~10 - 2019-06-17 - main —

Softwaretechnik / Software-Engineering

Lecture 10: Structural Software Modelling

2019-06-17

Prof. Dr. Andreas Podelski, Dr. Bernd Westphal

Albert-Ludwigs-Universitat Freiburg, Germany

Topic Area Architecture & Design: Content

10 - 2019-06-17 - Sblockcontent

gB-arTa ety

VL10 o Introdu
o Softwarg ll

(e model; view

6 Modelling structure
(o (simptifi

VL1 (e (simplified) Object Constraint Logic (OCL)

e Principles of Design

(e modularity, separation of concerns
e information hiding and data encapsulatjon
L(e abstract data types, object orientation,

: Modelling behaviour

(e Communicating Finite Automata (CFA)
e Uppaal query language

VL13 |<e CFAvs.Software
‘e Unified Modelling Language (UML)

(® basic state-machines

(® an outlook on hierarchical state-machines

e Model-driven/-based Software Engineering
261

10 - 2019-06-17 - Scontent

10 - 2019-06-17 — main

Content

e Vocabulary

(o ecture, Design
e Modelling >
e Software Modelling

(e views & viewpoints
(o the 4+1 view

e Class Diagrams

e concrete syntax,

o
e abstract syntax,

e semantics: system states.
e class diagrams at work,

e Object Diagrams

[

concrete syntax,
dangling references,
partial vs. complete,
object diagrams at work.

L L LT
[]

[

361

Vocabulary

461

2019-06-17 — Sdesintro

10

EEE

Std 610121990
't

o

IEEE Standard Glossary of
"y . Terminol

Sponsor
Standards Coordinating Commitice

Computer Society of the IEEE

Approved September 28,1990

[Abstrac: TEEE S 61012

e Engtneering Tormimolon,
identifios terms currontly § ng. Star

‘Standard definitions for|

Coprgn 1m0y

Vocabulary

10 - 2019-06-17 - Sdesintro

architecture— The fundamental organization of@-ﬁbodied inits, m eir rela-
tionships to each other and to the environment, and the principles guiding i And evolution.

design—
(1) The proc f defining tife architecture, cdmponents, interfaces,
and other characteristics of a system or component.

(2) The result of the process in (1). IEEE 610.12 (1990)

561

6s61

Vocabulary

10 - 2019-06-17 - Sdesintro

architecture— The fundamental organization of a system embodied in its components, their rela-
tionships to each other and to the environment, and the principles guiding its design and evolution.
IEEE 1471 (2000)

design—
(1) The process of defining the architecture, components, interfaces,
and other characteristics of a system or component.

(2) The result of the process in (1). IEEE 610.12 (1990)

software architecture— The software architecture of a program or computing system is the structure
or structures of the system which comprise software elements, the externally visible properties of
those elements, and the relationships among them.

(Bass et al.,, 2003)

architectural description— A model — document, product or other artifact — to communicate and
record a system's architecture. An architectural description conveys a set of views each of which
depicts the system by describing domain concerns.

(Ellis et al., 1996)

Vocabulary Cont’d

10 - 2019-06-17 - Sdesintro

system— A collection of components organized to accomplish a specific function or set of func-
tions. IEEE 1471 (2000)

software system—
A set of software units and their relations, if they together serve a common purpose.

This purpose is in general complex, it usually includes, next to providing one (or more) executable
program(s), also the organisation, usage, maintenance, and further development.

(Ludewig and Lichter, 2013)

6/61

7/61

Vocabulary Cont’d

10 - 2019-06-17 - Sdesintro

system— A collection@rg&mized to accomplish a specific function or set of func-
IEEE 1471 (2000)

tions.

software system—
A set of software units and their relations, if they together serve a common purpose.

This purpose is in general complex, it usually includes, next to providing one (or more) executable
program(s), also the organisation, usage, maintenance, and further development.

(Ludewig and Lichter, 2013)

component— One of the parts that make up a system. A component may be hardware or software

and may be subdivided in omponents. IEEE 610.12 (1990)

software component— An architectural entity that
(1) encapsulates a subset of the system’s functionality and/ or-data
(2) restricts access to that subset via an explicitly define n@ nd

(3) has explicitly defined dependencies on its required execution context. (Taylor et al,, 2010)

Even More Vocabulary

10 - 2019-06-17 - Sdesintro

module— (1) A program unit that is discrete and identifiable with respect to compiling, combining
with other units, and loading; for example, the input to, or output from an assembler, compiler,
linkage editor, or executive routine.

(2) A logically separable part of a program. IEEE 610.12 (1990)

module— A set of operations and data visible from the outside only in so far as explicitlype
—~

by the programmers. (Ludewig and Lichter, 2013)

7/61

861

Even More Vocabulary

2019-06-17 — Sdesintro

10

module— (1) A program unit that is discrete and identifiable with respect to compiling, combining
with other units, and loading; for example, the input to, or output from an assembler, compiler,
linkage editor, or executive routine.

(2) A logically separable part of a program. IEEE 610.12 (1990)

module— A set of operations and data visible from the outside only in so far as explicitly permitted

by the programmers. (Ludewig and Lichter, 2013)

interface— A boundary across which two independent entities meet and interact or communicate
with each other. (Bachmann et al., 2002)

interface (of component)— The boundary between two communicating components. The inter-
face of a component provides the services of the component to the component’s environment
and/or requires services needed by the component from the requirjémewig and Lichter, 2013)

Once Again, Please

10 - 2019-06-17 - Sdesintro

Interface
C
©
b3
consists of 1or more has -
System Component ——————— Component Interface

[]
@ 2

Software System ————— Software Component

I may be a
Module

software architecture — The software architecture of a program or computing system is the
structure or structures of the system which comprise software elements, the externally visi-
ble properties of those elements, and the relationships among them. (Bass etal, 2003)

Software Architecture

is the result of i
Architecture —————————————— Design

is described by

” Architectural Description

861

96t

Goals and Relevance of Design

10 - 2019-06-17 ~ Sdesintro

o The structure of something is the set of relations between its parts.
e Something not built from (recognisable) parts is called unstructured.

10s61

Goals and Relevance of Design

10 - 2019-06-17 - Sdesintro

e The structure of something is the set of relations between its parts.
e Something not built from (recognisable) parts is called unstructured.

Design...
(i) structures a system into manageable units (yields software architecture),
(ii) determines the approach for realising the required software,

(iii) provides hierarchical structuring into a manageable number of units
at each hierarchy level.

Oversimplified process model “Design”:
5 arch. module code
T H=A
o \

designer programmer

design implementation

1061

Goals and Relevance of Design: An Analogy

—10-2019-06-17 - Sdesintro

Design...
(i) structures a system into manageable units [...],
(i) determines the approach for realising the [system],

(iii) provides hierarchical structuring into a manageable number of units
. R e el
at each hierarchy level.

E

-

Building Engineering: Design a House.

Regional Planning: Design a Quarter.

et

Topic Area Architecture & Design: Content

3
3
2
°

VL10 e Introduction and Vocabulary
o Software Modelling

e Modelling structure_
}:0 (simplified) Class & Object diagrams
VL1 o (simplified) Object Constraint Logic (OCL)

e Principles of Design
o modularity, separation of concerns
o information hiding and data encapsulation
o abstract data types, object orientation

Lz, Design Patterns

e Modelling behaviour

o Communicating Finite Automata (CFA)
o Uppaal query language
VL13 o CFA vs. Software
o Unified Modelling Language (UML)
® basic state-machines
® an outlook on hierarchical state-machines

e Model-driven/-based Software Engineering
1261

10 - 2019-06-17 - Scontent

10 - 2019-06-17 — main

Content

e Vocabulary
(e System, Architecture, Design

e Modelling
e Software Modelling

(e views & viewpoints
(o the 4+1 view

e Class Diagrams

e concrete syntax,
o abstract syntax,

o class diagrams at work,

e Object Diagrams

e concrete syntax,
o dangling references,

—

—

e partial vs. complete,

(e object diagrams at work.

Modelling

o
o
e semantics: system states.
—

1361

1461

10 - 2019-06-17 = Smodel

2

10

Model

Definition. (Folk) A modelis an abstract, formal, mathematical representation or description
of structure or behaviour of a (software) system.

Model

Definition. (Folk) A modelis an abstract, formal, mathematical representation or description

of structure or behaviour of a (software) system.

Definition. (Glinz, 2008, 425)
A model is a concrete or mental image (Abbild) of something
or a concrete or mental archetype (Vorbild) for something.

Three properties are constituent:

(i) the image attribute (Abbildungsmerkmal), i.e. there is an entity
(called original) whose image or archetype the model is,

(ii) the reduction attribute (Verkirzungsmerkmal), i.e. only those attributes of the original

that are relevant in the modelling context are represented,

(iii) the pragmatic attribute,
i.e. the model s built in a specific context for a specific purpose.

15/61

15/61

Example: Design-Models in Construction Engineering

10 -2019-06-17 - Smodel ~

1. Requirements

3. System

« Shall fit on given
piece of land.

» Each room shall
have a door.

 Furniture shall fit
into living room.

« Bathroom shall
have a window.

o Costshall be in
budget.

1661

Example: Design-Models in Construction Engineering

~10 - 2019-06-17 - Smodel ~

2. Designmodel
1. Requirements

T —— TS
%peisekm, & 3. System
« Shall fit on given = 7
piece of land. 9
» Each room shall Bad |
have a door. —~
o Furniture shall fit ﬁ‘%:l

nto living room.

H7L7

o Bathroom shall

budget.

1661

Example: Design-Models in Construction Engineering

10 -2019-06-17 - Smodel ~

2. Designmodel

1. Requirements

1T 1]

:fpeisekammer

3. System

Shall fit on given
piece of land.
Each room shall
have a door.

Furniture shall fit
into living room.

Bathroom shall
have a window.
Cost shall be in
budget.

http://wikimedia.org (CC nc-sa 3.0, Ottoklages)

Observation (1): Floorplan abstracts from certain system properties, e.g. ...

o kind, number, and placement of bricks, o water pipes/wiring, and
o subsystem details (e.g., window style), o wall decoration

— architects can efficiently work on appropriate level of abstraction
—_—

1661

Example: Design-Models in Construction Engineering

~10 - 2019-06-17 - Smodel ~

2. Designmodel
1. Requirements

=
T T

h peisslammer 3. System
« Shall fit on given al
piece of land. D AK 9 Lu L
» Each room shall H Bad |2
have a door. =

Furniture shall fit
into living room.

[a =
ﬁ A S
Bathroom shall L F
have a window.
Cost shall be in
budget.

http://wikimedia.org (CC nc-sa 3.0, Ottoklages)

Observation (2): Floorplan preserves/determines certain system properties, e.g.,
e

o house and room extensions (to scale), o placement of subsystems
o presence/absence of windows and doors, (such as windows).

— find ie_m before building the system (e.g. bathroom windows)

1661

A Better Analogy is Maybe Regional Planning

[B ndcoverton b

ngrppenimjee

(o102 smpprorg)

1761

~19POWS ~ £1-90-610C ~ 0L~

Software Modelling

1861

~ UreW - £1-90-6107 ~ O}~

Examples for (Software) Models?

odel —

~10 - 2019-06-17 - Sswm

Examples for (Software) Models?

~10 - 2019-06-17 - Sswmodel -

From Process Model to Concrete Process

.
‘ concretise Plan L l

Process

41762

1961

1961

Examples for (Software) Models?

10 - 2019-06-17 - Sswmodel -

Examples for (Software) Models?

~10 - 2019-06-17 - Sswmodel -

i+

o Customer_Developer Contormer Devioper Devcoper Gustomner
announcement offer software contract coftware delivery
Wastenhef) (Phichienhett) (il Plichiennef)

» Decision Tables can be used to objectively describe desired software behaviour.

+ Example: Dear developer, please provide a program such that
« in each situation (button pressed, ventilation on/off),
« whatever the software does (action start/stop)

button pressed?
off | ventiation off? x ==
‘ventilation on?

on

90| startventilation x [- [-
stop | stop ventilation — X =

1961

1961

Examples for (Software) Models?

10 - 2019-06-17 - Sswmodel -

foation Language
O\ =
1k

1961

Examples for (Software) Models?

Decision Tubles as Specification Language

Example: Vending Machine

« Requirement: Buy Water
We (only) accept the software if,

(i) Whenever we insert 0.50 €,

(i) and press the ‘water button
(and no other button),

(iii) and there is water in stock, ‘

() then we get water
(and nothing else).

o Negative scenario: A Drink for Free
We don't accept the software if
itis possible to get a drink for free. ST o] o] \
(i) Insert one 1 euro coin. \
(ii) Press the ‘softdrink’ button.
(i) Do not insert any more money.
(iv) Get two softdrinks.

Ty

T
bl
i arant 1 _permisive |

4259

1961

~10 - 2019-06-17 - Sswmodel -

Views and Viewpoints

10 - 2019-06-17 - Sswmode!

Views and Viewpoints

nodel

2019-06-17 - Ssw

10

view — A representation of a whole system from the perspective of a related set of
concerns. T IEEE1471(2000)

viewpoint — A specification of the conventions for constructing and using a view. A pat-
tern or template from which to develop individual views by establishing the purposes
and audience for a view and the techniques for its creation and analysis.

IEEE 1471 (2000)

20561

20561

Views and Viewpoints

10 - 2019-06-17 - Sswmode!

view — A representation of a whole system from the perspective of a related set of
concerns. IEEE 1471 (2000)

viewpoint — A specification of the conventions for constructing and using a view. A pat-
tern or template from which to develop individual views by establishing the purposes
and audience for a view and the techniques for its creation and analysis.

IEEE 1471 (2000)

o A perspective is determined by concerns and information needs:

o team leader, e.g., needs to know which team is working on what component,
o operator, e.g., needs to know which component is running on which host,

o developer, e.g., needs to know interfaces of other components.

e etc.

An Early Proposal: The 4+1 View (kruchien, 1995)

mode!

10 = 2019-06-17 - Ssw

end-user programmers,
functionality software management
Development

Logical Vi —
ogical View View

Process View ~—— Physical View

integrators, system engineers,
performance, topology,
scalability ‘communication

20561

2761

An Early Proposal: The 4+1 View (kruchien, 1995)

10 - 2019-06-17 - Sswmode!

end-user programmers,
functionality software management
Logical View — Devel_opment
View
Scenarios
Process View ~——— Physical View
integrators, system engineers,
performance, topology,
scalability communication

Newer proposals (Ludewig and Lichter, 2013):

system view: How is the system under development integrated into (or seen by) its environment? With
which othe| } ing users) does it interact how?

static view (~ developer view): Components of the
architecture, their interfaces and relations. Possibly:
assignment of development, test, etc. onto teams.

dynamic view (~ process view):
how and when are components instantiated
and how do they work together at runtime.

]

deployment view (~ physical view):
How are component instances mapped onto infrastructure and hardware units?

2761

An Early Proposal: The 4+1 View (kruchien, 1995)

10 = 2019-06-17 - Ssw

end-user programmers,
functionality software management
Logical View — Devel9pment
View
Scenarios
Process View ~—— Physical View
integrators, system engineers,
performance, topology,
scalability ‘communication

Newer proposals (Ludewig and Lichter, 2013):

system view: How is the system under development integrated into (or seen by) its environment? With
which other systems (including users) does it interact how?

static view (~ developer view): Components of the
architecture, their interfaces and relations. Possibly:
assignment of development, test, etc. onto teams.

dynamic view (~ process view):
how and when are components instantiated
and how do they work together at runtime.

deployment view (~ physical view):
How are component instances mapped onto infrastructure and hardware units?

(“Purpose of architecture: support functionality; functionality is not part of the architecture” ?!)

2761

Deployment / Physical View

~10 - 2019-06-17 - Sswmodel -

Example: modern cars

e large number of electronic control units (ECUs) spread all over the car,
o which part of the overall software is running on which ECU?
o which function is used when? Event triggered, time triggered, continuous, etc.?

2261

Deployment / Physical View

~10 - 2019-06-17 - Sswmodel -

Example: modern cars

o large number of electronic control units (ECUs) spread all over the car,
o which part of the overall software is running on which ECU?
o which function is used when? Event triggered, time triggered, continuous, etc.?

For, e.g., a simple smartphone app, process and physical view may be trivial or determined by the
employed framework (— later) — so no need for (extensive) particular documentation.

2261

Structure vs. Behaviour / Constructive vs. Reflective

nodel

~10 - 2019-06-17 - Sswm

2361

Structure vs. Behaviour / Constructive vs. Reflective

o Form of the states j Definition. Software is a finite description S of a (possibly in-
finite) set [S] of (finite or infinite) computation paths of the

structure of S form

o Computation paths 7 of .S: o0 oy Doy

behaviour of S where

e 0; € X,i € Ny, is called state (or configuration), and
o a; € A,i € Ny, is called action (or event).

The (possibly partial) function [-] : S — [S] is called inter-
pretation of S.

2361

Structure vs. Behaviour / Constructive vs. Reflective

2019-06-17 ~ Sswmodel

~10-

o Form of the states in 3 (and actions in A): Definition. Software is a finite description S of a (possibly in-
structure of S :i:rirt:) set [S] of (finite or infinite) computation paths of the
e Computation paths 7 of S: o0 oy Doy
where

behaviour of S
e 0; € X,i € Ny, is called state (or configuration), and

o a; € A,i € Ny, is called action (or event).

The (possibly partial) function [-] : S — [S] is called inter-
pretation of S.

(Harel, 1997) proposes to distinguish
reflective and constructive
descriptions of behaviour:

2361

Structure vs. Behaviour / Constructive vs. Reflective

~10 - 2019-06-17 - Sswmodel -

o Form of the states in 3 (and actions in A): Definition. Software is a finite description S of a (possibly in-
structure of S ;L:i::) set [S] of (finite or infinite) computation paths of the
e Computation paths 7 of S: o0 oy Doy
where

behaviour of S
e 0; € X,i € Ny, is called state (or configuration), and

o a; € A,i € Ny, is called action (or event).

The (possibly partial) function [-] : S — [S] is called inter-
pretation of S.

(Harel, 1997) proposes to distinguish
reflective and constructive
descriptions of behaviour:

o reflective (or assertive):
“[description used] to derive and present views of the model, statically or during execution,
or to set constraints on behavior in preparation for verification.”
— what should (or should not) be computed.

constructive:

“constructs [of description] contain information needed

in executing the model or in translating it into executable code.”
— how things are computed.

2361

Structure vs. Behaviour / Constructive vs. Reflective

10 - 2019-06-17 - Sswmode!

ntent

10 - 2019-06-17 — Scor

o Form of the states in 3 (and actions in A): Definition. Software is a finite description S of a (possibly in-
structure of S :icr:rt:) set [S] of (finite or infinite) computation paths of the
e Computation paths 7 of S: o0 oy Doy
where

behaviour of S
e 0; € X,i € Ny, is called state (or configuration), and

o a; € A,i € Ny, is called action (or event).

The (possibly partial) function [-] : S — [S] is called inter-
pretation of S.

(Harel, 1997) proposes to distinguish
reflective and constructive
descriptions of behaviour:

o reflective (or assertive):
“[description used] to derive and present views of the model, statically or during execution,
or to set constraints on behavior in preparation for verification.”
— what should (or should not) be computed.

constructive:

“constructs [of description] contain information needed

in executing the model or in translating it into executable code.”
— how things are computed.

Note: No sharp boundaries! (would be too easy...)

Content

e Vocabulary
(e System, Architecture, Design

* Modelling

o Software Modellin
}:(o views & viewpoints
(o the 4+1view
e Class Diagrams
e concrete syntax,
e abstract syntax,
e semantics: system states.
e class diagrams at work,
e Object Diagrams

concrete syntax,
dangling references,

(o
(o

e partial vs. complete,

(e object diagrams at work.

2361

2461

~10 - 2019-06-17 - main—

Class Diagrams

26761

Class Diagrams

. Concrete Syntax

typed
attributes

typed
methods

where

o T1,...,Tmo € T U{

~10-2019-06-17 - Sumlsig—

Concrete Syntax

class name

C

v T

Un 2 Th

fl(Tl,l, [RRER} Tlﬂll) : Tl;O

fm(Tm,h e 7Tm,”ﬂm) : Tm,o

Co,1,Cx | C aclass name}

e 7 is aset of basic types, e.g. Int, Bool,

. Example

n: Cy
Picu,l

10 - 2019-06-17 - Sumlsig

class

attributes
compartment

methods
compartment

D

x: Int
p:Coh

f(Int) : Bool
get_z() : Int

2761

2861

Concrete Syntax: Example

10 - 2019-06-17 - Sumlsig

n: Cy
Picu,l

Alternative notation for Cy ; and C. typed attributes:

D

x: Int
p:Coh

f(Int) : Bool
get_z() : Int

D

x: Int

f(Int) : Bool
get_z() : Int

Concrete Syntax: Example

ig

2019-06-17 - Sumls

10

n: Cy
p:Coa

Alternative notation for Cy ; and C. typed attributes:

D

x: Int

f(Int) : Bool
get_z() : Int

D

x: Int

J(Ini) = Bool
gel_z() : Int

2861

2861

Concrete Syntax: Example

10 - 2019-06-17 - Sumlsig

D
poum CC x: Int
» A C* p:Coa
- 0L f(Int) : Bool
get_z() : Int

Alternative notation for Cy ; and C. typed attributes:

And nothing else! This is the concrete syntax of class diagrams for the scope of the course.

n D
0..% C o 01 x: Int
P f(Int) : Bool
P ' get_z() : Int

n D
P F(Int) : Bool
P get_z() : Int

Abstract Syntax: Object System Signature

ig

10 - 2019-06-17 - Sumlsig

Definition. An (Object System) Signature is a 6-tuple

& =(7,6,V, atr, F, mth)

where

7 is a set of (basic) types,
% is a finite set of classes,

V is afinite set of typed attributes v : T',i.e, each v € V has type T,
atr : € — 2V maps each class to its set of attributes.

F is a finite set of typed behavioural features f : T,..., T, — T,
mth : € — 2 maps each class to its set of behavioural features.

A type can be a basic type 7 € 7, or Cy,1, or C,, where C € €.

Note: Inspired by OCL 2.0 standard OMG (2006), Annex A.

2861

2961

Object System Signature Example

10 -2019-06-17 - Sumlsig~

Definition. An (Object System) Signature is a 6-tuple
S = (F,€,V, atr, F, mth)

where
7 is a set of (basic) types,

% is afinite set of classes,

V is afinite set of typed attributes v : T',i.e, eachv € V has type T,
atr : € — 2" maps each class to its set of attributes.

F is afinite set of typed behavioural features f : T1,..., T, — T,
o mth : € — 2% maps each class to its set of behavioural features.

A type can be a basic type 7 € .7, or Cy,1, or C.., where C' € 7.

Object System Signature Example

~10 - 2019-06-17 - Sumlsig ~

Definition. An (Object System) Signature is a 6-tuple
S =(F,€,V, atr, F, mth)

where

7 is aset of (basic) types,
< is a finite set of classes,

V is afinite set of typed attributes v : T',i.e, eachv € V has type T,
o atr : ¢ — 2V maps each class to its set of attributes.

F is afinite set of typed behavioural features f : T1,...,T, — T,
mth : € — 2" maps each class to its set of behavioural features.

A type can be a basic type 7 € .7, or Co,1, or C.., where C' € 4.

3061

S = ({Int, Bool},

{c, b},

{z: Int,p: Co1,n:Ci},

ak: {C=Ap,n}, D= {px}},
{f : Int — Bool, get_z : Int},
{C— 0,D— {f,get_z}})

30t

From Abstract to Concrete Syntax

—pJ
] o1)

x: Int)

I:)ON* @ p f(Int) : Bool
pP10..1 / get_z() : Int

& =(7,6,V, atr, F, mth)

T =§ €, ool §

¥ ={C.Dj

v=1x:bE, poC, w:é*i

atr=35 A5 {nps Dz«){x\/ys%f
F=§f It = %o, ..

mth=§ C g

3et

Once Again: Concrete vs. Abstract Syntax

0. . 0.1 _ x:int
C & f(Int) : Bool

s g

3261

Once Again: Concrete vs. Abstract Syntax

D
- CC Tt
» N C; p:Coy
- J(Int) : Bool

get_z() : Int

3261

D n D
o In 0.1 a:ln
f([nt; : Bool - P f(]m)t : Bool
get_a() : Int Yet_a(): Int
Y = ({Int, Bool},
{C, D},
{z: Int,p:Con,n:C.},
{C = Ap.n}, D {p,x}},
{f : Int — Bool, get_z : Int},
{C = 0,D = {f, get_z}})
°
Once Again: Concrete vs. Abstract Syntax
D
- oIt
o < Co
p:Cos W
get_a() : Int
D n D
ot - 0.1 ot
F(nt) : Bool p O F(mt) : Bool
get_a() : Int get_a() : Int
% = ({Int, Bool},
{C, D},
{z: Int,p: Cor,n:C.},
{C = Ap.n}, D {p,a}},
] {f : Int — Bool, get_z : Int},
I {Cm 0.0 {f, get_o}})
G
Ty« Boo
get_a() : Int
°

3261

Once Again: Concrete vs. Abstract Syntax

10 -2019-06-17 - Sumlsig~

D
@ Int

f(Int) : Bool
get_z() : Int

D
T Int
F(Int) : Bool
gel_z() : Int

D
- c(Tt
i Co p:Coy
- J(Int) : Bool

get_z() : Int

Y = ({Int, Bool},
{¢, D},

{z: Int,p:Con,n:C.},

{C = {p,n}. D= {p,a}},

{f : Int — Bool, get_z : Int},

{C 0,0 {f, get_s}})

n:C.
p:Cox

D
a: Int
p:Con
F(Int) < Bool
get_x() : Int

Once Again: Concrete vs. Abstract Syntax

~10 - 2019-06-17 - Sumlsig ~

D
@ Int

f(Int) : Bool
get_z() : Int

D
T Int
F(Int) : Bool
get_z() : Int

D
- CC T It
i Co p:Cox
oL J(Int) = Bool
gel_z() : Int

% = ({Int, Bool},
{C, D},
{z: Int,p: Cor,n:C.},
{€={p.,n}, D= {px}},

] {f : Int — Bool, get_z : Int},

{C '+ 0,Dw {f,get_z}})

n:C.
p:Cox

D
@ Int
p:Coa
FUInt) Bool
get_x() : Int

D

.1 a: Int

P f(Int) : Bool

get_z() : Int

3261

0.1 a: Int

P f(Int) : Bool
get_a() : Int

D

T Int
F(Int) : Bool
get_z() : Int

3261

Visualisation of Implementation

10 - 2019-06-17 ~ Scdatworkpreview

o The class diagram syntax can be used to visualise code:

Provide rules which map (parts of) the code to class diagram elements.

Visualisation of Implementation

package pac;

import pac.D;

public class C {
public D n;

public void print_nx () {
System.out. printf (

"%i\n", n.get_x()); };

public €O {};

3
8
8
e

package pac;

import pac.C;

public class D {
private int Xx;

public int get_x()
{ return x; };

7 public D() {};
}

o The class diagram syntax can be used to visualise code:

Provide rules which map (parts of) the code to class diagram elements.

package pac;

import pac.D;

public class C {
public D n;

public void print_nx () {
System.out. printf (

"%i\n", n.get_x()); };

public C() {};

package pac;

import pac.C;

public class D {
private int Xx;

public int get_x()
{ return x; };

12| public D() {};
}

X:int

pac
C
print_nx();
<0

get_x(): int;
D();

3361

3361

Visualisation of Implementation

: (Useless) Example

orkpreview —

10 - 2019-06-17 - Scdatw

o open favourite IDE,
o open favourite project,
o press “generate class diagram”

e wait...

Visualisation of Implementation

: (Useless) Example

rkpreview -

10 - 2019-06-17 - Scdatwor

o open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...wait...

3461

3461

Visualisation of Implementation: (Useless) Example

10 - 2019-06-17 - Scdatworkpreview —

o open favourite IDE,
o open favourite project,
o press “generate class diagram”

e wait...wait...wait...

Visualisation of Implementation: (Useless) Example

~10 - 2019-06-17 - Scdatworkpreview —

o open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...wait...wait...

e ca. 35 classes,
e ca. 5000 LOC C#

3461

3461

Visualisation of Implementation: (Useful) Example

Player OpenGL?
colour Lx
?!?gcetion ‘{ Gameplay Render
speed
alib?

Joystick?

Keyboard? a
update notify
head
Segment Engine
x0,y0 areawidth
A2 X oo | areaheight
world

b 351

Visualisation of Implementation: (Useful) Example

4@

Joystick? Player OpenGL?
colour L
Graction —{ Gameplay Render
speed
Keyboard? aalib?
update notify
head
Sggn;ent Engine
jouth areawidth
‘ Al? ‘ Xl] areaheight
world

A diagram is a good diagram if (and only if?) it serves its purposel

g 35/t

Visualisation of Implementation: (Useful) Example

Joystick? Player OpenGL?
colour Lx
- direction Gameplay Render
speed
Keyboard? aalib?
update notify
head
Sggn;en(Engine
jouth areawidth
‘ Al? ‘ Xy | areaheight
world

e Adiagram is a good diagram if (and only if?) it serves its purposel!

¢ Note: a class diagram for visualisation may be partial.

— show only the most relevant classes and attributes (for the given purpose).

o Note: a signature can be defined by a set of class diagrams.

— use multiple class diagrams with a manageable number of classes for different purposes.

35/t

Literature Recommendation

(Ambler, 2005)

3661

~10 - 2019-06-17 - Scontent ~

~10 - 2019-06-17 - main

Content

e Vocabulary
(e System, Architecture, Design
e Modelling
e Software Modelling
(e views & viewpoints
(o the 4+1view
e Class Diagrams

e concrete syntax,

e abstract syntax,

e semantics: system states.
—

o class diagrams at work,

e Object Diagrams

[

concrete syntax,

[

dangling references,
partial vs. complete,
object diagrams at work.

LI LI
0

[

A More Abstract Class Diagram Semantics

3761

3861

Object System Structure

10 - 2019-06-17 ~ Sumlstruc

Definition. An Object System Structure of signature
& =(7,6,V, atr, F, mth)
is a domain function 2 which assigns to each type a domain, i.e.

e 7 € 7 ismapped to Z(7),

~—_

e C € ¢ is mapped to an infinite set 2(C) of (object) identities.

o object identities of different classes are disjoint, i.e.
¥C.De®:C %D~ 9(C)19(D) =0,
o on object identities, (only) comparison for equality “=" is defined.

/\fmmset

e C.and Cj ; for C € € are mapped to 22(9),
A~ G ——

We use 7(%) to denote | Z(C); analogously Z(%).

m Note: We identify objects and object identities,
because both uniquely determine each other (cf. OCL 2.0 standard).

Basic Object System Structure Example

10 - 2019-06-17 - Sumlstruc

Wanted: a structure for signature

0 = ({Int, Bool},{C, D}, {x : Int,p: Co1,n: Ci},{C+— {p,n},Dw— {p,z}},
{f : Int = Bool, get_z : Int},{C +— 0, D — {f, get_z}})

A structure 2 maps
e 7 € J tosome %(7), C € ¢ to some identities 2(C) (infinite, pairwise disjoint),
e C.and Co,1 forC € € to 2(Co1) = 2(Cy) = 22(9,

D(Int) = L D' 3,359
2(C) = N xili=it,%, %] So 4%
2(D) = N x {D={15,23,.3 Sa, a, aor .}
P(Cox) = 9(C) = 2%
I (Doy) = 2(D,) = 2P®)

391

40y61

System State bk Lo dilles athnbudes mﬁg valiat

10 - 2019-06-17 - Sumlstruc

Definition. Let 2 be a strycture of .7 = (7, %, V, atr, F,
A system state of .7 wrt. & is g type-consjgtent mappi
Y fZ{F\g} o G, pping

o DE) - (V¥ (207U 2(%.))).

Thatis, foreach uw € 2(C), C € G, if u € dom(o)
e dom(o(u)) = atr(C)

o(a(u))(v) eg(r)ifv:m,Te T

A~

~AA—

.@m)(v) € 9(D,)ifv: Doy orv: D, withD €%

We call u € 2(%) alive in ¢ if and only if u € dom(o).

We use ©Z to denote the set of all system states of .7 wrt. 2.

System State Examples

10 - 2019-06-17 - Sumlstruc

‘yo = ({Int7 BOOZ}v {CrD}7 {w : Intzp : CO,lvn : C*}7 {C — {p7 ’I’L},D = {pvx}}a
{f: Int — Bool, get_z : Int},{C — 0,D — {f, get_z}})
@(Int):Z, @(C):{1C72C7307"'}7 9(L)):{]-D72D73D7}

A system state is a partial function o : 2(%) —» (V - (2(7) U 2(%%))) such that

o dom(o(u)) = atr(C), o g(u)(v) € I(1)ifv:7,7€ T,
o o(u)(v) € 2(Cy)ifv: Dyorv: Doy withD € €.

P,
g { 2 {prll udf, 7DH§VH{Z¢5/NHZ%fj
" n Z_’_/_’_J K—\A
R
o,< 2

05-§ Sem i e {65 mH,@’ff /
[

4161

4261

Class Diagrams at Work

10 - 2019-06-17 - main

4361

Visualisation of Implementation

o The class diagram syntax can be used to visualise code:
Provide rules which map (parts of) the code to class diagram elements.

package pac; package pac;

import pac.D; import pac.C;

public class C { public class D {

public D n; private int X;

public void print_nx () {
System.out. printf (

kil "%i\n", n.get_x()); };

12 .
Bl public O o public DO {1
)

public int get_x()
{ return x; };

4461

Visualisation of Implementation

o The class diagram syntax can be used to visualise code:
Provide rules which map (parts of) the code to class diagram elements.

Z\ package pac; 1| package pac;
2|
j import pac.D; 3| import pac.C;
4
: public class C { s| public class D {
6
; public D n; 7 private int X;
. 8
9 public void print_nx () { :
10 System.out. printf (1z Pu(bllri”i:; f.e‘_)).(()
ki "%i\n", n.get_x()); }; M ST
12
2 subtie €O O ” public D() {};
) o
pac
C D
n X:int
print_nx(); 0..1 | get_x():1int;
<0; D();

2019-06-17 - Scd

4461

~10-

Visualisation of Implementation: (Useless) Example

o open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...

45/61

Visualisation of Implementation

: (Useless) Example

ork -

10 - 2019-06-17 - Scdatw

o open favourite IDE,
o open favourite project,
o press “generate class diagram”

e wait...wait...

Visualisation of Implementation

: (Useless) Example

rk

10 - 2019-06-17 - Scdatwor

o open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...wait...wait...

4561

45/61

Visualisation of Implementation: (Useless) Example

2019-06-17 - Scdat

o open favourite IDE,
o open favourite project,
e press “generate class diagram”

e wait...wait...wait...

!

o ca. 35 classes,
e ca. 5000 LOCC#

45/61

Visualisation of Implementation: (Useful) Example

10 - 2019-06-17 - Scd:

Joystick?

4@

Player OpenGL?

colour L

direction —{ Gameplay Render

speed

update notify
head

Sggn;ent Engine

iyl areawidth
‘ AR K [|areaheight

) world

46761

Visualisation of Implementation: (Useful) Example

Joystick? Player OpenGL?
colour Lx
- direction Gameplay Render
speed
Keyboard? aalib?
update notify
head
Sggn;ent Engine
jouth areawidth
‘ Al? ‘ Xy | areaheight
world

e Adiagram is a good diagram if (and only if?) it serves its purposel!
————

4661

Visualisation of Implementation: (Useful) Example

4@

Joystick? Player OpenGL?
colour L
- Graction Gameplay Render
speed
Keyboard? aalib?
update notify
head
Sggn;ent Engine
jouth areawidth
‘ A ‘ Xyl [| areaheight
world

o Adiagram is a good diagram if (and only if?) it serves its purposel!

o Note: a class diagram for visualisation may be partial

— show only tf}%ﬂt classes and attributes (for the given purpose).

* Note: a signature can be defined by a set of class diagrams.

— use multiple class diagrams with a manageable number of classes for different purposes.

4661

Literature Recommendation

~10 - 2019-06-17 ~ Scdatwork —

~10-2019-06-17 - Scontent

Content

UML2.0

.
Scott W. Amblar

(Ambler, 2005)

e Vocabulary
o System, Architecture, Design

e Modelling
o Software Modelling

e views & viewpoints
"o the 4+1 view

o Class Diagrams

e concrete syntax,
e abstract syntax,
e semantics: system states.

t e class diagrams at work,
e Object Diagrams

e concrete syntax,

e dangling references,

e partial vs. complete,
e object diagrams at work.

4761

4861

10 - 2019-06-17 - main

Object Diagrams

Object Diagrams

~10-2019-06-17 - Sod —

So = ({Int7 BOOl}, {CrD}7 {w 2 Int,p: CO,lyn : C*}7 {C = {p7 TL},D = {pax}}v
{f: Int = Bool, get_z : Int},{C +— 0,D s {f, get_z}}), D(Int) =Z

oc={lc HWﬁcH{pi—)@,nH@},lp HW}

4961

5061

Object Diagrams

2019-06-17 - Sod

20 = ({Int, Bool},{C,D},{z : Int,p: Co,1,n: Ci«},{C — {p,n}, D — {p,z}},
{f : Int — Bool, get_z : Int},{C — 0, D — {f, get_z}}), D(Int) =Z

o={lc={p—0,n— {5c}},5¢c = {p—0,n— 0}, 1p = {p— {5c},z — 23}}

o We may represent o graphically as follows:

lc : C 5c:C 1p : D
p=0 p=10 p={5c}
n = {5¢} n=10 r =23

This is an object diagram.

50ys1

Object Diagrams

10 - 2019-06-17 - Sod

0 = ({Int, Bool},{C,D},{z : Int,p: Co,1,n : Ci«},{C — {p,n}, D — {p,x}},
{f : Int — Bool, get_z : Int},{C — 0, D — {f, get_z}}), D(Int) =Z

c={le—={p—0,n— {5c}t},bc—={p—0,n—0},1p — {p— {6c},z — 23}}

o \We may represent o graphically as follows:

lc: C 5¢:C 1p: D
p=0 p=0 p={5c}
n = {bc} n=>_0 z =23

This is an object diagram.

o Alternative notation:

1c: C n 5¢ ;: P 1p: D
— p= —
p=10 n—{ T =23

50ys1

Object Diagrams

20 = ({Int, Bool},{C,D},{z : Int,p: Co,1,n: Ci«},{C — {p,n}, D — {p,z}},
{f : Int — Bool, get_z : Int},{C — 0, D — {f, get_z}}), D(Int) =Z

o={lc={p—0,n— {5c}},5¢c = {p—0,n— 0}, 1p = {p— {5c},z — 23}}

o We may represent o graphically as follows:

lc : C 5c:C 1p : D
p=0 p=10 p={5c}
n = {5¢} n=10 r =23

This is an object diagram.

o Alternative notation:

5(;:(0)/V p
p
0 n=0

,_.
Q
Q
3
—
s}
>}

xr =23

S b
[

o Alternative non-standard notation:

; P 1c: C n 5¢:C p 1p: D
3 1 — —y [==323
P n
b 50ys1
Object Diagrams
0 = ({Int, Bool},{C,D},{z : Int,p: Co,1,n : Ci«},{C — {p,n}, D — {p,x}},
{f : Int — Bool, get_z : Int},{C — 0, D — {f, get_z}}), D(Int) =Z
5c = {p—0,n— 0}, 1p — {p— {5c},x — 23}
Concrete Syntax:
=23
f—=n |———=—n ____mandatory
X ~tvoed 180 class 1T
optional L —— |
Vug i=1dp o
et e “compartment”
- - optional
P I
o Alternative non-standard notation: L1 optional
b bonih el lichiou kol iy
p [leiC] n [5eic] P [1n:iD e
; :17:23 [I R ——
» »

50ys1

Special Case: Dangling Reference

10 - 2019-06-17 - Sod

Definition.
Leto € ©% be a system state and u € dom(c) an alive object of class C'in o.

We say r € atr(C) is a dangling reference in v if and only if
r: Cp,1 orr : C, and u refers to a non-alive object via v, i.e.

o(u)(r) ¢ dom(o).

Example:

e o={lc—~>{p—=0n— {5c}},1p = {p {5c¢},z — 23}}

51

Special Case: Dangling Reference

10 - 2019-06-17 - Sod

Definition.
Leto € ©Z be a system state and u € dom(c) an alive object of class C'in o.

We say r € atr(C) is a dangling reference in w if and only if
r: Cop,1 orr : Cy and u refers to a non-alive object via v, i.e.

o(u)(r) ¢ dom(o).

Example:
e o={lc—={p=0n—{5c}},1p = {p+— {5c} x> 23}}

o Object diagram representation:

p=10 X r =23

561

Fartial vs. Complete Object Diagrams

10 -2019-06-17 - Sod

e By now we discussed “object diagram represents system state™:

10 - 2019-06-17 - Sod

{le = {p—=0,n— {5c}}, 5o C
5¢ = {p— 0,n— 0}, ~ 16715 L e M ;[:;2?
1p = {p+ {5c},z — 23}} = n=9 —
What about the other way round...?
o Object diagrams can be partial, e.g.
ic:C n 5¢:C or ‘1c:C‘ 50:0‘ ‘1,_;:]_)‘
— we may omit information.
Partial vs. Complete Object Diagrams
o By now we discussed “object diagram represents system state™:
{le = {p—0,n— {5c}}, 50 C
5¢c — {p = @,TL = (0}, ~ 10;5 " p=0 P ;ZQDB
1p — {p— {5c}, = — 23}} L= n=90 ==
What about the other way round...?
o Object diagrams can be partial, e.g.

[lcc]—" [5.:0] or [[1ic]

5(7:0‘

‘1D:D‘

— we may omit information.

e Is the following object diagram partial or complete?

r=7 =

521

521

Fartial vs. Complete Object Diagrams

2019-06-17 - Sod

e By now we discussed “object diagram represents system state™:

{lec = {p—0,n— {5c}},
5¢c = {p— 0,n— 0}, ~
1p = {p+ {5¢},z — 23}}

What about the other way round...?

o Object diagrams can be partial, e.g.

n 1p: D

— we may omit information.

1%
Q
Q|

3

e Is the following object diagram partial or complete?

— rp=
p=0 n=1>0

o If an object diagram

] n [PoC [1o:D]
p=0 Z;m T =23
‘1c:c‘ 50:0‘ ‘1,_;:1_)‘

o has values for all attributes of all objects in the diagram, and

o if we say that it is meant to be complete

then we can uniquely reconstruct a system state o.

Special Case: Anonymous Objects

10 - 2019-06-17 - Sod

If the object diagram

lc : C n e

p :D

— p=10
p=10 n=>0

r =23

is considered as complete, then it denotes the set of all system states

{le={p—0,n—{c}},c—»{p—0,n—0},d— {p— {c},z — 23}}

where ce 2(C), de€ 2(D), c#lc.

Intuition: different boxes represent different objects.

521

5361

main

10 -2019-06-17

Object Diagrams at Work

Example: DCll‘d Sfrthtblre (Schumann et al., 2008)

BaseNode

parent : BaseNode..
prevSibling : BaseNode..
nextSibling : BaseNode..
firstChild : BaseNode.,
lastChild : BaseNode,

node

Iterator

operator+-+() : Iterator
operator——() : Iterator
operatorx() : BaseNodeo, 1

begin_it end_it

orest

Node

data: T
Node(data: T)

appendTopLevel(data: T')
appendChild(parent : Iterator, data: T")
remove(it : Iterator)

depth(it: Iterator) : int

end() : Iterator

begin() : Iterator

empty() : bool

size() : int

5461

5561

Example: Illustrative Object Diagram (souman eial, 2008)

3
g

10

: Iterator

node

parent

begin_it end_it
: Iterator : Forest
| E—
node
nextSib nextSib
| E:Node |
prevSib ‘ ‘ prevSib
firstChild
parent|
firstChild parent lastChild firstChild
nextSib

BaseNode

parent: BaseNode.
prevSibling : BaseNode.
nextSibling : BaseNode.
firstChild : BaseNode..
lastChild : BaseNode.

data
Node(data

prevSib

Trerator

node
peratort 1 erator
operator—— () lterator
operators() : BaseNode.:

begin_it end_it

Forest

“appendloplevelldata) |

‘appendChild(parent: lterator, data: 7))
remove it: fterator)

depthi it Iterator) - int

end(): lerator

begin(): Iterator

empty(): bool

size(): int.

F:Node

[endepeseNoce |

Example: Illustrative Object Diagram (scumam et al, 200s)

10 -2019-06-17 - S

begin_it end_it
: Iterator : Forest : Iterator
node node
nextSib nextSib
| E:Node | | end: BaseNode
prevSib ‘ I prevsib
parent firstChild
parent
firstChild parent lastChild firstChild
nextSib

BaseNode

parent : BaseNode.
prevSibling: BaseNode.
nextSibling : BaseNode.
firstChild : BaseNode..
lastChild : BaseNode.

Node(data: 7)

prevSib

lastChild

PNt lerstChild

Trerator

node
Sperator 1) Tierator

operator—— (¢ Herator

operators() : BaseNodex,

begin_it end_it

Forest

“appendToplevelldam T) |
‘appendChild(parent : lterator, data: 7')
remove(t: fterator)
depthi it Iterator) - 1nt
end(): lerator
begin(): Iterator
empty(): bool
size():int,

F:Node

) Traceviewer: Rierarchy_exa strictyfy _fl=flix;

Ble Mew Edit Help

56/61

(RS

search: [mm & positive € negative ’ resst

0 1 2 =
] 7
EN Hx3 15t
g —ca—
- E {Summary of raws E contain:

56761

Object Diagrams for Analysis

T
M L.l =N

ctime = 27 data=d;

ctime=5 data = dy data = d3 data=d,

M :N
ctime=9 data =dj5

3
3
<]

Content

5761

e Vocabulary
(e System, Architecture, Design

e Modelling
o Software Modelling

(e views & viewpoints
(o the 4+1view

e Class Diagrams

e concrete syntax,

e abstract syntax,

e semantics: system states.
e class diagrams at work,

e Object Diagrams

e concrete syntax,

dangling references,

partial vs. complete,

[

object diagrams at work.

5861

Tell Them What You’ve Told Them. . .

10 - 2019-06-17 - Sttwytt —

~10 - 2019-06-17 - main

o Design structures a system into manageable units.

(Software) Model: a concrete or mental image or archetype with

e image /reduction / pragmatics property.

Towards Software Modelling:

o Views and Viewpoints, e.g. 4+1,
e Structure vs. Behaviour

Class Diagrams can be used
to describe system structures graphically

o visualise code,
o define an object system structure ..

An Object System Structure .
(together with a structure 2)

o defines a set of system states ©%;
o asystem state is structured according to ..

A System State o € ©Z,

e can be visualised by an object diagram.

References

5961

6061

References

10 - 2019-06-17 - main

Ambler, S. W. (2005). The Elements of UML 2.0 Style. Cambridge University Press.

Bachmann, F., Bass, L., Clements, P, Garlan, D., Ivers,], Little, R., Nord, R., and Stafford, J. (2002). Documenting software
architecture: Documenting interfaces. Technical Report 2002-TN-015, CMU/SEL.

Bass, L., Clements, P, and Kazman, R. (2003). Software Architecture in Practice. The SEI Series in Software Engineering.
Addison-Wesley, 2nd edition.

Broaddus, A. (2010). A tale of two eco-suburbs in Freiburg, Germany: Parking provision and car use. Transportation Research
Record, 2187:114-122.

Ellis, W. J., II, R. F. H., Saunders, T. F., Poon, P. T., Rayford, D., Sherlund, B., and Wade, R. L. (1996). Toward a recommended
practice for architectural description. In ICECCS, pages 408—413. IEEE Computer Society.

Glinz, M. (2008). Modellierung in der Lehre an Hochschulen: Thesen und Erfahrungen. Informatik Spektrum, 31(5):425—-434.

Harel, D. (1997). Some thoughts on statecharts, 13 years later. In Grumberg, O., editor, CAV, volume 1254 of LNCS, pages
226-231. Springer-Verlag.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology. Std 610.12-1990.

IEEE (2000). Recommended Practice for Architectural Description of Software-Intensive Systems. Std 1471.
Kruchten, P. (1995). The “4+1” view model of software architecture. IEEE Software, 12(6):42—50.
Ludewig, J. and Lichter, H. (2013). Software Engineering. dpunkt.verlag, 3. edition.

OMG (2006). Object Constraint Language, version 2.0. Technical Report formal/06-05-01.

Schumann, M., Steinke, J., Deck, A., and Westphal, B. (2008). Traceviewer technical documentation, version 1.0. Technical report,

Carl von Ossietzky Universitat Oldenburg und OFFIS.

Taylor, R. N., Medvidovic, N., and Dahofy, E. M. (2010). Software Architecture Foundations, Theory, and Practice. John Wiley and
Sons.

6761

