1/) occurs if thereisi € {1,...,n}and

o thereisaT-edge (¢;, 7, ¢, 7, ¢;) € E; such that

o v= o, “source valuation satisfies guard”
o 0 = _Tli = Z;] “automaton 7 changes location”
o v =v[F, “v" is the result of applying 7 on v"

- 14-2019-07-01 - Scfa—

Operational Semantics of Networks of CFA

T —,

o An jnaternal transition (Z@ — (¥,

ccurs if thereis¢ € {1,...,n} and
M“

o Asynchronisation transition (¢, v/) LN (¢, V') oceurs if thereare 4, € {1,...,n} withi # jand
[l ~I

e

o there are edges (¢;, b!, g/oi,F:,ZZ) _edE’Z and 4, b?,ﬁj, 'F'j,ég-) € E;j such that

_ e

/) — . s "
° v f_l A f-k P ~ /)@ce valuation satisfies guards (!)
“automaton 7 and j change location”

“v" is the result of applying first 7; and then 7; on v"

This style of communication is known under the names “rendezvous’, “synchronous’,
communication (and possibly many others).

~14-2019-07-01 - Scfa~

13/43

13/43

- 14-2019-07-01 - Scfa—

S A2 Az
X 0 M\ Al mo e ml mo ml
@/ =27 H A? || A?
Al —_— —

< (o, lMO/VMO)/ X= 0>
| *
1%
(e, o, w0), x=2F7
[A
\V4

(@2, wl,w0> | =23

14/43

Transition Sequences

~14-2019-07-01 - Scfa~

o Atransition sequence of C(Ay, ..., Ay) is any (in)finite sequence of the form
. (o, vo) 25 (B, 1) 225 (3, v2) 225 ..
with
o (Lo,v0) = Cini,

o foralli € IN, there is ~H5 in T(C(AL, .. ., An)) with (7, v4) 2 (B 1, vit1).

15/43

Reachability

14-2019-07-01- Scfa

14-2019-07-01- Scfa

o A configuratio @ s called reachable (in C(Ay, ..., .A;,)) from (€0, vo)
if and only if thereis a transition sequense of the form

(Bo, v0) 255 (F1,11) 225 (o, v2) 22 .. 20 (B 1) =

b A configuration (Z, v/ is called reachable (without “froml)
if and only if it is reachable from C'y,;.
A

o Alocation ¢ € Lj is called reachable if and only if any configuration (7, /) with ¢; = £is reachable, i.e.
there exist £'and v such that £; = £ and (Z, v/} is reachable.

16/43

Deadlock

o A configuration (¢, v) of C(A4, ..., An) is called deadlock
if and only if there are no transitions from (¢, v), i.e. if

~(FXE€ AT, V) € Conf e (L,v) 2 (£ ,V))).
The network C(Az, ..., .Ay) is said to have a deadlock

if and only if there is a reachable configuration (¢,) which is a deadlock.

1743

~14-2019-07-01 - main —

Tool Demo

~14-2019-07-01 - Suppaal -

Uppaal
(Larsen et al., 1997; Behrmann et al., 2004)

18/43

1943

The Uppaal Query Language

~14-2019-07-01 - Suppaal

Consider A" = C(Ayq, ..

basic formula:

., Ay) over data variables V.

atom ::= A;.L | ¢ | deadlock
where ¢ € L; is a location and ¢ an expression over V.

configuration formulae:

term ::= atom | not term | termi and termso
existential path formulae:
e-formula ::= 3O term (exists finally)
| I term (exists globally)
universal path formulae:
a-formula ::= VO term (always finally)
| y\l;l term (always globally)
| termy -> terma (leads to)
formulae (or queries):
F = e-formula | a-formula

2043

Satisfaction of Uppaal Queries by Configurations

~14-2019-07-01 - Suppaal

The satisfaction relation

between configurations

(T EF

vy = (b1, ... €n), V)
of anetwork C(Ay, ..., A,) and formulae F of the Uppaal logic

is defined inductively as follows:

o (0,1) |= deadlock iff
o (L) = Ayl iff
o (Lv) iff
o (7,1) = not term iff
o (f,v) |= term; and termo iff

K> & = decdlleli onf
4,=¢
vEY

v f

P, dnd VI ke,

2143

Example: Computation Paths vs. Computation Tree

~14-2019-07-01 - Suppaal

10 11 12

@ i ;:2(; M Al H mo0 A? ml || mo0 A? ml
Al

((lo,mo0,m0), z=0)
T

<(l1, moO, mO), x =27 >

A A

((2,m1,m0), = =27) ((2,mo, mt), ==27)
I a
((n,mt,m1), «=27) ((u,mtym1), ==27)

2243

Example: Computation Paths omputation Grap

~14-2019-07-01 - Suppaal

(or: Transition Graph)

10 11 12

M\ Al H mO A? ml || mO A? ml
T } O—0O0" 6——0
Al

©
il

A
((lo,m0,mo0), z=0)
T

A ((1,mo,mo0), ==27) ,

((12,m1,m0), ==27) ,

\

((u,mtym1), «=27)

((2,mo,m1), ==27)

A

2343

Satisfaction of Uppaal Queries by Configurations

~14-2019-07-01 - Suppaal

Exists finally:
o (Ty, 10 30 term iff I path ¢ of A startingin (o, vo)
/’LF i€ Ng o % |= term
“some configuration satisfying term is reachable” il oo 748 L “74 s

Example: (¢, o) = 30 ¢

2443

Satisfaction of Uppaal Queries by Configurations

~14-2019-07-01 - Suppaal

Exists globally:

o (fo,v0) =3I term iff I path & of N startingin (Zo, vo)
- VieNge& |=term —

“on some computation path, all configurations satisfy term”

Example: (f, v0) = 30 ¢

2543

Satisfaction of Uppaal Queries by Configurations

~14-2019-07-01 - Suppaal

o Always globally:

° <[0,V0) E VO term iff <€_E), vo) £ 30 —term

“not (some configuration satisfying —term is reachable)”
or: “all reachable configurations satisfy term”

o Always finally:

o (0o, 10) = VO term iff (2o, vo) B~ 30 —~term

“not (on some computation path, all configurations satisfy ~term)”
or: “on all computation paths, there is a configuration satisfying term”

2643

Satisfaction of Uppaal Queries by Configurations

~14-2019-07-01 - Suppaal

Leads to:

o (0, 10) = term1 —> terma iff v path ¢ of AV starting in (€, v0) Vi€ Np e
&' termy = &' | VO termo

“on all paths, from each configuration satisfying term,
a configuration satifying terms is reachable” (response pattern)

Example: (o, o) = p1 — @2

(lo, vo)

2743

CFA Model-Checking

~14-2019-07-01 - Suppaal

~14-2019-07-01 - Scontent —

Definition. Let V' = C(Ay, . ..,.A,) be a network and F a query.
(i) We say satisfies F', denoted by N |= F, if and only if Cyy,; = F.

(i) The model-checking problem for A" and F’
is to decide whether (N, F) € |=.

Proposition.
The model-checking problem for communicating finite automata is decidable.

Content

e Communicating Finite Automata (CFA)

o concrete and abstract syntax,
o networks of CFA,
o operational semantics.

o Transition Sequences
o Deadlock, Reachability
e Uppaal

o tool demo (simulator),
e query language,
o CFA model-checking.
e CFA at Work
e drive to configuration, scenarios, invariants

o tool demo (verifier).

e Uppaal Architecture

- 14-2019-07-01 - main—

CFA and Queries at Work

Model Architecture — Who Talks What to Whom

~14-2019-07-01 - Scfaatwork -

1 C50,E1 1 1 1
1 CoinValidator 1 i 1
1 AT 1
1 o 0 1 1
Ao-—-— 1 1
e~ _ - = 1 1
1 ™~ Dpok 1 1 1
1 = ChoicePanel SYSTEM 1 ENVIRONMENT 1
L] I I I
1 DWATER DTEA Iy
1 DSOFT 1 1
I 1
1 [[\ Iy 1
1 I
1 ‘ WaterDispenser SoftDispenser ‘ TeaDispenser 1y Service 1
1
I T i i 1 |
1 T
FILLUP 1 1
1
O N N N N NN NN O W NN N S WS NN O S S O O . . Lo N N

o Shared variables:

® bool water_enabled, soft_enabled, tea_enabled;

e int w=3, s=3,t=3;

o Note: Our model does not use scopes (“information hiding”) for channels.
That is, ‘Service’ could send ‘WATER'’ if the modeler wanted to.

3043

3143

Design Sanity Check: Drive to Configuration

OLDENBURG

==
=
=
—
=
]
=
=
=
=3

e Question: Is is (at all) possible to have no water in the vending machine model?
(Otherwise, the design is definitely broken.)

B

o Approach: Check whether a configuration satisfying
w=0

is reachable, i.e. check whether

Ny ': Q0w = 0.

for the vending machine model Ny

5
5
2
]
=

323

Design Check: Scenarios

=
=
=
=
=
_
=
=
—
=
=

1 OLDENBURG

e Question: Is the following existential LSC satisfied by the model?
(Otherwise, the design is definitely broken.)

ISC: buytea
AC tue
AM:__initial_I:__permissive

User ‘ ‘ Coin Validator ‘ ‘ Choice Panel ‘\

50

o Approach: Use the following newly created CFA ‘Scenaric

C50! C50! C50! TEA!
© O O O O

end_of_scenario

instead of User and check whether location end_of _scenario is reachable, i.e. check whether

UM | 30 Scenario.end_of _scenario.

for the modified vending machine model VY.

4
1)
S
S
1)

3343

Design Verification: Invariants

14 -2019-07-01 - Scfaatwork

= P
==
= =
=
E17 have_et 507 e =
) > = =
=] —
soft_enabled := (s > 0) \J\ water_enabled := (w >\Q), =
tea_enabled = (t > 0)
idle
have_c50
507 _ 507 507
O C50 ~ C50 ~ C50
water_enabled == (w>0) soft_enabled = (s50) &/ | tea enabled = (1> 0)
have_c100 ha 150
E1?
tea_enabled = (1> 0)
oKz OK? OK? OK?
T
drink_ready

o Question: Is it the case that the “tea” button is only enabled if there is € 1.50 in the machine?
(Otherwise, the design is broken.)

o Approach: Check whether the implication
tea_enabled — CoinValidator.have_c150
holds in all reachable configurations, i.e. check whether
Nym = VO (tea_enabled imply CoinValidator.have_c150)

for the vending machine model Ny

3443

Design Verification: Sanity Check

14-2019-07-01 - Scfaatwork

= =
= E3
= =
=
= =
=] =
£12 have_e1 ©50? = —
A\ > I o
soft_enabled := (s > 0) \J\ water_enabled := (w >\Q),
tea_enabled = (t > 0)
idle
have_c50 2
? _ ? 507
O C50 ~ C50 ~ C50
water_enabled := (w>0) soft_enabled := (s > 0) A tea_enabled := (t > 0)
have_c100 ha 150
E1?
tea_enabled = (1> 0)
Ok, OK? OK? OK?
N
drink_ready

o Question: Is the “tea” button ever enabled?
(Otherwise, the considered invariant

tea_enabled == CoinValidator.have_c150

holds vacuously.)

o Approach: Check whether a configuration satisfying water_enabled = 1 is reachable.

Exactly like we did with w = 0 earlier (i.e. check whether Ny\1 = 30 water_enabled = 1).
—

3543

Design Verification: Another Invariant

= =
==
= =
= =
=
have_et ==
E1? PN C50? ==
soft_enabled := (s > 0) \J\ water_enabled := (w >\Q),
tea_enabled = (t > 0)
idle
have_c50 2
2 _(? ?
O C50 ~ C50 ~ C50
water_enabled := (w>0) soft_enabled := (s > 0) A tea_enabled := (t > 0)
have_c100 ha 150
E1?
tea_enabled = (> 0)
Ok, OK? OK? OK?
T
drink_ready

e Question: Is it the case that, if there is money in the machine
and water in stock, that the “water” button is enabled?

o Approach: Check

Nvywm = VO (CoinValidator.have _c50 or CoinValidator.have_c100 or CoinValidator.have_c150)

imply water_enabled.

14 -2019-07-01 - Scfaatwork

36/43

Recall: Universal LSC Example —

OLDENBURS
HEE =

LSC: buy water
Al true

C:
AM: invariant |1 strict ‘
, - o \
// ‘ User ‘ ‘ CoinValidator ‘ ‘ ChoicePanel ‘ ‘ Dispenser ‘ \\
/ T T T \
/ Z 560 I I I \
/ v ‘ | !
/\ ; | ! —(C50!'v E1!V pSOFT!
\ PWATER ! | V pTEAIN pFILLUPY)
\ 7 |
1 i
\ T
\ water_in_stock | //
\\ | /
7 d
7 WATER
7 ! —(dSoft! v dTEA!)
7 0 PN
7 | !
7 i !
|
5 I I

4
1)
S
[
1)
i

3743

What Can We Conclude From Verification Results?

14 -2019-07-01 - Scfaatwork

ntent

14-2019-07-01 - Scor

e Assume that query @ correponds to a requirement on the system under development,
and N is our design-idea model.

o Assume that the verification tool states N = Q. What can we conclude from that?

Content

tool result
NEQ NEQ
true positive

3
- sat.Q
c
.20
w
(] .
T true negative
2 does
S

not

sat. @

3843

e Communicating Finite Automata (CFA)

(e concrete and abstract syntax,
(e networks of CFA,
(e operational semantics.

Transition Sequences

Deadlock, Reachability

e Uppaal

(e tool demo (simulator),
(e query language,
(e CFA model-checking.

e CFA at Work

(e drive to configuration, scenarios, invariants
(e tool demo (verifier).

e Uppaal Architecture

3943

- 14-2019-07-01 - main—

Uppaal Architecture

4043

Tell Them What You’ve Told Them. . .

~14-2019-07-01 - Sttwytt -

A network of communicating finite automata
_ s

o describes a labelled transition system,
o can be used to model software behaviour.

The Uppaal Query Language can be used to

o formalize reachability (30 CF,vO CF,...) and
o leadsto (CF; — CF3) properties.

Since the model-checking problem of CFA is decidable,
o there are tools which automatically check
whether a network of CFA satisfies a given query.
[, —
Use model-checking, e.g., to

o obtain a computation path to a certain configuration

(drive-to-configuration),
o check whether a scenario is possible,
o check whether an invariant is satified.

(If not, analyse the design further using the obtained counter-example).
=

4143

- 14-2019-07-01 - main—

References

References

Behrmann, G., David, A., and Larsen, K. G. (2004). A tutorial on uppaal 2004-11-17. Technical report, Aalborg University, Denmark.

Larsen, K. G., Pettersson, P., and Yi, W. (1997). UPPAAL in a nutshell. International Journal on Software Tools for Technology Transfer, 1(1):134-152.
Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

Olderog, E.-R. and Dierks, H. (2008). Real-Time Systems - Formal Specification and Automatic Verification. Cambridge University Press.

~14-2019-07-01- main—

443

4343

