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What Can We Conclude From Verification Results?

« Assume that query @ correponds to a requirement on the system under development

(g, an invariant), and A" is our design-idea model.

= Assume that the verification tool states A |= (2 (negative: no violation (or: error) found).

What can we conclude from that? Talle betn Hadhllioen
w Tl g
MWW.\; p st il i N

tool result

the design idea

— if Ais a valid model of our idea, if the tool works correct, if  if .
and if the system implements this design idea, and if environment assumptions hold,

then the system will not fail due to an analysable design flaw.

Composite (or Hierarchical) States

@mm. ND-stateg Harel (1987).
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UML State Machines

And That Would be Too Ea.

wailable, which edges bled? What are the possible

(The full story: “Software Design, Modelling, and Analysis with UML" (in some winter semesters))




UML Core State Machines
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Figure A5 - The taxonom of structure and behavior diagram
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A Brief History of UML

‘software crsis term
‘software engineering’

visualise software with boxes,
- circles, arrows, automata, etc.

g stoneage

Object-Oriented

Analysis/Design/ Programming.

Object-Model
(oM

g Technique
o

UML 2.x (splitinto infra- and
superstructure documents; and

Content

‘The UML standard is published by the Object
Management Group (OMG)

computerindustry consortium”

18150

o CFAvs. Software

UML State Machines

{-(e Hierarchical State Machines

[~ Core State Machines

(e steps and run-to-completion steps
L(e Rhapsody

Modelling Language
History

{-o Sub-Languages
* UML Modes

 Model-based/-driven Software Engineering

Principles of (Good) Design

« modularity, separation of concerns
information hiding and data encapsulation

« abstract data types, object orientation
...by example

210

“UML Mode” nttp://martinfouler. con/bliki]

“[..] people differ about what should be in the UML - because there are
differing fundamental views about what the UML should be.

Icame up with three primary classifications for thinking about the UML:

t, and

came up with ifications,

the UML different to yours,
it may be because they use a different UmIMode to you.”

« Aplies to UML as such (as a language),
« and to each individual UML model.

Model-based/-driven Software Engineering

1950
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Model-Driven Software Engineering

* (jacobson et al., 1992): “System development is model building”

. 3?@

/are engineering (MBSE)(some formal) models are used.
: all artefacts are (formal) models.
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Tell Them What You've Told Them. .

4

+ We can use tools like Uppaal to
o check and verify CFA design models against .B:iam:m\
« CFA (and state machines)
ily be implemented using a translation scheme.

« UML State Machines are

« principally the same thing as CFA,
yet provide more convenient syntax.
o Semantics:

« asynchronous communication,
 run-to-completion steps

(CFA: synchronous (or: rendezvous) ,\
+ Mind UML Modes,””
« Wanted: verification results carry over to the implementation.

« if code is not generated automatically,
Verify code against model, = VL 15~

« Vocabulary: Model-based/-driven Software Engineering
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Formal Methods in the Software Development Process

=
—o validate
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Approach: Transform vs. Write-Down-and-Check
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Goals and Relevance of Design

+ The structure of something s the set of relations between its parts

. built from partsis called

Design...
(i) structures a system into manageable units (yields software architecture),

i) determines the approach for realising the required software,

) provides hierarchical structuring into a manageable number of units
ateach hierarchy level.

Oversimplified process model “Design':

design implementation

Overview

Modularisation

« split software into units / components of manageable size

~

Separation of Concerns

« each component should be responsible for a particular area of tasks

« group data and operation on that data; functional aspects;
functional vs. technical; functionality and intera

w

Information Hiding
« the "need to know pri

« users (e.g. other developers) need not necessarily know the algorithm
and helper data which realise the components interface
4.) Data Encapsulation
« offer operations to access component data,
instead of accessing data (variables, files, etc) directly

~» many programming languages and systems offer means
to enforce (some of) these principles technically; use these means.

Content
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1.) Modularisation

modular decomposition — The process of breaking a system into components to fa-
clitate design and development; an element of modular programming,

IEEE 610,12 (1990)

modularity — The degree to which a system or computer program is composed of dis-
a h thata change minimalimpact on other
‘components. IEEE 610.12 (1990)

So, modularity is a property of an architecture.

Goals of modular decomposition:

. h y

The other hould not b

« Modules should be designed such that expected changes
do not require modifications of the module interface.

« Bigger changes should be the result of a set of minor changes.
Aslong as the interface does not change,
it should be possible to test old and new versions of a module together.

Principles of (Architectural) Design

2.) Separation of Concerns

. of concernsisa

principle

software engineering:

« each component should be responsible for a particular area of tasks,

= components which try to cover different task areas tend to be unnecessarily complex, thus hard to

understand and maintain.

« Criteria for separation/grouping:

« inobject oriented design, dataand
operations on that data are grouped into

assign flexible or variable functionality to

classes,
« sometimes, functional aspects (features)
ke printing are realised as separate
components,

« separate functional and technical
components,
Example: logical flow of (logical) messagesina
communication protocol (functional) vs.
exchange of (physical) messages using a certain
technology (technical).

own
Example: different networking technology
(wireless, etc)

assign functionality which is expected to
need extensions or changes later to own
components.

separate system functionality and
interaction

Example: most prominently graphical user
interfaces (GUI) also file input/output

32s0



3.) Information Hiding

« By now, we only discussed the grouping of data and operations.
One should also consider accessibility.
« The “need to know principle" s called information hiding in SW engineering. (Parnas, 1972)

A 9 terf: 1

information about the module thatis not in the module’s interface specification.
IEEE 610.12 (1990)

« Note: what s hidden is information which other components need not know
(eg. d,

In other words: information hiding is about making explicit for one component

o Advantages / goals:

« Hidd ts noti

1OW: other d s they are not supposed to.
« Components can be verified / validated in iolation.
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4.) Data Encapsulation

« Similar direction: data encapsulation (examples later).

« Do not access data (variables, files, etc.) directly where needed, but encapsulate the data
ccomponent which offers operations to access (read, write, etc.) the data.

Real-World Exampl directly, only

370
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“Tell Them What You've Told Them”

information hiding and data encapsulation not enforced,

— negative effects when requirements change,

enforcing i ion hiding and data er ion by modules,
abstract data types,
object oriented without ir ion hiding and data

object oriented with information hiding and data encapsulation.



