Topic Area Code Quality Assurance: Content Recall: Test Case, Test Execution

 Introduction and Vocabulary

—“ Test case, test suite, test execution.
« Positive and negative outcomes.

Softwaretechnik / Software-Engineering
 Limits of Software Testing
o Glass-Box Testing

Lecture 15: Testing

Lo Statements, branchv, term-coverage.
» Other Approaches
T. Model-based testing,
2019-07-15 « Runtime verification.
o Program Verification
« partial and total correctness,

« Proof System PD.
Prof. Dr. Andreas Podelski, Dr. Bernd Westphal i
* Review

Albert-Ludwigs-Universitat Freiburg, Germany

i 250 :
Point vs. Range Errors Content
+ Some more vocabulary
« For software, (in general, without extra information) « Choosing Test Cases
we can not conclude from some values to others. . :
= Generic requirements on good test cases.
« Software behaviour is (in general) not continous. @ Approaches:
For software, adiacenti d o Statistical testing
° oh.mo _mmm.w _wnm:,::w:._m may yie « Expected outcomes: Test Oracle :-/ R
arbitrarily distant output values. . « Habitat-based Testing Vocabulary
Vocabulary:

o Glass-Box Testing

W. Statement / Branch / term coverage
 Conclusions from coverage measures

« Point error: an isolated input value triggers the error.

© Range error: mul

le ‘neighbourin

inputs trigger the error.

 When To Stop Testing?

» Consider a continuous function, e.g. the one to the right: » Model-Based Testing
For sufficiently small e-environments of an input, o Testing in the Development Process
the outputs differ only by a small amount 4. JIE

« Formal Program Verification

Physical systems are (to a certain extent) continous: F Deterministic Programs

b o Forexample, if a bridge endures a single car of 1000 kg,
1 we strongly expect the bridge to endure cars of 990 kg or 1010 kg, G
o And anything of weight smaller than 1000 kg can be expected to be endured.

Lo Syntax, Semanics, Temninaton, Divergence

Specific Testing Notions

« How are the test cases chosen?

« Considering only the specification (black-box or function test).

« Considering the structure of the test item (glass-box or structure test).

How much effort is put into testing?

execution trial — does the program run atall?

~| .§&Lm1§.;1_1{ jeren’),
systematic test — somebody (not authorl) derives test cases, defines input/soll, documents test
execution.

Experience: In the long run, systematic tests are more economic.

.

Complexity of the test item:

unit test —a single program unit is tested (function, sub-routine, method, class, etc.)
module test —a component s tested,

integration test — the interplay between components is tested.

system test — tests awhole system.

Content

+ Some more vocabulary
» Choosing Test Cases
W » Generic requirements on good test cases
o Approaches:
o Statistical testing
» Expected outcomes: Test Oracle : -/
* Habitat-based
© Glass-Box Testing
—“! Statement / Branch / term coverage
= Condusions rom coverage messures
« When To Stop Testing?
« Model-Based Testing

o Testing in the Development Process
+ Formal Program Verification

L.« Deterministic Programs

L Syntax, Semantic, Temination, Divergence

Specific Testing Notions Cont’d

= Which property is tested?

function test —
functionality as specified by the requirements documents,

installation test —
is it possible to install the sof with the provided ion and tools?

recommissioning test —
is it possible to bring the system back to operation after operation was stopped?

availability test —

does the system run for the required amount of time without issues,

load and stress test —

does the system behave as required under high or highest load? ... under overload?

“Hey, lets y I~ that tatest

resource tests —
response time, minimal hardware (software) requirements, etc.

regression test —
'does the new version of the software behave like the old one
oninputs where no behaviour change s expected?

Choosing Test Cases

Specific Testing Notions Cont’d

« Which roles are involved in testing?

inhouse test —
only developers (meaning: quality assurance roles),

alpha and beta test —
selected (potential) customers,

o acceptance test—

the customer tests whether the system (or parts of it, at milestones) test whether the system is
acceptable.

How to Choose Test Cases?

o Afirst rule-of-thumb:

“Everything, which is required|
whether the requirements haverbeen understood and realised:
(Ludewig and Lichter, 2013)

In other words:

|+ Not having

tematic) test case

« for each (required) feature
o is (grossly?) negligent. ~ (Dt: (grob?) fahrléssig).

« In even other words:
Without at least one test case for each feature, we can hardly speak of software engineering.

: V Good project management: document for each test case which feature(s) it tests.

Tiiss 125

What Else Makes a Test Case a Good Test Case?

Atest case is a good test case if it discovers — with high probability —an unknown error.

Anideal test case (In, Soll) would be
« of low redundancy, i.e. it does not test what other test cases also test.
« error sensitive, i.e. has high probability to detect an error,

(Probability should at least be greater than 0.)

representative, i.e. represent a whole class of inputs,
e., software S passes (In, Soll) if and only S behaves well for all In’ from the class)

The idea of representative:

12345678
. 7

o If (12345678, 27; 12345705) was representative for
(0,27:27), (1,27;28), etc.

« then from a negative execution of test case
(12345678, 27; 12345705)

« we could conclude that (0, 27; 27), etc.
will be negative as well.

o Isit/canwe?

Statistical Testing

What Else Makes a Test Case a Good Test Case?

Thus: The wish for representative test cases is problematic:

« In general, we do not know which inputs lie in an equivalence class wrt. a certain error.

« Yet there is a large body on literature on how to construct representative test cases,
assuming we know the equivalence classes.

Of course: *If* we *know* equivalence classes,

we should exploit that knowledge to optimise the number of test cases.

But it is perfectly reasonable to test representatives
of equivalence classes induced by the specification, e.g.

« valid and invalid inputs (to check whether input validation works at all),
« different classes of inputs considered in the requirements,

ke “C50", “E1" coins in the vending machine — have at least one test case with each.

Recall: one should have at least one test case per feature.

145
One Approach: Statistical Tests
Classical statistical testing is one approach to deal with
« in practice not exhaustively testable huge input space,
o tester bias.
(People tend to choose “good-will” inputs and disregard (tacit?) corner-cases;
recall: the developer is not a good tester.)
Procedure:
« Randomly (!) choose test cases T,, T}, for test suite 7.
« Execute test suite 7.
« Ifan erroris found:
« good, we certainly know there is an error,
« ifno erroris found:
« refuse hypothesis ‘program is not correct” with a certain s
ignifi i test suites)
« Note: Approach needs stochastical assumptions on error distribution and truly random test cases.
1750

Content

+ Some more vocabulary
Choosing Test Cases

 Generic requirements on good test cases

Statistical testing

(o Expected outcomes: Test Oracle : -/

Habitat-based

Glass-Box Testing

T Statement / Branch / term coverage
{o Conclusions from coverage measures

= When To Stop Testing?
« Model-Based Testing

o Testing in the Development Process

Formal Program Verification
7/ * Dete

L

Programs

Syntax, Semantics, Termination, Divergence

155

Statistical Testing: Discussion

(Ludewig and Lichter, 2013) name the following objections against statistical testing:

Statistical testing (in general) may also cover a lot of “untypical user behaviours™
unless (sophisticated) user-models are used

Statistical testing needs a method to compute “soll"-values
for the randomly chosen inputs.
Thatis easy for requirement ‘does not crash, but can be difficult in general.

There is a high risk for not finding point or small-range errors.

I they live in their “natural habitat”, carefully crafted test cases would probably uncover them.

Findings in the literature can at best be called inconclusive.

1859

Getting Soll-Values

Habitat-based Testing

Where Do We Get The “Soll”-Values From: Content

Recall: A test case is a pair (In, Soll) with proper expected (or *soll’) values.

« Inan ideal world, all “soll™values
are defined by the (formal) requirements specification and effectively pre-computable.

o Inthis world,
« the formal requirements specification may only reflectively describe acceptable results without giving
aprocedure to compute the results.
« there may not be a formal requirements specification, e.g.
o “the game objects should be rendered properly’,
 “the compiler must translate the program correctly’,
o “the notification message should appear on a proper screen position’,
© “the data must be available for at least 10 days”
o etc

Then: need another instance to decide whether the observation is acceptable.

» The testing community prefers to call any instance which decides whether results are
acceptable a (test) oracle.
I'd prefer not to call automatic derivation of “soll"-values from a formal speci
3-) (*person or age pr insightful [..]
the future, inspi the gods” say: ipedi

ation an

20559

Choosing Test Cases Habitat-based Content

Some traditional popular belief on software error habitat:
« Software errors (seem to) enjoy
« range boundaries, e.g.
© 0,1,27if software works o

puts from [0, 27],
 -1,28 for error handling,

o 231 — 1,231 on 32-bit architectures,
 boundaries of arrays (first, last element),
 boundaries of loops (first, last iteration),

o etc.

 special cases of the problem (empty list, use-case without actol
« special cases of the programming language semantics,
« complex implementations.

— Good idea: for each test case, note down why it has been chosen.
For example, “demonstrate that corner-case handling is not completely broken’.

2359

+ Some more vocabulary
Choosing Test Cases

 Generic requirements on good test cases

Statistical testing

(o Expected outcomes: Test Oracle : -/
Habitat-based

Glass-Box Testing

T Statement / Branch / term coverage
{o Conclusions from coverage measures

= When To Stop Testing?
« Model-Based Testing

o Testing in the Development Process

Formal Program Verification
7/ * Dete

L

Programs

Syntax, Semantics, Termination, Divergence

2159

« Some more vocabulary

o Choosing Test Cases

« Generic requirements on good test cases
+ Approaches:

Statistical testing

Expected outcomes: Test Oracle : -/
Habitat-based

Glass-Box Testing

T. Statement / Branch / term coverage
(o Conclusions from coverage measures

= When To Stop Testing?
« Model-Based Testing
o Testing

the Development Process

» Formal Program Verification
Lis peterm

L

ic Programs

Syntax, Semantics, Termination, Divergence

Glass-Box Testing: Coverage

2559

Statements and Branches by Example

« In the following, we assume that

« Shasa control flow graph (V,) 5, and statements Stms C V and branches Cnds C E,

« each computation path prefix o, 1+ o, 2 o, ... 2% &, gives information on statements
and control i b

stm: (T x A)* = 2 cnd : (2 x A)* — 20s,

int f(int 7, it y,ine £)

2:{ e nw false
5 i if (ESTI00AHSI0) <
. | 5%

{es}

26559

Statements and Branches by Example

Defintion. 5 @
o pat
* 01 € B, € Ny, called sate for configuration), and
* i € A.i € No,iscalled acton (o ev

R, S ey

« Inthe following, we assume that
« hasacontrol flow graph (V,)5, and statements Stm.s C V and branches Cnds C E,

« each computation path prefix o, 1 o, 2 o, .-+ %I o, gives information on statements
and control flow graph branch edig right
stm : (S x A)" — 25ms, cnd : (S x A)* — 205,

int f{intz, int y, 0t =)

it (@ > 1007y > 10)

mi E=ien Sty = (31,52, 53,54
z=2z/%

18 (@ > 500y > 50)

roturn s

Cndy = {ex, ea,ea,e4}

26
Glass-Box Testing: Coverage
« Coverage is a property of test cases and test suites.
« Execution 7 = 09 ~L+ - .- of test case 7" achieves p % statement coverage if and only if
Ui, stm sl
- st IStms| # 0.
Test case T achieves p % statement coverage f and only ifp = __ min cov.u()
 execuion
« Execution 7 of T achieves p % branch coverage if and only if
Ui, end(o0 - o:
P = covenaln) = s J|Cnds| # 0.
Test case T achieves p % branch coverage if and only if p — in covna(m)
executionof T
o Define: p = 100 for empty program. (More precisely: Stm s = 0 and Cd.s = 0, respectively)
« Statement/branch coverage canonically extends to test suite 7" = {T1,. .., T, }.
For example, given 7, = 03 +-+ ..., 7, = o - -, then T achieves.
_ IUscycn Useng stim(g
P= |Stms]
27

Statements and Branches by Example

« Inthe following, we assume that

« Shasa control flow graph (V. E) s, and statements Stm.s C V' and branches Cnds C E,

« each computation path prefix o, 1+ o, 22, 5, ... 2% o givesinformation on statements
d s
stm: (S x A)* — 257, end : (8 x A)* =2
it flintn inc g, dnt 2)
Sting = {s1,52,53,54}
=1

2615

Coverage Example

int f(int 7, int y, int)

i Af (2> 100 Ay > 10)
s z=2x3

. i {true} f {true} (i

In
Ty it | /S | s | sz | o/t |ia/f | e | e | sa
50L,11,0 | ¢ v v v v

28559

Coverage Example Term Coverage Unreachable Code

int f(int 7, int y,int =)

(+ Consider the statement ecpr int f(int o, int y, int =)
—
. :ev:w:iv:: i (AN(BV(CAD)VE)then...; ¢ £ (v #1)
w zmaxl wif(r e
oe where A, .., E are minimal boolean terms, eg. > 0, butnota \/ b. iy
v EEEE Branch coverage is easy in this case: A =2V 2/0=27)
G Af (x> 500V =50) S ea
o EEEWS) Use Iy suchthat (A = 0,..., E = 0),and Iy such that (A = 0,..., E = 1). s 2=z
e sa: return z;
) o Additional goal: }
check whether there are useless terms, A B C D E b %
o Requi {true} f {true} (no abnormal e Soll = £* U, orte abnormal program termi 51 1 _o0]o[o[1]20
B2 1 0 0 1 0| 0] 50
testuite coverage + Term Coverage (for an expression capr): G 1 o 1]1]ol1]70 « Statement s, i never executed (because s # & <= fale),
Ba 0 O 1 0 1 1 80 thus 100 % statement-/branch-/term-coverage is not achievable.
« Letd: A1, A} - Bbeavaluation of the terms. o Tt e
: beffective, black: otherwise
In % % |i2/% « Term A, is b-effectivein 3 for eapr if and only if « Assume, evaluating n /0 causes (undesired) abnormal program termination.
&Y.z i/t i/f | s sa |iaft | ia/f [er ez sy | sa || stm cnd | term B " s Is statement s; an error in the program....?
o0 v ,\ ” o S To T ol B(A) = band [eapr](8lA: /rue]) # [eapr](B[A; ffase])
E — R ~ IV BV T ST s « Term =/01n iz also looks criical...
* EC ({A1,..., An % &
Y - - - o0 00 T 72 C ({41, Ay} — B) achieves p % term coverage f and only if (n evaluation,tis)
v v v v v 100 100 | 100 be 1{A? |38 € = o Ay isbeeffectivein 8}|
20
285 295 305
Conclusions from Coverage Measures Coverage Measures in Certification Content
« Some more vocabulary
* Assume, test suite 7 tests software S for the following property : + (Seems that) DO-178B, « Choosing Test Cases
« pre-condition: p, post-condition: , “Software Considerations in Airborne Systems and Equipment Certification”, (which deals with the safety)
) ; of software used in certin abome systems) + Generic requirements on good test cases
and S passes (1) 7, and the execution achieves 100 % statement / branch / term coverage.) « Approaches:
requires that certain coverage measures are reached, PP
What does this tell us about 57 Or what can we conclude from coverage measures? in particular something similar to term coverage (MC/DC coverage). Statistical testing
« 100 % statement coverage: (Next to development process requirements, reviews, unit testing, etc.) Expected outcomes: Test Oracle : -/
. . Habitat-based
 “there is no statement, which necessarily violates X)
(Stil there may be many, many computation paths which violate . * Ifnot required, ask: whatsthe effort/ gainratio? Glass-Box Testing
and which just have not been touched by T°) 2 high effort) T. Statement / Branch / term coverage
« “there is no unreachable statement” (e Conclusions from coverage measures
+ Currently, the standard moves towards accepting certain verification or -
« 100 % branch (term) coverage: static analysis tools to support (or even replace?) some testing obligations. © When To Stop Testing?

. hich it -

« Model-Based Testing
In other words: “for

satisfying > where the condition (term) evaluates to true, and one for false” o Testing
« “there s no unused condifion (term)

the Development Process

« Formal Program Verification
Not more (— exercises)!

L.c Determ
Thats definitely something, but not as much as “100 %" may sound like... L

ic Programs

Syntax, Semantics, Termination, Divergence

329

Content

When To Stop Testing?

« Some more vocabulary
+ Choosing Test Cases

Generic requirements on good test cases
Approaches:
o Statistical testing

» Expected outcomes: Test Oracle : -/
* Habitat-based
* Glass-Box Testing

W. Statement / Branch / term coverage
© Conclusions from coverage measures

« When To Stop Testing?
« Model-Based Testing
* Tes

g in the Development Process

Formal Program Verification

Deterministic Programs

© Syntax, Semantics, Termination, Divergence

When To Stop Testing?

o There need to be defined criteria for when to stop testing;
project planning should consider these criteria (and previous experience).

 Possible “testing completed” criteria:

« all (previously) specified test cases
have been executed with negative result,

(Special case: All test cases resulting from a certain strategy,
like maximal statement coverage have been executed.)

testing effort time sums up to = (hours, days, weeks),

),

+ testing effort sums up to y (any other useful u

« n errors have been discovered,

= no error has been discovered during
the last = hours (days, weeks) of testing,

Values for z, 4, n, = are fixed based on experience, estimation, budget, etc.

» Of course: not all criteria are equally reasonable or compatible with each testing approach.

3559

Model-Based Testing

3859

Another Criterion

« Another possible “testing completed” criterion:

« The average cost per error discovery exceeds a defined threshold c.

#ermors
number of dis-
€ covered errors

cost
threshold

_—costper
— dscovered error

endoftests ©

Value for ¢ is again fixed based on experience, estimation, budget, etc..

Model-based Testing

« Does some software implement the given CFA model of the CoinValidator?

« One approach: Location Coverage.

Check whether for each location of the model there s
i reachablein

« Input sequences can automatically be generated from the model,
g, using Uppaals ‘drive-to” feature.

« Check "can we reach ‘dle; ‘have_c50; ‘have_cl00; have_c150'7" by

Ty = (€50, C50,C50; {x | 3i < j < k < Lon' ~idle,n’ ~h_c50, 7" ~h_cl00,x" ~ h_c150})

« Check forhave_eT by T, = (C50,C50,C50;.....).
« To check for drink_ready, more interaction is necessary.

« Analogously: Edge Coverage.
a edge of the model h behaviourinthe software.

36159

39

Existential LSCs as Test Driver & Monitor (.

\

If the LSC has designated environment instance lines, we can distinguish:

role),

g
« messages expected adressed to the environemnt (monitor ro!
Adjust the TBA-construction algorithm to construct a test driver & monitor
and let it (possibly with some glue logic in the middle) interact with the software.
Test passed (i.e., test unsuccessful) if and only if TBA state g is reached.
Note: y the LSC by addi d

ich driy test i tate

For example the Rhapsody tool directly supports this approach.

Testing in The Software Development Process

4059

4359

Vocabulary

—
—

i Software

+ Software-in-the-loop:

implementation is examined

Hardware

« Hardware-in-the-loop:

The final implementation s running on (prototype) hardware:

CAN-bus)

Test Conduction: Activities & Artefacts

Plrning Prepuaion Brecuton Evaliaton Analyss

PN W

e T Test
Teat Potocsl Rejen

Diections

Test G

o Test Gear: (may need to be developed in the project))

test driver— toinvokea

, often,
provide test inputs, control and monitor execution, and report test results
Synonym: test harness.

IEEE 610,12 (1990)

stub—
() A skeletal or special-purpose implementation of a software module,
sed to develop or testamodule that calls or is otherwise dependent on it

@A for the body of
thatis o will be defined elsewhere.

IEEE 610.12 (1990)

+ Roles: tester and developer should be different persons!

Content

Content

v o Formal Program Ve

+ Some more vocabulary

Choosing Test Cases

« Generic requirements on good test cases
<o Approaches:
(o Statistical testing

(o Expected outcomes: Test Oracle : -/
(e Habitat-based
(o Glass-Box Testing

Statement / Branch / term coverage
{o Conclusions from coverage measures

= When To Stop Testing?
« Model-Based Testing

Testing in the Development Process

L.« Deterministic Programs

Lie-Syntas, Semanics, Terminaton, Divergence

42

« Some more vocabulary

Choosing Test Cases

 Generic requirements on good test cases
(s Approaches:
o Statistical testing
(o Expected outcomes: Test Oracle : -/
* Habitat-based
(o Glass-Box Testing
Statement / Branch / term coverage
(o Conclusions from coverage measures

= When To Stop Testing?
« Model-Based Testing

« Testing in the Development Process

Formal Program Verification
Lie Deterministic Programs

L

Syntax, Semantics, Termination, Divergence

45

Tell Them What You’ve Told Them. ..

There is a vast amount of literature on how to choose test cases.
A good starting point:

o at least one test case per feature,

« comner-cases, extremal values,

« error handling, etc.

Glass-box testing.

« considers the control flow graph,
« defines coverage measures.

Other approaches:
« statistical testing, model-based testing,
Define criteria for “testing done” (ike coverage, or cost per error).

Process: tester and developer should be different persons.

There are more approaches
to code quality assurance than (just) testing.

For example, program verification.

575

References

58559

Reference:

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

Lettrari, M. and Klose, J. (2001). Scenario-based monitoring and testing of real-time UML models. In Gogolla, M.
and Kobryn, C.,editors, UML, number 2185 in Lecture Notes in Computer Science, pages 317-328.
Springer-Verlag.

Ludewig,). and Lichter, H. (2013). Software Engineering. dpunktverlag, 3. edition.

595

