Softwaretechnik / Software-Engineering

Lecture 13: UML State-Machines, UML,
MBSE/MDSE, Design Principles

2019-07-04

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Uppaal Architecture

Topic Area Architecture & Design: Content

VL10| « Introduction and Vocabulary
o Software Modelling
L« model views /viewpoints; 4+1 view
* Modelling structure
s W (simplified) Class & Object diagrams
. o (simplified) Object Constraint Logic (OCL)

' Vocabul
VL12 Modelling behaviour Iy
Communicating Finite Automata (CFA) Techniques
8 Uppaal query language
vL13 informal

 Unified Modelling Language (UML)
W. basic state-machines semi-formal
(o an outlook on hierarchical state-machines ﬁ

CFA vs. Software ﬁ

* Model-driven/-based Software Engineering

__° Model-driven/~based Software Engineering formal
Principles of Design
modularity, separation of concerns
VL4
* o Design Patterns

information hiding and data encapsulation
abstract data types, object orientation

Uppaal Architecture

Java

verityta u

yes o dontkno

Content

» CFAvs. Software

UML State Machines

« Hierarchical State Machines

« Core State Machines

« steps and run-to-completion steps
Lo Rhapsody

Unified Modelling Language

(o Brief History
o Sub-Languages
Le UML Modes

« Model-based/-driven Software Engineering

Principles of (Good) Design

« modularity, separation of concerns
information hiding and data encapsulation
« abstract data types, object orientation

o ...by example

CFA at Work Cont’d

What Can We Conclude From Verification Results?

« Assume that query @ correponds to a requirement on the system under development

(g, an invariant), and A" is our design-idea model.

= Assume that the verification tool states A |= (2 (negative: no violation (or: error) found).

What can we conclude from that? Talle betn Hadhllioen
w Tl g
MWW.\; p st il i N

tool result

the design idea

— if Ais a valid model of our idea, if the tool works correct, if if .
and if the system implements this design idea, and if environment assumptions hold,

then the system will not fail due to an analysable design flaw.

Composite (or Hierarchical) States

@mm. ND-stateg Harel (1987).

1050

Content

Example

o CFAvs. mo?iw-w\

UML State Machines

e Hierarchical State Machines

[~ Core State Machines

{<e steps and run-to-completion steps
L<e Rhapsody
Unified Mod
e Brief History
[~ Sub-Languages
Lie UML Modes

g Language

« Model-based/-driven Software Engineering

Principles of (Good) Design

e modularity, separation of concerns

e information hiding and data encapsulation
[-(o abstract data types, object orientation

Lo ...by example

80

UML State Machines

And That Would be Too Ea.

wailable, which edges bled? What are the possible

(The full story: “Software Design, Modelling, and Analysis with UML" (in some winter semesters))

UML Core State Machines

G

annot = [(event)[. (event)]* [[(guard) 1]

G

[/ {action)]]
trigger
with
o event € £, (optional)
o guard € Bupr o (default: true, assumed to bein Eapr ;)
o action € Acty

(default: skip, assumed to bein Act 5)

Event Pool and Run-To-Completion

Fle>

Jr=0

D
27

z=
state: {s1

stable

uy uz

step || state | stable state | stable || eventpool

0 51 T st T T ready for u
T 52 T 51 T T ready for uy
7 52 T s2 o

Event Pool and Run-To-Completion

E/itsD!F

Flz > 0]
G

JitsC

A .

stable

u
state | stable
st |1

step event pool
Teady for ug

50

Event Pool and Run-To-Completion

Flz > 0]

Je:=0

D yp:D

z=27

sates oo} L i€ e oy,
stable : Bool i e

stable.

u us

step || state | stable || = | state | stable || eventpool

0 st T 7 s T T ready foru;
T 52 T 7] s T Tready for uz
7 52 T 7| s o

3 52 T 7 s 0 || Greadyforus

Event Pool and Run-To-Completion

@ i) Fle> 0]

JitsC

Joi=
=
x=27
sae) o | 0T
stable : Bool
stable : Boo
w uz
step || state | stable || = | state stable || eventpool
[ST 7 s T T ready for ug
T s2 | 1 7 s 1 Fready for uz

50

Event Pool and Run-To-Completion

. oD
w:C wsp “
—P o
e (o e
JRLTEC20 (P
sable
suable :

w us

step || state | stable || x | state stable || eventpool

o) st T 27 | s T T ready for up
T 52 T 27| s T Fready for uy
2 52 T 27 s o

3 s T 27 s 0 || Greadyforus
aa 5 T [— T Gready foruy

Event Pool and Run-To-Completion

e
1:C
state : {s1, 52}
sable
w uz
step || state stable | = | state | stable | eventpool
[17 (o[s | 1 | Breadyforus
E) T 7| s T Fready for uz
& 1 o] w | 0
= T 7 s 0 ready for u;
E) T 0 [= T G ready for u;
s T T (ol s [1
145
Rhapsody Architecture
generate run
L] build / make N
—_— frwmew)
(compiler)
150sc

Event Pool and Run-To-Completion

2/itsD! F Flz >0
a
=0 JitsC
) uz

step || state | stable | = | state | stable || eventpool

0 51 T 7 5 T T ready for i

T 5 T 7 s T TFready for uz

2 52 1 27| s [0

3 52 T 7] s 0 7 ready foru

Za 5 T 0] = { G ready for u,

5a 51 T 0 s T

b 51 T 7 0

Unified Modelling Language (UML)

1650

Event Pool and Run-To-Completion

w uz
step | state | stable || = state | stable || eventpool
o B T 7 = T || Preadyform
T 52 T 7 s T Fready for uz
2 s 1 7w | o
3 52 T 7 s 0 Gready foru;
22 T 0 s T G ready for u;
5a T 0 s T
7b T 7 s | ©
5b 1 0 s1 1

UML Overview (omc, 2007, 684)

Figure A5 - The taxonom of structure and behavior diagram

JitsC

140

A Brief History of UML

‘software crsis term
‘software engineering’

visualise software with boxes,
- circles, arrows, automata, etc.

g stoneage

Object-Oriented

Analysis/Design/ Programming.

Object-Model
(oM

g Technique
o

UML 2.x (splitinto infra- and
superstructure documents; and

Content

‘The UML standard is published by the Object
Management Group (OMG)

computerindustry consortium”

18150

o CFAvs. Software

UML State Machines

{-(e Hierarchical State Machines

[~ Core State Machines

(e steps and run-to-completion steps
L(e Rhapsody

Modelling Language
History

{-o Sub-Languages
* UML Modes

 Model-based/-driven Software Engineering

Principles of (Good) Design

« modularity, separation of concerns
information hiding and data encapsulation

« abstract data types, object orientation
...by example

210

“UML Mode” nttp://martinfouler. con/bliki]

“[..] people differ about what should be in the UML - because there are
differing fundamental views about what the UML should be.

Icame up with three primary classifications for thinking about the UML:

t, and

came up with ifications,

the UML different to yours,
it may be because they use a different UmIMode to you.”

« Aplies to UML as such (as a language),
« and to each individual UML model.

Model-based/-driven Software Engineering

1950

2250

UML-Mode of the Lecture: As Blueprint

Sketch Blueprint Programminglanguage

. cnogh,and
seen 1 e

s
o
i
7
feepgto
i Theguson z
suchas mine, are setches. Tohandie the detas required forthe | promise s e
Tt erphest s on secive iohond
communication rather than complete 1 dont believe that graphical program-
speciication Forward engineering tools support dia- | o it ueceed just because s graphi-
Hence my souncbie omprehensie | gamdowingandbacktopuiharepos: | 11
;

Software Modelling

o, s
Ao S0y

T
m_M //m.m

Model-Driven Software Engineering

* (jacobson et al., 1992): “System development is model building”

. 3?@

/are engineering (MBSE)(some formal) models are used.
: all artefacts are (formal) models.

2450

Tell Them What You've Told Them. .

4

+ We can use tools like Uppaal to
o check and verify CFA design models against .B:iam:m\
« CFA (and state machines)
ily be implemented using a translation scheme.

« UML State Machines are

« principally the same thing as CFA,
yet provide more convenient syntax.
o Semantics:

« asynchronous communication,
 run-to-completion steps

(CFA: synchronous (or: rendezvous) ,\
+ Mind UML Modes,””
« Wanted: verification results carry over to the implementation.

« if code is not generated automatically,
Verify code against model, = VL 15~

« Vocabulary: Model-based/-driven Software Engineering

2750

Formal Methods in the Software Development Process

=
—o validate

Topic Area Architecture & Design: Content

« Introduction and Vocabulary
* Software Modelling
Lo Godet: views) viewpoints: 4+ view
* Modelling structure
ﬁ plified) Class & Object diagrams
« (simplified) Object Constraint Logic (OCL)
* Modelling behaviour
» Communicating Finite Automata (CFA)
+ Uppaal query language
» CFA vs. Software
d Modelling Language (UML)
© basic state-machines
 an outlook on hierarchical state-machines
» Model-driven/-based Software Engineering

 Principles of Design
W. ‘modularity, separation of concerns

« information hiding and data encapsulation
« abstract data types, objectorientation

« Design Patterns

2550

280

Approach: Transform vs. Write-Down-and-Check

Software Modelling
o, |y e
e oy
mm //mm —
P

Once Again, Please

Interface
System —————————— Component Component Interface
Software System Software Component
| moveea
Module

e g hose s v oo amorg b [. 150

Software Architecture

%

26150

2950

Goals and Relevance of Design

+ The structure of something s the set of relations between its parts

. built from partsis called

Design...
(i) structures a system into manageable units (yields software architecture),

i) determines the approach for realising the required software,

) provides hierarchical structuring into a manageable number of units
ateach hierarchy level.

Oversimplified process model “Design':

design implementation

Overview

Modularisation

« split software into units / components of manageable size

~

Separation of Concerns

« each component should be responsible for a particular area of tasks

« group data and operation on that data; functional aspects;
functional vs. technical; functionality and intera

w

Information Hiding
« the "need to know pri

« users (e.g. other developers) need not necessarily know the algorithm
and helper data which realise the components interface
4.) Data Encapsulation
« offer operations to access component data,
instead of accessing data (variables, files, etc) directly

~» many programming languages and systems offer means
to enforce (some of) these principles technically; use these means.

Content

« CFA vs. Software

UML State Machines

{o Hierarchical State Machines

e Core State Machines

{<e steps and run-to-completion steps
Lte Rhapsody

Unified Modelling Language

{<e Brief History

Ie Sub-Languages

Le UML Modes

« Model-based/-driven Software Engineering

Principles of (Good) Design

e modularity, separation of concerns

e information hiding and data encapsulation
[-(o abstract data types, object orientation

Lo ...by example

1.) Modularisation

modular decomposition — The process of breaking a system into components to fa-
clitate design and development; an element of modular programming,

IEEE 610,12 (1990)

modularity — The degree to which a system or computer program is composed of dis-
a h thata change minimalimpact on other
‘components. IEEE 610.12 (1990)

So, modularity is a property of an architecture.

Goals of modular decomposition:

. h y

The other hould not b

« Modules should be designed such that expected changes
do not require modifications of the module interface.

« Bigger changes should be the result of a set of minor changes.
Aslong as the interface does not change,
it should be possible to test old and new versions of a module together.

Principles of (Architectural) Design

2.) Separation of Concerns

. of concernsisa

principle

software engineering:

« each component should be responsible for a particular area of tasks,

= components which try to cover different task areas tend to be unnecessarily complex, thus hard to

understand and maintain.

« Criteria for separation/grouping:

« inobject oriented design, dataand
operations on that data are grouped into

assign flexible or variable functionality to

classes,
« sometimes, functional aspects (features)
ke printing are realised as separate
components,

« separate functional and technical
components,
Example: logical flow of (logical) messagesina
communication protocol (functional) vs.
exchange of (physical) messages using a certain
technology (technical).

own
Example: different networking technology
(wireless, etc)

assign functionality which is expected to
need extensions or changes later to own
components.

separate system functionality and
interaction

Example: most prominently graphical user
interfaces (GUI) also file input/output

32s0

3.) Information Hiding

« By now, we only discussed the grouping of data and operations.
One should also consider accessibility.
« The “need to know principle" s called information hiding in SW engineering. (Parnas, 1972)

A 9 terf: 1

information about the module thatis not in the module’s interface specification.
IEEE 610.12 (1990)

« Note: what s hidden is information which other components need not know
(eg. d,

In other words: information hiding is about making explicit for one component

o Advantages / goals:

« Hidd ts noti

1OW: other d s they are not supposed to.
« Components can be verified / validated in iolation.

36150

References

4.) Data Encapsulation

« Similar direction: data encapsulation (examples later).

« Do not access data (variables, files, etc.) directly where needed, but encapsulate the data
ccomponent which offers operations to access (read, write, etc.) the data.

Real-World Exampl directly, only

370

References

Booch, G. (1993). Object-oriented Analysis and Design with Applications. Prentice-Hall.

is used. Communications of the ACM, 49(5):109-114.

Dobing, B.and Parsons, J. (2006). How UM|

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8(3):231-274.

Harel, D., Lachover, H., et al. (1990). Statemate: A working environment for the development of complex
reactive systems. JEEE Transactions on Software Engineering, 16(4):403-414.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Jacobson, L, Christerson, M., and Jonsson, P. 1992). Object-Oriented Software Engineering - A Use Case Driven
Approach. Addison-Wesley.

Ludewig, J.and Lichter, H. (2013). Software Engineering. dpunkterlag, 3. edition.

Nagl, M. (1990). im GroBen. Spring

OMG (2007). Unified modeling language: Superstructure, version 2.1.2. Technical Report formal/07-11-02.
Parnas, D. L. (1972). On the criteria to be used in decomposing systems into modules. Commun. ACM,
15(12):1053-1058.

Rumbaugh, | Blaha, M., Premerlani, W., Eddy, . and Lorensen, W. (1990). Object-Oriented Modeling and Design.
Prentice H

L

“Tell Them What You've Told Them”

information hiding and data encapsulation not enforced,

— negative effects when requirements change,

enforcing i ion hiding and data er ion by modules,
abstract data types,
object oriented without ir ion hiding and data

object oriented with information hiding and data encapsulation.

